
Processing Natural Language Requirements

Vincenzo Ambriola Vincenzo Gervasi

Dipartimento di Informatica, Università di Pisa

Abstract

The importance of requirements, which in practice often
means natural language requirements, for a successful soft-
ware project cannot be underestimated. Although require-
ment analysis has been traditionally reserved to the experi-
ence of professionals, there is no reason not to use various
automatic techniques to the same end.

In this paper we presentCirce, a Web-based environment
for aiding in natural language requirements gathering, elic-
itation, selection, and validation and the tools it integrates.
These tools have been used in several experiments both in
academic and in industrial environments.

Among other features,Circe can extract abstractions from
natural language texts, build various models of the system
described by the requirements, check the validity of such
models, and produce functional metric reports. The environ-
ment can be easily extended to enhance its natural language
recognition power, or to add new models and views on them.
Keywords: Natural language, requirement engineering, re-
quirement validation, tools, Web-based environments.

1. Introduction

While formal methods have witnessed great progress, and
their application has resulted in remarkable successes, in the
vast majority of the applications it is the customer who has
to validate the requirements. Formal methods, indeed, can
be applied to modelsalready formalized in some way; the
very first step, from the wishes of the customer to the first
(semi)formal and usually very abstract representation of a
problem is often left to the experience, the sensibility and
the knowledgeability of the analyst — but better not leave it
to hiscreativity!

A number of systematic approaches to requirement gath-
ering, elicitation, selection, and validation have been devel-
oped in recent years [28, 29, 33]. However, these approaches
often fail to recognize the need for aninformedvalidation by
the customer who, usually, cannot decode the formal or semi-
formal models produced by the analyst using the above men-
tioned methods. Also, in common practice the analysis of a
problem has often to start from interviews with the customer
or from available user documentation, and both sources of
information are heavily based on natural language. Even un-
orthodox techniques, like capturing the user’s work with a
videocamera for subsequent analysis [9], need to rely on nat-
ural language to assign meaning to the activities captured.

These observations lead us to enhance the role of natu-
ral language as a way of expressing requirements. However,
natural language has many drawbacks that make it not well
suited to the definition of a system; among others, its inherent
ambiguity and the difficulty in proving properties of the sys-
tem so described. In this paper, we consider some properties
that a system for processing natural language requirements
(NLR) should satisfy, and present a report on our work in
building and experimenting with such a system. In this con-
text, we use the term “requirements” to mean not only the
final product of the requirement analysis (that we could call
the polished requirements), but also early incarnations of the
same information — in some case as far as to include parts
of the original user’s documentation. Our approach is thus to
assist the requirement engineer during the entire life cycle of
the requirements, proposing some methodology-independent
technique to simplify his task.

Section 2 of this paper motivates the need and discusses
the role of natural language processing in requirement engi-
neering, and presents the rationale for some of our choices.
Section 3 describes the environment we built and used in our
experiments. An example, followed by Section 5 on typical
applications of the techniques we outlined and by some final
remarks, concludes the paper.

2. Using natural language in requirement engi-
neering

2.1. Motivations

2.1.1. Requirement expression. Writing requirements is
essentially a cooperative work [5, 14]; only the customer
really knows the problem at hand1, but only the analyst
can help her in fully and correctly expressing it. Natural-
language is — obviously — the most natural language the
customer can use to express what she expects from the sys-
tem, her perception of the problem, and a minimal model of
the environment in which the system to build will work.

Almost always, the customer does not know any differ-
ent, more formal, language, but should she know any, it will
be seldom shared by both the customer and the analyst. On
the contrary, natural language (surely the least common de-
nominator in our societies) can be decoded both by the cus-
tomer and by the analyst, and can assure the communica-
tion between them. Sadly, natural language is inherently am-
biguous, imprecise and incomplete; often a natural language

1Although in most cases this knowledge is far from perfect [27].

document is redundant, and several classes of terminological
problems (e.g., jargon or specialistic terms) can arise to make
communication difficult. However, we still believe that nat-
ural language is the most useful and direct tool for express-
ing and communicating requirements, and several issues in
requirement selection, validation, and conflict identification
can be already tackled at this level.

