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Abstract.
The IEEE 1394 tree identify protocol illustrates the adequacy of the event-driven approach used together

with the B Method . This approach provides a complete framework for developing mathematical models of
distributed algorithms. A speci�c development is made of a series of more and more re�ned models. Each
model is made of a number of static properties (the invariant), and of a dynamic parts (the guarded events).
The internal consistency of each model as well as its correctness with regards to its previous abstraction are
proved with the proof engine of Atelier B, which is the tool associated with B. In the case of IEEE 1394 , the
initial model is very primitive: it provides the basic properties of the graph (symmetry, acyclicity, connec-
tivity), and its dynamic parts essentially contains a single event which elects the leader in one shot. Further
re�nements introduce more events, showing how each node of the graph non-deterministically participates to
the leader election. At some stage in the development, message passing is introduced. This raises a speci�c
potential contention problem, whose solution is given. The last stage of the re�nement completely localize
the events by making them taking decision based on local data only.

Keywords: B method, event-driven approach, re�nement, proof-based development, proof engine, abstract
model,

1. Introduction

Overview. Distributed systems are inherently complex to understand, to design and to verify. In order
to master this complexity, people have developed various approach such as model-checking and theorem
proving. In this paper, we illustrate the latter by applying it to the IEEE 1394 protocol [IEE95].
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Proof-based Development. Proof-based development methods integrate formal proof techniques in the de-
velopment of software systems. The main idea is to start with a very abstract model of the system under
development. We then gradually add details to this �rst model by building a sequence of more concrete ones.
The relationship between two successive models in this sequence is that of re�nement [Bac79, Abr96a, CM88].
It is controlled by means of a number of, so-called, proofs obligations, which guarantee the correctness of the
development. Such proof obligations are proved by automatic (and interactive) proof procedures supported
by a proof engine. The essence of the re�nement relationship is that it preserves already proved system
properties including safety properties and termination properties. The invariant of an abstract model plays
a central rôle for deriving safety properties and our methodology focuses on the incremental discovery of the
invariant; the goal is to obtain a formal statement of properties through the �nal invariant of the last re�ned
abstract model. When developing formal models for the IEEE 1394 protocol, we use the environment Atelier
B [CLE01] for generating and proving proof obligations.

Understanding Distributed Systems. As already mentioned, a distributed system is complex. In this paper,
the IEEE 1394 protocol is used to illustrate a method for understanding how a typical distributed system is
working. Understanding a distributed system means that we are able to explain why it is working safely and
how it meets its requirements. In the case of the IEEE 1394 protocol, the same piece of code is duplicated at
each node of an acyclic and connected network. And the process that should be performed by these codes,
each working concurrently but with a limited knowledge, is the leader election: in other words, at the end of
the process a node should be given a special status, that of the leader, and other nodes should have a means
to eventually communicate with it. It is, in fact, not clear at all that these distributed local computations
indeed converge towards the leader election, which is a global result. The re�nement technique we use allows
us to decompose the IEEE 1394 system into four embedded models, each one providing an additional view
by bringing more informations into the current invariant. For instance, the �rst two models contains the
essence of the underlying structure of the acyclic and connected graph representing the network. They also
convey the main ideas of the distributed computation. They express the way the protocol works at a very
high level abstraction. The third model formalizes how the nodes communicate by means of various kinds
of messages: it helps us understanding the contention problem, which is one of the critical question of the
IEEE 1394 protocol. The last model deals with the localization of the abstract data structures used in the
previous models.

Re�ning Formal Models. Formal models, as described in this paper, contain events which preserve some
invariant properties; they also include aspects related to the termination. Such models are thus very close to
action systems introduced by R.J. Back [Bac79] and to UNITY programs [CM88]. The re�nement of formal
models plays a central rôle in these frameworks and is a key concept for developing distributed systems. When
one re�nes a formal model, the corresponding more concrete model may have new variables and new events,
it may also strengthen the guards of more abstract events. As already mentioned, some proof obligations
are generated in order to prove that a re�nement is correct. Notice that, if some proof obligations remain
unproved, it means that, either the formal model is not correctly re�ned, or that an interactive proving
session is required. The prover allows us to get a complete proof of the development and hence of the �nal
protocol. No assumption is made on the size of the system, for instance the number of nodes in the network.
This contrasts with what should be done while using model-checking.

