
TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

CSC 7203 

J Paul Gibson, D311 

paul.gibson@telecom-sudparis.eu 

http://www-public.it-sudparis.eu/~gibson/Teaching/CSC7203/ 

Javadoc 

…/~gibson/Teaching/CSC7203/CSC7203-AdvancedOO-L8-Javadoc.pdf

1



2TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

Javadoc 



3TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

Java Comments

Private 
Comments 

Public 
Comments



4TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

What is Javadoc? 

Javadoc (originally cased JavaDoc) is a documentation generator created by Sun 
Microsystems for the Java language (now owned by Oracle Corporation) for generating 
API documentation in HTML format from Java source code. 

Javadoc comments are specific to the Java language and provide a means for a 
programmer to fully document his / her source code as well as providing a means to 
generate an Application Programmer Interface (API) for the code using the javadoc tool 
that is bundled with the JDK. These comments have a special format. 

A Javadoc comment precedes any class, interface, method or field declaration and is 
similar to a multi-line comment except that it starts with a forward slash followed by 
two asterisks (/**). The basic format is a description followed by any number of 
predefined tags. The entire comment is indented to align with the source code directly 
beneath it and it may contain any valid HTML.



5TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

Tags come in two types: 

 • Block tags - Can be placed only in the tag section that 
follows the main description. Block tags are of the form: 
@tag. 

 • Inline tags - Can be placed anywhere in the main 
description or in the comments for block tags. Inline tags 
are denoted by curly braces: {@tag}.



6TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

General Order of Tags 

The general order in which the 
block tags occur is as follows: 

1.@author 
2.@version 
3.@param 
4.@return 
5.@throws 
6.@see 
7.@since 
8.@deprecated

http://javaworkshop.sourceforge.net/chapter4.html 

{@code text} 
{@docRoot} 
{@inheritDoc} 
{@link package.class#member label} 
{@linkplain package.class#member label} 

Useful inline tags



7TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

There are three block tags that may occur more than once, they are: 
1.@author 
2.@param 
3.@throws 

As mentioned above, the author tag should be listed in chronological order, with the creator 
of the class or interface listed first. This implies that the last person to work on the source 
code will have their name appended to the bottom of the list of author tags. 

A method may have numerous parameters. In this case, the param tags should be defined in 
the exact same order as the parameters are declared in the method declaration. 

A method may throw numerous exceptions, in such a case it is customary to list the 
exceptions in alphabetical order, although in some cases they may be listed according to 
severity, the most severe exception is listed first.

Order of multiple repeated tags



8TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson



9TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

Eclipse includes Javadoc tool

Can compile/generate documentation (html) for any Java project



10TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

Eclipse Javadoc tips and tricks

Shift-Alt-J is a useful keyboard shortcut in Eclipse for creating Javadoc comment templates.

At a place where you want javadoc, type in /**<NEWLINE> and it will create the template.

In Eclipse, see the Javadoc tab at the bottom of the screen to preview the Javadoc information 
included for the class you’re viewing. Hovering over code also pops up a preview window



11TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

TODO - check out all the different 
types of comment in the previously 
seen Domino-MVC code. 

TODO - introduce errors into the 
javadoc comments and re-compile. 
What happens? What sort of errors 
are found? Are any of them ‘fatal’?

The Domino-MVC
/~gibson/Teaching/CSC7203/Code/DominoMVC.zip



12TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

/** 
 * A simple domino from a traditional set: 
 * <ul> 
 * <li> 0:0 0:1 0:2 0:3 0:4 0:5 0:6 </li> 
 * <li>     1:1 1:2 1:3 1:4 1:5 1:6 </li> 
 * <li>         2:2 2:3 2:4 2:5 2:6 </li> 
 * <li>             3:3 3:4 3:5 3:6 </li> 
 * <li>                 4:4 4:5 4:6 </li> 
 * <li>                     5:5 5:6 </li> 
 * <li>                         6:6 </li> 
 * </ul> 
 * <b>Note</b>: we consider domino x:y to be equal to domino y:x,  
 * and must override {@link DominoSpecification#equals} 
 * and {@link DominoSpecification#hashCode} methods appropriately<br> 
 * Tested by {@link tests.JUnit_DominoSpecification} 
 * @author jpaulgibson 
 * @version 1 
 */ 
public interface DominoSpecification extends HasInvariant, Randomizable



13TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

/**
 * The maximum value of a side of a domino in a standard domino set<br>
 * <b> NOTE: </b> May be changed provided the class invariant remains true
 */
public static final int MAX =6;



14TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

/**
 * Should check that the left and right values are in allowed range 
 * {@link DominoSpecification#MIN} .. {@link DominoSpecification#MAX}
 * @return if the domino is in a valid state
 */
public boolean invariant() throws InvariantBrokenException;



15TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

/**
 * Tested by {@link tests.JUnit_DominoSpecification#test_equals}
 * @param obj is compared to this
 * @return false if the object is null or not a domino, and
 *         true if the two values of both dominoes are the same (even if we switch/flip either domino)
 * @see DominoSpecification#hashCode
 */
public boolean equals(Object obj);



16TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

/**
 * Tested by {@link tests.JUnit_DominoSpecification#test_equals}
 * @param obj is compared to this
 * @return false if the object is null or not a domino, and
 *         true if the two values of both dominoes are the same (even if we switch/flip either domino)
 * @see DominoSpecification#hashCode
 */
public boolean equals(Object obj);



17TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson



18TSP: Advanced OO Programming - Javadoc2017:  J Paul Gibson

Where to save the documentation?