2.1.2. Requirement validation. While the literature offers
a plethora of methods and criteria for the validation of re-
quirements expressed in the most varied formalisms [13],
none of them can guarantee the actual equivalence of what
expressed in the requirements with the (eventually unwritten)
wishes of the customer. Only the customer can give the final
approval on the requirements, especially in view of any legal
implication stemming from this approval, and so she must be
put in a position to understand, evaluate, and validate them in
theirfinal form. One cannot rely on the equivalence between
a natural language version of the requirements and adiffer-
ent, (semi)formal one, since in this situation the equivalence
itself should be validated by the customer (who cannot per-
form the validation since she does not know the (semi)formal
language involved).

This need drives us to consider natural language require-
ments as the reference version, and to choose natural lan-
guage itself as the preferred way to communicate with the
customer. The equivalence between the natural language
version and a (semi)formal one of the requirements can
be assured either by unparsing the (semi)formal represen-
tation into natural language, or by directly producing the
(semi)formal version from the natural language text. This
latter approach is the only possible in the first stages of the
requirement drafting process, when no formal model is avail-
able yet, and calls for some form of “understanding” of nat-
ural language requirements.

2.2. Current NLP

Current natural language processing techniques have
grown quite sophisticated. From the first successful attempts
[3], the field has evolved to handle conversations, viewpoints,
beliefs, counterfactual information, and other subtle points.
Natural language understanding (NLU) systems are currently
in operation, and almost-automatic text translation has be-
come feasible. However, this power has been obtained at
the cost of considerable complexity. It is not uncommon for
these systems to include AI components, vast amounts of se-
mantic information, statistical data, knowledge bases, theo-
rem provers, and so on, with the aim of inferring as much
contextual information as possible from the (vague) source
text.

Natural language generation (NLG) has grown to the point
where current research issues are about how to plan the best
rhetorical structure for a dialogue, and the output generated
by these systems appears quite “natural”. NLG is generally
considered an easier task with respect to NLU, but in this
field, too, systems can grow quite complex.

2.3. Peculiarities of the requirements case

Luckily, the particular case of requirements understanding
lends itself to several simplifications with respect to the gen-
eral case of NLU. These simplifications come mainly from
three factors:� Explicitness. It is useful in itself to reduce to a mini-

mum the amount of unexpressed information in the re-
quirements. What one could consider common sense
could be a real surprise for someone else, especially
when they come from different cultural backgrounds.
Since our target is not to obtain the most likely interpre-
tation of incomplete or vague requirements, but rather
to force the expression of requirements as explicit as
possible (to minimize the probability of misunderstand-
ings), an application geared to requirement engineering
could dispense with huge knowledge bases like the Cyc
ontology [22, 23] or ACAPULCO [19]. In this case,
ignorance is a blessing [6].� Interactivity . Requirement drafting is an interactive
process. The user can repeatedly modify a requirement
until it can be understood by a tool; in our experience,
this effort always makes the requirement clearer and of-
ten exposes real problems in the original version. Given
the interactive nature of the drafting process, a failure
in understanding a requirement is not fatal, differently
from what happens in the case of non-interactive pro-
cesses (when there is no way to obtain a different for-
mulation of the text).� Repetitiveness. The application domain, while largely
variable, usually falls in a small number of well-know
paradigms (reactive systems, data bases, information
systems. . .) [20]. Each of these paradigms can be ana-
lyzed independently, and a great part of the experience
coming from one such project can be easily ported to a
different project using the same paradigm.

Thanks to these simplifications (no need to infer informa-
tion, non-fatal failures, small number of paradigms), we can
use a simpler approach based on the identification of com-
mon linguistic structures in the text, avoiding the need for
complex NLU systems and unusually large knowledge bases.

2.4. Supporting natural language requirement pro-
cessing

Table 1 shows a list of requirements that a NLR-sup-
porting environment should satisfy2. Most of them stem
from the cooperative nature of the requirement drafting pro-
cess: since both the customer and the requirement engineer
must participate, we stressease of access(related to the wide
applicability of the tools composing the environment, along
several dimensions),ease of use(that means having both the
customer and the engineer comfortable in their work envi-
ronment), andease of interpretationof the results.