Related works. The IEEE 1394 protocol is a distributed algorithm for electing a leader in a network. The
idea of the algorithm has already been sketched by N. Lynch [Lyn96](page 501). This sketch �ts our second
formal model. The PVS veri�cation [DGRV00] derives the correctness of the IEEE 1394 protocol for an I/O
automaton SPEC, which corresponds to our third formal model. We notice that this I/O automaton is not
detailed enough to express the con�rmation event, which appears in our third model. Their proofs are not
really helpful for understanding the rôle of the underlying structure in the convergence of the algorithmic
solution. The expressiveness of their invariant is not really clear. The PVS models includes an I/O automa-
ton TIP that corresponds to our �rst formal model. A speci�c re�nement relation is used to de�ne the link
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between the two I/O automata, but it is not really useful to derive safety properties. Our approach keeps a
link with the documentation and tends to explain in a formal way why the current abstract model is working
correctly. We are really close to the IEEE 1394 protocol in our fourth abstract model. We shall not compare
our approach to that of model checking, since our modeling is completely proved and is not restricted to a
given network.

Organization of the paper. Section 2 introduces our proof-based development with the B event-driven
approach. It introduces de�nitions for event, re�nement and corresponding proof obligations. Section 3
analyses the election process and describes mathematical properties of the underlying structure, namely the
acyclic and connected graph; a �rst formal model is designed and proved to meet the requirements of the
leader election. The development process starts by re�ning the �rst model and introduces a progression event
in section 4; this model is then re�ned and introduces the contention event. Section 5 localizes events and
provides an algorithmic solution close to the IEEE 1394 description. Finally, we conclude our work in the
section 6.

2. Proof-based development

2.1. Event-based modeling

Our event-driven approach [Abr96b, AM98] is based on the B notation [Abr96a]. It extends the methodolog-
ical scope of basic concepts such as set-theoretical notations and generalized substitutions in order to take
into account the idea of formal models. Roughly speaking, a formal model is characterized by a (�nite) list
x of state variables possibly modi�ed by a (�nite) list of events; an invariant I(x) states some properties
that must always be satis�ed by the variables x and maintained by the activation of the events. Abstract
models are close to guarded commands of Dijkstra [Dij76], action systems of Back [Bac79] and to UNITY
programs [CM88]. In what follows, we brie�y recall de�nitions and principles of formal models and explain
how they can be managed by Atelier B [CLE01].

De�nition 1. : Generalized Substitution
Generalized substitutions are borrowed from the B notation. They provide a way to express the transfor-

mations of the values of the state variables of a formal model. In its simple form, x := E(x), a generalized
substitution looks like an assignment statement. In this construct, x denotes a vector build on the set of state
variables of the model, and E(x) a vector of expressions of the same size as the vector x. The interpretation
we shall give here to this statement is not however that of an assignment statement. We interpret it as
a logical simultaneous substitution of each variable of the vector x by the corresponding expression of the
vector E(x). There exists a more general form of generalized substitution. It is denoted by the construct
x : P (x0, x). This is to be read: �x is modi�ed in such a way that the predicate P (x0, x) holds�, where x de-
notes the new value of the vector, whereas x0 denotes its old value. It is clearly non-deterministic in general.
This general form could be considered as a normal form, since the simplest form x := E(x) is equivalent to
the more general form x : (x = E(x0)).

