Producing reliable behaviour from unreliable components

Before we begin this PBL session, let us check that you have understood
the foundational concepts presented in the previous lectures:

*Dependability, Reliability, Availability, ...
*Fault, Error, Failure, Bug, Defect ...
*Fail Safe/Stop/Silent

*Fault Tolerance

eRedundancy, n-version programming

*Checkpoint, rollback, rollforward



Producing reliable behaviour from unreliable components
Recommended reading

THE INFLUENCE OF SOFTWARE STRUCTURE ON RELIABILITY, D.L. Parnas, 1975.

System Structure for Software Fault Tolerance, BRIAN RANDELL, 1975.

SOFTWARE RELIABILITY: THE ROLE OF PROGRAMMED EXCEPTION HANDLING, P.M. Melliar-Smith and
B. Randell, 1977.

Fault-Tolerant Software, Herbert Hecht, 1979.
The Byzantine Generals Problem, LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE, 1982.

AN EXPERIMENTAL EVALUATION OF THE ASSUMPTION OF INDEPENDENCE IN MULTI-VERSION
PROGRAMMING, John C. Knight and Nancy Leveson, 1986

Basic Concepts and Taxonomy of Dependable and Secure Computing, Algirdas Avizienis, Jean-Claude
Laprie, Brian Randell and Carl Landwehr, 2004.

A direct path to dependable software, Daniel Jackson, 2009.



Producing reliable behaviour from unreliable components

Problem: consider a deployed system in which bounded queues of integer values are
critical components for providing overall behaviour.

The code is written in Java and the required behaviour is specified in an interface and
abstract test class:

o abstractions.BoundedQueueSpecification

A FIFO bounded gueue of integers with a maximum number of elements that must be at least 1.

Version:

1

Author:
JPaul Gibson

G tests.JUnit_BoundedQueueSpecification

Unit tests for checking bounded queue behaviour as specified by BoundedgueueSpecification

Author:
J Paul Gibson

January 2013 CSC7331: Dependable Software UnreliableQueues:3



Producing reliable behaviour from unreliable components

TO DO: Check that you understand the functional requirements based on the unit
tests specified in the abstract Junit test class.

Note that the unit tests also include a (very simplisitic) performance requirement:

2 woid tests.JUnit_BoundedQueueSpecification.test_performance()

@Test

Make a million calls to each of the bounded queue methods and check that the delay is no bigger than a second

Lr=v]

January 2013

t

public void test performance () {

long timel;
long time2;
timel = System.currentTimeMillis();

for (int i=0; 1i<1000000; i++){
boundedQ.push (1} ;
boundedQ.head () ;
bounded@.is empty();
boundedQ.is full():
boundedQ.get size();
boundedQ.pop () ;}

time2 = System.currentTimeMillis();

System.cout.println (time2-timel);
Lssert.assertTrue(time2-timel«<1000) ;

CSC7331: Dependable Software

UnreliableQueues:4



Producing reliable behaviour from unreliable components

There are 4 unreliable implementations:

© models.UnreliableBoundedQueuel

The same behaviour as the EeliableBoundedgueue except that there is a random problematic delay on the execution of the

ReliableBoundedgueus.push method that results in the performance of the queue no longer being acceptable - as defined in the test
JUnit BoundedGueueSpecification.test performance ().

C models.UnreliableBoundedQueue?2

The same behaviour as the reliableBoundedgueue except that there is a random problematic delay on the execution of the
EeliableBoundedgueue.head method that results in the performance of the queue no longer being acceptable - as defined in the test
JUnit BoundedgueueSpecification.test performance ().

C models.UnreliableBoundedQueue3

The same behaviour as the ReliableBoundedgueues except that there is a random problematic error on the execution of the
EeliableBoundedgueus.push method that results in the least significant bit of the integer value received being flipped. The unit test code

defined in JUnit BoundedQueueSpecification has a probability of finding the error (when it occurs), depending on the frequency of
occurence.

© maodels.UnreliableBoundedQueued

The same behaviour as the ReliableBoundedgueus except that when the queue becomes full the service is disabled for a random period of
time (between 100 and 500 milliseconds)

When disabled, method calls which can update the state (l.e. push and pop) resultin an IllegalStateException

January 2013 CSC7331: Dependable Software UnreliableQueues:5



Producing reliable behaviour from unreliable components

Problem:

For each of the unreliable components you are unable to fix the bugs/change
the code. Your task is to try and construct reliable bounded queue behaviour
using the unreliable components.

*For each type of unreliable bounded queue, design a mechanism for
building reliable bounded queue behaviour from the unreliable behaviour.

*Implement your designs in Java and test them.
Questions:

e Each of the unreliable behaviours is parameterised by some
probabilistic/timing/frequency values. For what range of values will your
reliability fixes continue to work (and with what degree of reliability)?
*What addtional tests, if any, should your solutions pass that they will/may
fail?