2The third column in this table refers to subsequent sectionsin which our
implementation is discussed.

To allow we need provided by Circe as
Using URD, interviews etc.; validation by the
customer; customer–engineer cooperation.

Natural language NLR understanding byCico; NL-like output
by the views. (3.1)

Wide applicability (onworking environmentdi-
mension); engineer’s freedom.

Methodology-neutrality Flat structure of views. (3)

Wide applicability (on languagedimension);
multiple language support.

Language-neutrality MAS rules, predefined glossaries. (3.1.3,
3.4.3)

Wide applicability (onproblemdimension). Domains MAS rules; predefined glossaries; view
modules. (3.2)

Wide applicability (onhardware platformdi-
mension).

Portability Client/server architecture; Web interface;
Java. (3)

Early applicability (ontime dimension) in the
requirement life cycle.

Accepting incomplete or incon-
sistent input

Fuzzy matching, abstraction finding. (3.1.3,
3.3.3)

Informed requirement selection Metric support MFeP view. (3.3.3)
Requirement validation. Model diagnosis Validation views and modules. (3.3.2)
Ease of use. Simple, fast interaction Web interface, fast and automatic view

building, interactive diagrams. (3.3)
Ease of interpretation. Transparency No information hidden by the system, no in-

formation injected by the system.
Distributed, cooperative work. Team work support Work in progress.

Table 1. Requirements for a NLR-supporting environment.

We found no example in the literature of a system sat-
isfying all these requirements to a reasonable extent, so we
decided to build our own. Our aim is to support most typical
requirement engineering activitieswithoutprescribing a spe-
cific methodology. Indeed, this aspect is better determined
by the engineer’s habits, the kind of engineer-customer rela-
tionships, and the needs of the whole development process.
We make only the very general assumption that requirements
undergo a number of refinement steps from their very first
form, in some case coinciding with user’s documentation, to
their final version, that is input to the specification phase. At
each step, we assume that the requirement engineer can ex-
amine a number ofviews, based on differentmodelsof the
system described in the requirements, graphically or textu-
ally representing a model or the results of its validation.

In the next section we present the tools and techniques we
have developed to support the requirement drafting process
satisfying the requirements in Table 1.

3. A system for NLR engineering

Figure 1 shows the main architecture of the system we
present here, calledCirce. Circe offers to the user a
complete environment integrating a number of tools dis-
cussed in the following sections. Currently, the user can
exploit three different interfaces to the system: command-
line-based, mail-based and Web-based. We will focus on the
latter, since it is the only one allowing both distributed and
cooperative work on the requirements [5].

The main tool, calledCico, acts as a front-end for the
other components. It performs the recognition of natural
language sentences, extracting from them somefacts that it
hands (in a suitable encoding we callabstract requirements)
to the remaining tools (back-ends) for graphical representa-
tion, metrication, and analysis.

3.1.Cico: a simple engine for natural language recog-
nition

The peculiarities we discussed in Section 2.3 let us han-
dle the task of recognizing natural language sentences in the
requirements via relatively simple techniques, whose combi-
nation turns out to be powerful enough for our goals.Cico
works on the text on a requirement-by-requirementbasis. We
will not give here a detailed description of the algorithms
used byCico3, limiting ourselves to a general description of
its workings.

3.1.1. Preparing the input: glossary and requirements.
Central to our work is the idea that requirements are sup-
plemented by aglossarydescribing and classifying all the
domain- and system-specific terms used in the requirements.
From the methodological point of view, this glossary can
be built manually, after studying the domain, or semi-
automatically, using an abstraction finding tool [2, 18, 24]
on the text of the requirements (see Section 3.3.3). In any
case, the user must produce a list of significant terms used in
the requirements, marking each term with a (maybe empty)
set of tags to classify it. Each term can also have a list of
synonyms, i.e., different terms or whole expressions that can
be substituted for the term being defined.Cico ignores the
actual human-readabledefinitionof the term, treating it as a
remark, but its inclusion in the same document enhances the
ease of maintenance and the evolvibility of the requirements.