De�nition 2. : Events and Before-After Predicates
An event is essentially made of two parts: a guard, which is a predicate built on the state variables,

and an action, which is a generalized substitution. An event can take one of the forms shown in the table
below. In these constructs, evt is an identi�er: this is the event name. The �rst event is not guarded: it is
thus always enabled. The guard of the other events, which states the necessary condition for these events
to occur, is represented by G(x) in the second case, and by ∃ t ·G(t, x) in the third one. The latter de�nes
a non-deterministic event where t represents a vector of distinct local variables. The, so-called, before-after
predicate BA(x, x′) associated with each event shape, describes the event as a logical predicate expressing the
relationship linking the values of the state variables just before (x) and just after (x′) the event �execution�.
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Event Before-after Predicate BA(x, x′)

evt =̂ begin x : P (x0, x) end P (x, x′)

evt =̂ select G(x) then x : Q(x0, x) end G(x) ∧ Q(x, x′)

evt =̂ any t where G(t, x) then x : R(x0, x, t) end ∃ t· ( G(t, x) ∧ R(x, x′, t) )

Proof obligations are produced from events in order to state that the invariant condition I(x) is preserved.
We next give the general rule to be proved. It follows immediately from the very de�nition of the before-after
predicate, BA(x, x′) of each event:

I(x) ∧ BA(x, x′) ⇒ I(x′)

Notice that it follows from the two guarded forms of the events that this obligation is trivially discharged
when the guard of the event is false. When it is the case, the event is said to be �disabled�.

2.2. Model Re�nement

The re�nement of a formal model allows us to enrich a model in a step by step approach. Re�nement provides
a way to construct stronger invariants and also to add details in a model. It is also used to transform an
abstract model in a more concrete version by modifying the state description. This is essentially done by
extending the list of state variables (possibly suppressing some of them), by re�ning each abstract event
into a corresponding concrete version, and by adding new events. The abstract state variables, x, and the
concrete ones, y, are linked together by means of a, so-called, gluing invariant J(x, y). A number of proof
obligations ensure that (1) each abstract event is correctly re�ned by its corresponding concrete version,
(2) each new event re�nes skip, (3) no new event take control for ever, and (4) relative deadlockfreeness is
preserved.

De�nition 3. : Re�nement
We suppose that an abstract model AM with variables x and invariant I(x) is re�ned by a concrete

model CM with variables y and gluing invariant J(x, y). If BAA(x, x′) and BAC(y, y′) are respectively the
abstract and concrete before-after predicates of the same event, we have to prove the following statement:

I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′ · (BAA(x, x′) ∧ J(x′, y′))

This says that under the abstract invariant I(x) and the concrete one J(x, y), a concrete step BAC(y, y′)
can be simulated (∃x′) by an abstract one BAA(x, x′) in such a way that the gluing invariant J(x′, y′) is
preserved. A new event with before-after predicate BA(y, y′) must re�ne skip (x′ = x). This leads to the
following statement to prove:

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ J(x, y′)

Moreover, we must prove that a variant V (y) is decreased by each new event (this is to guarantee that an
abstract step may occur). We have thus to prove the following for each new event with before-after predicate
BA(y, y′):
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I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ V (y′) < V (y)

Finally, we must prove that the concrete model does not introduce more deadlocks than the abstract one.
This is formalized by means of the following proof obligation:

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM)

where grds(AM) stands for the disjunction of the guards of the events of the abstract model, and grds(CM)
stands for the disjunction of the guards of the events of the concrete one.

3. The Case Study: Basic Approach

The goal of the IEEE 1394 protocol is to elect in a �nite time a speci�c node, called the leader , in a network
made of various nodes linked by some communication channels. Once the leader is elected, each non-leader
node in the network should have a well de�ned way to communicate with it. This election of the leader has
to be done in a distributed and non-deterministic way.