Since the glossary contains structured information, it must
obey some (rather simple) syntactic conventions, exemplified
in Section 4. On the contrary, requirements are just free-text,
with the only constraints of auto-completeness (each require-
ment, individually taken, must be fully understandable) and
of the absence of implicit references (pronouns, understood
terms etc.). Both the use of synonyms to account for inflec-
tional variants and the missing treatment of anaphora are tied

3A technical report on the subject is being prepared [4].

Reqs

Glos

Repository

DFD
Comms

E-R

O-O
Dynam

MFeP

reqs
Abstract

Redund

Team’s
reqs/glos

View
selectorCicoUser

View modules

Model rendition

Checking

Metrics etc.

DFD

Abstfind

Compr

Ambig

usage
Tag

Command
line interface

Mail
interface

Web
interface

MAS
rules

Predefined
glossaries

Revisions

Figure 1. Architecture of the Circe environment.

to the desired property of language-independence, and could
be removed by specializingCico for a particular human lan-
guage.

The requirement part can contain, beside actual system
requirements, also a minimal domain description needed to
understand the system requirements. As long as the two
parts are kept distinct, this helps both human- and machine-
analysability of the description without losing focus on the
system to design.

3.1.2. Canonization and tokenization. Each requirement
undergoes initially a series of simple textual transformations
aimed at making the subsequent steps easier. These transfor-
mations include, in addition to some typographical operation
(accents, white space, letter case, etc.), also the substitution
of synonyms defined in the glossary and the simplification
of some complex, tied words. In Italian, we handle arti-
cles, compound articles, euphonic forms of conjunctions and
disjunctions and a small number of other exceptional cases.
In this operations, as in the other tools comprisingCirce,
language-specific elements are defined via user-editable con-
figuration files, to allow for easy adaption to other languages.
Also during this phase, requirements are tokenized; free-
form text is organized into a list of words. In this context,
terms coming from a glossary (either the user’s one or any
of the system-defined ones) are treated as “words”, even if
composed of several words in the grammatical sense. Words
coming from a glossary also get marked with the relevant
tags.

3.1.3. Fuzzy matching. The actual recognition is per-
formed by an arbitrary number of sets ofMAS rules, defined
at user level. The MAS acronym refers to the three com-
ponents of a rule: Model, Action, and Substitution, usually
denoted with

model
action

substitution

The semantics of a MAS-ruler = hm; a; si applied to a
requirementt is the following:if a fragment oft matchesm,a is executed and the matching fragment oft is replaced bys. Here is an example of a typical rule:

source/OUT SENDS data/INF TO target/IN
echo $ID DATAFLOW $source $target $data

[output $ID from $source/ACT/EVT]

Lower-case words in the model arevariables; they can
match any term in the text that share their same tags or, with
a much lower score, any other word. In this example, the tags
/OUT and/IN tell Cico that thesourceandtargetmust be
able to perform output and input, respectively;/INF marks
terms that have an information content,/ACTmeans that the
term is an action and/EVT that it is an event. It can be noted
in this example that this kind of tagging is strictly seman-
tic. It shares nothing with classical syntax-based approaches,
and is quite different from common-sense based ones: one
cannot tell from common sense whether “controller” can re-
quest interrupts or not, since it is strictly a problem-related
property.

The value of a variable (i.e., the actual term that it
matched) can be referred to in the action and in the substi-
tution by using the familiar symbol$, used also to obtain the
value of other system-defined variables likeID.

In our example, a matching with the model will cause the
execution of the system commandecho and the substitution
of the matching fragment with the text “output. . . ”.

Model matching is a fuzzy algorithm; it associates to ev-
ery possible matching a score of similarity with the model.
This allows for uncomplete matchings, weighted indepen-
dence from the order of the words, multiple matchings, and
several other kind of imperfect correspondance, greatly en-
hancing the recognition power of the tool. The added flexibil-
ity obtained in this way is more evident when comparing the
fuzzy matching algorithm used byCico with classical ones

based on formal syntax (even if using a natural language-like
vocabulary), like the one used in [15].

Since the firing of a MAS-rule can lead to more higher-
level matchings,Cico explores for each requirement the most
likely part of the matching tree, as determined by several
heuristics, trying to maximize the number of firing and the
likelihood of each matching, and to minimize the amount of
unparsed text left at the end of the process.

3.1.4. Actions and substitutions. After the matching
phase,Cico will have determined a set of rules candidate for
firing, and will select one of them for actual firing. Usually,
this selection merely involves choosing the highest-ranking
rule, but other strategies are possible as well (e.g., keeping
into account the semantics of the rules, or their compositional
properties).

Once the rule to fire has been selected,Cico will start its
action. The action can be arbitrarly complex, given that it
can also be a Shell script or even a generic executable, but
usually a simpleecho command to output some encoded
form of the information captured by the rule is adequate. The
output from the actions accumulate and becomesCico’s own
output.

The evaluation of the substitution proceeds in the same
vein. The fragment to replace is defined as the substring de-
limited by the first and last matching term4. The requirement,
after the substitution, is scanned again to check for the appli-
cability of other rules, thus allowing the extraction of more
information.

3.2. Modelling domains

One of the main concepts underlying the design of our
system is that ofdomain. In this context, a domain is the field
of applicability of amodel5 which is used to represent and or-
ganize the information extracted from the requirements. Typ-
ically, each domain corresponds to a set of rules that map the
(natural language) linguistic expression of properties of enti-
ties belonging to the domain to some appropriate encoding,
designed to simplify subsequent automatic processing. The
separation of domains and MAS-rules from each other let us
tackle each problem separately; moreover, each domain (and
set of rules) can evolve separately, thus making for easy en-
richment or editing of any single domain.

Our predefined rule sets offer several basic domains.
While surely far from completeness, these domains already
allow some useful modelling.

3.2.1. Data flow. This rule set covers a data flow model,
allowing linguistic forms for sending and receiving infor-
mations, client/server interactions, queries and interrupt re-
quests, for a total of 10 rules (we met one of them as an ex-
ample in Section 3.1.3). The tags used by these rules concern
the ability of performing inputs and outputs, to request inter-
rupts and receive such requests, to participate in client/server

4This definition can cause the loss of relevant material, extraneous to the
rule but included in the fragment; on the other hand, removing only matching
words could leave some “garbage” that could obscure the meaning of other
parts of the requirement.

5We are not speaking here of MAS-rules models, but of models intheir
traditional meaning: abstract representations of a concrete system.

interactions and the identification of a term as “information”.
Implicitly, this model defines the physical and logical data
path between components of the system, and induces the cre-
ation of adata dictionarybuilt from all the terms defined as
“information”.

3.2.2. Computations and policies. This domain, strictly
coupled with the preceding one, covers several type of com-
putations on the information (transformation, composition,
selection, etc.) and some type of information-oriented pol-
icy (maximization, minimization, etc.). The 18 rules of this
domain use only a new tag, to declare terms as “capable of
performing computations”.

3.2.3. Entity-relationship. Three rules, highly parametric,
recognize many linguistic forms for entity-relationship mod-
els. Relationships can be defined by the user via the glossary
(with a specific tag), both in active and passive form, where
applicable. The rules recognize 1–1, 1–n andm–n relation-
ships, where the multiplicity is expressed as an element of the
numeric domain in the next paragraph. Some common rela-
tionships are already defined in the system glossary: among
others, composition, provision, connection, and control.

3.2.4. Numeric amounts. This domain, whose model is
simply the set of naturals enriched with an “indeterminate”
element (corresponding to expressions like “some”, “a num-
ber of”, etc.), allows for natural numbers written out both in
digits and as words, and for other terms like “a dozen”, “a
couple”, and the like. The user can further enrich the set of
terms by simply defining new ones in the glossary, with the
corresponding/NUM tag.

3.2.5. Causal relationships. This domain describes causal
relationships between events and actions of interest to the
system described by the requirements. The underlying model
is just a set of pairs (cause, effect), describing a part of the
control flow of the system. The user can define events or ac-
tions by introducing them in the glossary; computations and
input/output activities are automatically recognized as events
and/or actions6, as applicable.

3.3. The views

Circe offers several views on the requirements and on the
system described therein. We briefly present them here, and
discuss in Section 5 their typical use in support of various
requirement engineering chores.