3.1. The Basic Mathematical Structure

Before considering details of the protocol, we choose to give a very solid de�nition to the main topology of
the network. It is essentially formalized by means of a set ND of nodes subjected to the following assumptions:

1. the network is represented by a graph g built on ND,

2. all nodes are concerned with the network,

3. the links between the nodes are bidirectional ,

4. a node is not directly connected to itself .

g ⊆ ND ×ND
dom (g) = ND
g = g−1

id(ND) ∩ g = ∅

Items 2 and 3 above are formally represented by a symmetric graph whose domain (and thus co-domain too)
corresponds to the entire �nite set of nodes. The symmetry of the graph is due to the representation of the
non-oriented graph by pairs of nodes and the link x − y is represented by the two pairs x 7→ y and y 7→ x.
Item 4 is rendered by saying that the graph is not re�exive.

There are two other very important properties of the graph: it is connected and acyclic. Both these properties
are formalized by claiming that the relation between each node and the spanning trees of the graph having
that node as a root, that this relation is total and functional. In other words, each node in the graph can
be associated with one and exactly one tree rooted at that node and spanning the graph. We can model a
tree by a root r, which is a node: r ∈ ND, and a father functions t (each node has an unique father node,
except the root): t ∈ ND − {r} −→ ND. The tree is an acyclic graph. A cycle c in a �nite graph t built
on a set ND is a subset of ND whose elements are members of the inverse image of c under t, formally:
c ⊆ t−1[c]. To ful�l the requirement of acyclicity, the only set c that enjoys this property is thus the empty
set. This can be formalized by the left predicate that follows, which can be proved to be equivalent to the
one situated on the right, which can be used as an induction rule:

∀c · ( c ⊆ ND ∧ c ⊆ t−1 [c] ⇒ c = ∅ ) ⇔ ∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q )

We prove the equivalence using the tool Atelier B. We can now de�ne a spanning tree (with root r and
father function t) of a graph g as one whose father function is included in g, formally:
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spanning (r, t, g) =̂


r ∈ ND ∧
t ∈ ND − {r} −→ ND ∧
∀q · ( q ⊆ ND ∧ r ∈ q ∧ t−1 [q] ⊆ q ⇒ ND = q ) ∧
t ⊆ g


As mentioned above, each node in the graph can be associated with exactly one tree rooted at that node

and which spans the graph. For this, we de�ne the following total function f connecting each node r of the
graph with its spanning tree f(r):

f ∈ ND → (ND 7→ ND)

∀(r, t) ·


r ∈ ND ∧
t ∈ ND 7→ ND
⇒
t = f(r) ⇔ spanning (r, t, g)


The graph g and the function f are thus two global constants of the problem.

3.2. The First Model

From the basic mathematical structure developed in previous section, the essence of the abstract algorithm
implemented by the protocol is very simple: it consists in building gradually (and non-deterministically) one
of the spanning trees of the graph. Once this is done, then the root of that tree is the elected leader and
the communication structure between the other nodes and the leader is obviously the spanning tree itself .
The protocol, considered globally, has thus two variables: (1) the future spanning tree, sp, and (2) the future
leader, ld.

The �rst formal model of the development contains the de�nitions and properties of the two global
constants (the above graph g and function f together with their properties), and the de�nition of the two
mentioned global variables sp and ld typed in a very loose way: sp is a binary relation built on ND and ld is
a node. The dynamic aspect of the protocol is essentially made of one event, called elect, which claims what
the result of the protocol is, when it is completed . In other words, at this level, there is no protocol, just the
formal de�nition of its intended result, namely a spanning tree sp and its root ld.

elect =̂
begin

ld, sp : spanning (ld, sp, g)
end

As can be seen, the election is done in one step.
In other words, the spanning tree appears at once.
The analogy of someone closing and opening eyes
can be used here to �explain� the process of election
at this very abstract level.

4. Re�ning the First Model

In this section, we present two successive re�nements of the previous initial model. In the �rst one, we
give the essence of the distributed algorithm. In the second re�nement, we introduce some communication
mechanisms between the nodes.