3.3.1. Model renditions. Models are usually rendered
through graphical, interactive diagrams (see Figures 4 and
5)7. TheData Flowdiagram shows, both at system- and at
subsystem-level, the flows of data described in the require-
ments, including inputs, outputs, computations, client/server
interactions and so on. Only data flowing in, out or through
the system are shown, and indeed requirements specifying
data flows related to non-system components are probably

6This is obtained by giving/EVT and/ACT tags to the relevant substi-
tutions.

7The current implementation is written in Java to maintain platform-
independence.

redundant. TheCommunicationdiagram gives a very ab-
stract view of the system, only showing the communica-
tion paths between the system (modules) and external enti-
ties. TheEntity-Relationshipdiagram simply shows the E-R
model built from the requirements, and theDependencedi-
agram graphically shows temporal and causal relationships
between internal and external events and actions happening
in the system.

A fifth view, called theObject-Oriented Paraphrase, rep-
resents textually an object model of the system; for each
identified object, this view collects its relationships with
other objects, all the data it handles and all the actions it can
perform – the final result being very close to an OMT [28]
object model. In our experience, an inspection performed
on this representation is useful to reveal defects that could
be easily skipped in inspecting the original format of the re-
quirements, due to a different linguistic form or to the scat-
tering of relevant facts among several, textually apart require-
ments.

3.3.2. Reporting views. These modules perform several
checks on the models discussed above and on the require-
ments and the glossary themselves. The output from these
modules tends to be as natural language-like as possible, try-
ing to avoid any form of encoding that would defeat the main
aim of the whole environment.

One of the most useful views is theDFD consistency
check, that can report on dead (unused) data, data coming
from nowhere or plainly badly-defined (e.g., declared built-
in and then inconsistently input from the outside). This check
is important to force the author to express a consistent data
flow, albeit abstract. In this way, the specification phase will
have to refine inputs, outputs, and computations, but will not
need to “invent” anything from scratch. TheTag usagecheck
verifies the consistency between the tags assigned to terms in
the glossary and their actual use, reporting unused tags, in-
compatible declarations (e.g., a data object cannot perform
I/O), etc. This usage check is important to fight the tendency,
which we found in practice, to unneedingly enrich the terms
with tags to forceCico to (wrongly!) understand a require-
ment. The double, opposing push to add tags (so thatCico
can understand a requirement) and to remove them (to shut
up the warnings) helps in exactly defining only the needed
properties of all entities represented by the various terms,
thus obtaining a greater adherence of the requirements to the
problem.

The Ambiguitycheck verifies that abstract requirements
are completely specified (due to the fuzzy nature of the pars-
ing process, some of them could miss important elements),
and theRedundancycheck assures that no fact is unneed-
ingly expressed twice in the requirements (see Section 4).

3.3.3. Metric and other views. Currently, only a func-
tional metric derived from the Feature Point one [21] is im-
plemented. This view, calledMFeP for Modified Feature
Point, shows the details of the calculation and the cost-of-
presence of each requirement (see Section 4). Two more
views present theUnderstanding report, by which Cico
shows the requirements it has not “understood” in whole or
in part, and theResidual abstractions, i.e., the abstractions
found by the Goldin–Berry algorithm [18] in the textual ma-

terial not understood byCico.
These three views are tied in their evolution: initially,

whenCico is presented with unrefined requirements and al-
most empty glossary, the MFeP metric is very low, very lit-
tle text is understood and many abstractions are reported. As
soon as requirements are brought in a form understandable by
Cico, the MFeP metric grows progressively, most text is un-
derstood and very few residual abstractions are left unparsed.

3.4. Customizability

During the design of the whole environment great care has
been taken to assure theflexibility of the resulting tools. This
has been obtained, whenever possible, by lifting to user-level
as much system logic as possible, thus making the individual
tools almost programmable.

3.4.1. Languages and language constructs. Cicois es-
sentially independent of the language used in requirements
and rules; all the relevant information is contained in system-
level glossaries and rule sets.

All recognized linguistic constructs are defined via MAS
rules, that the user can modify or extend at will (they are
encoded in textual configuration files), while the tags are im-
plicitly defined by their use in the rules. Extension or adap-
tion to a new language typically boils down to simply defin-
ing a new set of MAS-rules models capturing the linguistic
constructs used to express relevant properties in the new lan-
guage, and to translating any relevant predefined glossary.

3.4.2. Actions and substitutions. Thanks to the full gen-
erality of the possible actions,Cico can be usefully applied
even in contexts quite different from the one it was designed
to work in. It is really a generic, albeit elementary, system
for the execution of commands in correspondence of natural
language constructs, or the translation from natural language
to a different (usually more abstract) one. Among possible
uses, we could note NL database queries, filtering of tex-
tual news-like flows, or automatic markup of NL documents.
Naturally, in some of the above cases our simplifications in
Section 2.3 do not hold, andCico would reveal the weak-
ness of its matching algorithm; however, this wide range of
applicability gives evidence of the flexibility of the tool.

3.4.3. Predefined glossaries. Cico’s predefined glossaries
do not include ontological elements, as discussed in Sec-
tion 2.3; however, they include a number ofrelationstaken
from common sense, generally expressed as verbs (“to
send”,“to receive”, “to compute”. . .) whose semantics and
correspondence with the domain’s underlying model is as-
sumed to be intuitive. As already done for the rules, all glos-
saries are stored as text files, and can be modified and ex-
tended at user-level as needed.

3.4.4. View modules. A view module, be it for model ren-
dition, checking or other, is essentially a filter that is fed a
set of abstract requirements (but can also access the original
requirements and glossary or the output of other modules, if
desired) and must output HTML code representing the view8.
Inside this very loose specification, a view module can do

8Remember that we are considering here only the Web-based interface.

almost everything, can be written in any language and can
produce outputs of arbitrary complexity.

3.4.5. Extending Circe. Given the various level of cus-
tomization we outlined above, extendingCirce to handle new
domains is rather easy. One needs to add only a new set of
MAS-rules describing natural language constructs related to
entities or properties of the model, possibly with some pre-
defined term in a system glossary, and then one or more view
modules to represent, check, or measure the model so built.
Using script languages for the modules, a new domain typi-
cally requires between 5 and 15 Kb of MAS-rules and code,
an effort that is surely worth the advantages.

4. An example9

We use as an example a very minimal description ofCirce
itself. We could have started from the description in Sec-
tion 3, using the abstraction and understanding views to ob-
tain by stepwise refinement the actual requirements, but for
the sake of simplicity we start instead from the NLR list in
Figure 2. This set of requirements is consistent and unam-
bigous, as far asCirce is concerned, and none of the check-
ing views report any error. The OMT-style object diagram
from the object-oriented paraphrase is shown (graphically) in
Figure 3, while the screenshot in Figure 4 shows the dataflow
diagram built by the DFD view and Figure 5 depicts the com-
munication structure of the system. Compare these with the
architecture shown in Figure 1. Now, let us pretend we for-
got Requirement 2. We would have received the following
warnings:

** How is ‘requirements’ obtained?
** How is ‘glossary’ obtained?
* ‘Web interface’ is defined as /IN but not
used as such.

meaning thatCirce (or better, the DFD checking module)
cannot understand how “requirements” and “glossary” are
introduced in the system, and moreover (from the tag us-
age checking module) that “Web interface” is declared in the
glossary as capable of performing input, but actually does
not input anything. A simple glance at the module-level data
flow diagram would be enough to spot the problem. On the
other hand, should we add a requirement

13. The repository receives from the Web
interface requirements and glossary.

we would obtain the following warning:

* Requirement 13 is redundant with respect to
requirement 5.

Assuming we are satisfied with our requirements, we
could be interested in knowing the MFeP count forCirce ,
as described at this level of abstraction. The MFeP view in
Figure 6 informs us that the total count is 136 MFeP (not too
much), and that the requirement most costly to implement,
accounting for almost a third of the entire cost, will probably
be requirement number 6 — not too surprising!

9All the text shown boxed in this section were originally in Italian, and
are translated here for reader’s convenience.