4.1. First Re�nement: Gradual Construction of a Spanning Tree

In the �rst model, the construction of the spanning tree was performed in �one shot�. Of course, in a more
realistic (concrete) formalization, this is not the case any more. In fact, the tree is constructed on a step by
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step basis. For this, a new variable, called tr, and a new event, called progress, are introduced. The variable
tr represents a sub-graph of g, it is made of several trees (it is thus a forest) which will gradually converge
to the �nal tree, which we intend to build eventually. This convergence is performed by the event progress.
This event involves two nodes x and y, which are neighbours in the graph g. Moreover, x and y are supposed
to be both outside the domain of tr. In other words, each of them has no �father� yet in tr. However, the
node x is the father of all its other neighbours (if any) in g. This last condition can be formalized by means
of the predicate g[{x}] = tr−1[{x}] ∪ {y} since the set of neighbours of x in g is g[{x}] while the set of
sons of x in tr is tr−1[{x}]. When these conditions are ful�led, then the event progress can be enabled and
its action has the e�ect of making the node y the father of x in tr. The abstract event elect is now re�ned.
Its new version is concerned with a node x which happens to be the father of all its neighbours in g. This
condition is formalized by the predicate g[{x}] = tr−1[{x}]. When this condition is ful�led the action of
elect makes x the leader ld and tr the spanning tree sp. Next are the formal representations of these events

progress =̂
any x, y where

x, y ∈ g ∧ x /∈ dom(tr) ∧ y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then

tr := tr ∪ {x 7→ y}
end

elect =̂
any x where

x ∈ ND ∧
g[{x}] = tr−1[{x}]

then

ld, sp := x, tr
end

The new event progress clearly re�nes skip since it only updates the variable tr which is a new variable of
this re�nement with no existence in the abstraction. Also notice that progress clearly decreases the quantity
card(g)− card(tr). The situation is far less clear concerning the re�nement of event elect. We have to prove
that when its guard is true then tr is indeed a spanning tree of the graph g whose root is precisely x.
Formally, this leads to proving the following

∀x · ( x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ spanning (x, tr, g) )

According to the de�nition of the constant function f , the previous property is clearly equivalent to

∀x · ( x ∈ ND ∧ g[{x}] = tr−1[{x}] ⇒ tr = f(x) )

This means that tr and f(x) should have the same domain, namely ND − {x}, and that for all n in
ND − {x}, tr(n) is equal to f(x)(n). This amounts to proving the following:

ND = {x} ∪ {n |n ∈ ND − {x} ∧ f(x)(n) = tr(n) }

This is done using the inductive property associated with each spanning tree f(x). Notice that we also
need the following invariants:

tr ∈ ND 7→ ND
dom (tr) C (tr ∪ tr−1) = dom (tr) C g
tr ∩ tr−1 = ∅

This new model, although more concrete than the previous one, is nevertheless still an abstraction of the
�real� protocol: it just explains how the leader can be eventually elected by the gradual transformation of
the forest tr into a unique tree spanning the graph g.
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4.2. Second Re�nement: Introducing Communication Channels

In the previous re�nement, the event progress was still very abstract: as soon as two nodes x and y with
the required properties were detected, the corresponding action took place immediately: in other words, y
became the father of x �in one shot�. In the �real� protocol things are not so �magic�: once a node x has
detected that it is the father of all its neighbours except one y, it sends a request to y in order to ask
it to become its father. Node y then acknowledges this request and �nally node x establishes the �father�
connection with node y. This connection, which is thus established in three distributed steps, is clearly closer
to what happens in the real protocol. We shall see however in the next re�nement that what we have just
described is not yet the �nal word. But let us formalized this for the moment. In order to do so, we need to
de�ne at least two new variables: req, to handle the requests, and ack, to handle the acknowledgements. req
is a partial function from ND to itself. When a pair x 7→ y belongs to req it means that node x has send a
request to node y asking it to become its father: the functionality of req is due to the fact that x has only
one father. Clearly, req is also included in the graph g. When node y sends an acknowledgement to x this is
because y has already received a request from x: ack is thus a partial function included in req.

req ∈ ND 7→ ND
req ⊆ g
ack ⊆ req
tr ⊆ ack
ack ∩ ack−1 = ∅

Notice that when a pair x 7→ y belongs to ack, it means that y has sent an
acknowledgment to x (clearly y can send several acknowledgements since it might
be the father of several nodes). It is also clear that it is not possible in this case
for the pair y 7→ x to belong to ack. The �nal connection between x and y is
still represented by the function tr. Thus tr is included in ack. All this can be
formalized as shown.

Two new events are de�ned in order to manage requests and acknowledgements: send_req, and send_ack.
As we shall see, event progress is modi�ed, whereas event elect is left unchanged. Here are the new events
and the re�ned version of progress:

send_req =̂
any x, y where

x, y ∈ g ∧ y, x /∈ ack ∧
x /∈ dom (req) ∧
g[{x}] = tr−1[{x}] ∪ {y}

then

req := req ∪ {x 7→ y}
end

send_ack =̂
any x, y where

x, y ∈ req ∧
x, y /∈ ack ∧
y /∈ dom (req)

then

ack := ack ∪ {x 7→ y}
end

progress =̂
any x, y where

x, y ∈ ack ∧
x /∈ dom (tr)

then

tr := tr ∪ {x 7→ y}
end

Event send_req is enabled when a node x discovers that it is the father of all its neighbours except one
y: g[{x}] = tr−1[{x}] ∪ {y}. Notice that, as expected, this condition is exactly the one that allowed event
progress in the previous model to be enabled. Moreover x must not have sent already a request to any node:
x /∈ dom (req). Finally x must not have already sent an acknowledgement to node y: y, x /∈ ack. When these
conditions are ful�led then the pair x 7→ y is added to req. Event send_ack is enabled when a node y receives
a request from node x, moreover y must not have already sent an acknowledgement to node x: x, y ∈ req
and x, y /∈ ack. Finally node y must not have sent a request to any node: y /∈ dom (req) (we shall see very
soon what happens when this condition does not hold). When these conditions are ful�led, node y sends an
acknowledgement to node x: the pair x 7→ y is thus added to ack. Event progress is enabled when a node x
receives an acknowledgement from node y: x, y ∈ ack. Moreover node x has not yet established any father
connection: x /∈ dom (tr). When these conditions are ful�led the connection is established: the pair x 7→ y is
added to tr.

Events send_req and send_ack clearly re�ne skip. Moreover their actions increment the cardinal of req and
ack respectively (these cardinals are bounded by that d g). It remains for us to prove that the new version of
event progress is a correct re�nement of its abstraction. The actions being the same, it just remains for us to
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prove that the concrete guard implies the abstract one. This amounts to proving the following left predicate,
which is added as an invariant:

∀ (x, y) ·



x, y ∈ ack ∧
x /∈ dom (tr)
⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}


∀ (x, y) ·



x, y ∈ req ∧
x, y /∈ ack
⇒
x, y ∈ g ∧
x /∈ dom(tr) ∧
y /∈ dom(tr) ∧
g[{x}] = tr−1[{x}] ∪ {y}


When trying to prove that the left predicate is maintained by event send_ack, we �nd that the right predi-
cate above must also be proved. It is thus added as a new invariant, which is, this time, easily proved to be
maintained by all events.

The problem of contention. The guard of the event send_ack above contains the condition y /∈ dom (req). If
this condition does not hold while the other two guarding conditions hold, that is x, y ∈ req and x, y /∈ ack
hold, then clearly x has sent a request to y and y has sent a request to x: each one of them wants the other
to be its father! This problem is called the contention problem. In this case, no acknowledgements should
be sent since then each node x and y would be the father of the other. In the �real� protocol the problem
is �solved� by means of timers. As soon as a node y discovers a contention with node x, it waits for very a
short delay in order to be certain that the other node x has also discovered the problem. The very short
delay in question is at least equal to the message transfer time between nodes (such a time is supposed to
be bounded). After this, each node randomly chooses (with probability 1/2) to wait for either a �short� or a
�large� delay (the di�erence between the two is at least twice the message transfer time). After the chosen
delay has passed each node sends a new request to the other if it is in the situation to do so. Clearly, if
both nodes choose the same delay, the contention situation will reappear. However if they do not choose
the same delay, then the one with the largest delay becomes the father of the other: when it wakes up, it
discovers the request from the other while it has not itself already sent its own request, it can therefore send
an acknowledgement and thus become the father. According to the law of large numbers, the probability
for both nodes to inde�nitely choose the same delay is null. Thus, at some point, they will (in probability)
choose di�erent delays and one of them will thus become the father of the other. We shall only present here
a partial formalization of the contention problem. The idea is to introduce a virtual channel called cnt.

cnt ⊆ req
ack ∩ cnt = ∅

When this �channel� contains a pair x 7→ y, this means that y has discovered the
contention with node x. When both pairs x 7→ y and y 7→ x are present in cnt, this
means that both nodes x and y have discovered the contention. Notice that cnt is
included in req and clearly disjoint with ack, as shown. We have two new events.

The �rst one is called discover_cnt. The only di�erence with the guard of event send_ack concerns the
condition y ∈ dom (req), which is true in discover_cnt and false in send_ack. The action of this event adds
the pair x 7→ y to cnt. The second new event is called solve_cnt. It is enabled when both pairs x 7→ y and
y 7→ x are present in cnt. The action removes these pairs from req and resets cnt. This formalizes what
happens after the �very short delay�. Notice that this event is not part of the protocol: it corresponds to a
�deamon� acting when the very short delay has just passed. Here are the events

discover_cnt =̂
any x, y where

x, y ∈ req − ack ∧
y ∈ dom (req)

then

cnt := cnt ∪ {x 7→ y}
end

solve_cnt =̂
any x, y where

x, y ∈ cnt ∧
y, x ∈ cnt

then

req, cnt := req − cnt, ∅
end
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In order to prove the invariant ack ∩ cnt = ∅, we need the following extra invariants

∀ (x, y) ·


x, y ∈ req − ack ∧
y ∈ dom (req)
⇒
y, x ∈ req − ack

 ∀ (x, y) ·


x, y ∈ req − ack ∧
y /∈ dom (req)
⇒
x, y /∈ cnt


The complete formalization of the contention solution of the real IEEE 1394 protocol (involving the timers

and the random choices) is not di�cult, just a little too long to be presented within the framework of this
paper.

5. Last Re�nement: Localization

In the previous re�nement, the guards of the various events were de�ned in terms of some global constants
or variables such as g, tr, req, ack. A closer look at this re�nement shows that these constants or variables
are used in expressions of the following shapes: g−1[{x}], tr−1[{x}], ack−1[{x}], dom (req), and dom (tr).
These shapes dictate the kind of data re�nement we now undertake. We declare �ve new variables nb (for
neighbours), ch (for children), ac (for acknowledged), dr (for domain of req), and dt (for domain of tr). Next
are the declarations of these variables together with their simple de�nitions in terms of the global variables.

nb ∈ ND → P(ND)
ch ∈ ND → P(ND)
ac ∈ ND → P(ND)
dr ⊆ ND
dt ⊆ ND

∀x · ( x ∈ ND ⇒ nb(x) = g−1[{x}] )
∀x · ( x ∈ ND ⇒ ch(x) ⊆ tr−1[{x}] )
∀x · ( x ∈ ND ⇒ ac(x) = ack−1[{x}] )
dr = dom (req)
dt = dom (tr)

Given a node x, the sets nb(x), ch(x), and ac(x) are supposed to be �stored� locally within the node. As
the varying sets ch(x) and ac(x) are subsets of the constant set nb(x), it is certainly possible to further re�ne
their encoding. Likewise the two sets dr and dt still appears to be global, but they can clearly be encoded
locally in each node by means of local boolean variables.

It is worth noticing that the �de�nition� of variable ch above is not given in terms of an equality, rather in
terms of an inclusion (this is thus not really a de�nition). This is due to the fact that the set ch(y) cannot
be updated while the event progress takes place: this is because this event can only act on its local data.
A new event, receive_cnf (for receive con�rmation) is thus necessary to update the set ch(y). Next are the
re�nement of the various events.

elect =̂
any x where

x ∈ ND ∧
nb(x) = ch(x)

then

ld := x
end

send_req =̂
any x, y where

x ∈ ND − dr ∧
y ∈ ND − ac(x) ∧
nb(x) = ch(x) ∪ {y}

then

req := req ∪ {x 7→ y} ‖
dr := dr ∪ {x}

end

send_ack =̂
any x, y where

x, y ∈ req ∧
x /∈ ac(y) ∧
y /∈ dr

then

ack := ack ∪ {x 7→ y} ‖
ac(y) := ac(y) ∪ {x}

end
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progress =̂
any x, y where

x, y ∈ ack ∧
x /∈ bt then

tr := tr ∪ {x 7→ y} ‖
dt := dt ∪ {x}

end

receive_cnf =̂
any x, y where

x, y ∈ tr ∧
x /∈ ch(y)

then

ch(y) := ch(y) ∪ {x}
end

The proofs that these events correctly re�ne their respective abstractions are technically trivial. We now
give in the following table, the local node �in charge� of each event as encoded above

event node
elect x
send_req x
send_ack y
progress x
receive_cnf y

The reader could be surprised to still see formulas such as req := req ∪ {x 7→ y} or x, y ∈ req. They
correspond in fact to writing and reading operations done by corresponding local nodes as explained in the
following table:

formula explanation
req := req ∪ {x 7→ y} x sends a request to y
x, y ∈ req y reads a request from x
ack := ack ∪ {x 7→ y} y sends an acknowledgement to x
x, y ∈ ack x reads an acknowledgement from y
tr := tr ∪ {x 7→ y} x sends a con�rmation to y
x, y ∈ tr y reads a con�rmation from y

6. Concluding Remarks

The total number of proofs (all done mechanically with Atelier B) amounts to 106, where 24 required an
easy interaction. Proofs help us to understand the contention problem and the rôle of graph properties in
the correctness of the solution. The re�nements gradually introduce the various invariants of the system. No
assumption is made on the size of the network. The proof leads us to the discovery of the con�rmation event
to get the complete correctness, which was not the case of the I/O automata modelling.

In our opinion, this text, whose notation is very close to that of classical mathematics, is very simple to
understand (provided, of course, the corresponding mathematical concepts, namely sets, functions, relations,
and the like are well mastered), with the exception of our formulation of tree structures described under the
form of the father function together with a universal quanti�cation formalizing the corresponding induction
rule. This formulation requires some more mathematical background. The question concerning the mythical
average programmer understanding our solution is a bit irrelevant here: this problem is �rst, we believe,
an abstract algorithm problem requiring a certain background in discrete mathematics. The lack of such
background may lead to very awkward solutions due to the fact that they precisely try to convince the
famous average programmer. In fact, in these solutions, the mathematical essence of the problem is hidden
behind a curtain of technicalities all presented in a �at manner (no abstraction, thus no re�nement, hence
proof obligation explosion).

The essence of our approach is the methodology of separation of concerns: �rst prove the algorithm at
an abstract (mathematical) level, then, and only then, gradually introduce the peculiarity of the speci�c
protocol. What is important about our approach is that the fundamental properties we have proved at the
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beginning, namely the reachability and the uniqueness of a solution, are kept through the re�nement process
(provided, of course, the required proofs are done). It seems to us that this sort of approach is highly ignored
in the literature of protocol developments where, most of the time, things are presented in a �at manner
directly at the level of the �nal protocol itself.
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