Figure 4. The Web interface showing a DFD of
the example (in Italian).

Figure 5. The communication diagram built
from the sample requirements (in Italian).

MFeP computation:
of algorithms: 4 x 3 = 12+
of inputs: 6 x 4 = 24+
of outputs: 6 x 5 = 30+
of data files: 8 x 7 = 56+
of interfaces: 2 x 7 = 14+

TOTAL = 136

Cost breakdown:
req. 2: 8 MFePs
req. 4: 18 MFePs
req. 5: 17 MFePs
req. 6: 44 MFePs
req. 8: 9 MFePs
req. 10: 3 MFePs
req. 11: 9 MFePs

Figure 6. The MFeP counting report.

5. Some typical application

In this section we discuss how some typical requirement
engineering problems can be solved or made somewhat eas-
ier by NLR processing. We stress again the fact that these
techniques are methodology-neutral, and that the results are
intended as an aid to the engineer, rather than a complete so-
lution.

1. The system is made of the Web interface, of Cico, of the
view modules and of the view selector.

2. The Web interface receives from the user requirements and
glossary.

3. Requirements contain data on the team, on the author and on
the revision.

4. The Web interface transmits to Cico requirements and
glossary.

5. If the project is cooperative, the Web interface sends
requirements and glossary to the repository, too.

6. Cico computes abstract requirements using requirements,
glossary, MAS-rules, predefined glossary and team data.

7. If the project is cooperative, Cico requests team data to
the repository.

8. The view modules receive abstract requirements from Cico.
9. The view modules can be dedicated to modelling, validation

or metrication.
10. From abstract requirements, view modules compute a view.
11. The view modules send the view to the view selector.
12. The user requests a view to the view selector.

system/SYS.
user/IN/OUT.
requirements/INF.
glossary/INF.
Cico/IN/OUT/ELAB/SYS.
Repository/IN/OUT.
Web interface/IN/OUT/SYS.
abstract requirements/INF.
MAS-rules/INF/BLTIN.
predefined glossaries/INF/BLTIN.
team data/INF.
view modules/IN/OUT/ELAB/SYS.
purpose/REL: can be dedicated.
modelling. validation. metrication.
view/INF: views.
view selector/IN/OUT/SYS.
project is cooperative/EVT.
team. author. revision.
containment/REL: contain.

Figure 2. Some simple requirement (left) and glossary (righ t) for Circe.

Glossary;
Requirements;

Repository

Receives glossary, requirements from Web interface;
Answers to requests of team data (from Cico);

Glossary;
Requirements;
Team data;
Predefined glossaries;
MAS rules;
Abstract requirements;

Receives glossary, requirements from Web interface;
Computes abstract requirements using team data, pre-
defined glossaries, glossary, MAS rules, requirements;
Requests team data to repository;

Cico

Glossary;
Requirements;

Web Interface

Receives glossary, requirements from user;

Sends glossary, requirements to repository;
Sends glossary, requirements to Cico;

Abstract requirements;
View;

View Modules

Receives abstract requirements from Cico;
Computes view using abstract requirements;
Sends view to view selector;

System

View;

Receives view from view modules;
Answers to requests of view (from user);

View Selector

Requirements

Author infoTeam info

Containment

C
o

n
ta

in
m

e
n

t

Containment

Revision info

Sends glossary, requirements to Web interface;
Requests view to view selector;

Glossary;
Requirements;
View;

User

pa
rt_

of

part_of

part_of

p
a

rt
_

o
f

Figure 3. A partial OMT-like model built from the object-ori ented paraphrase.

5.1. Requirement elicitation

When starting the elicitation from a NL user’s documen-
tation (e.g., available manuals or interview transcripts), the
usage of the residual abstractions view can help in quickly
identifying the main concepts in the problem domain. After
initially populating the glossary with relevant abstractions,
Cico usually can already “understand” parts of the original
documents, that can then become requirements (or domain
description statements) as applicable.

5.2. Requirement selection

When it is needed to perform a cost-based selection to
reach a balance between allocated budget and the features of

the system to design, the cost-of-presence report in the MFeP
view can aid in quickly estimating what requirement or group
of requirements can be dropped to reduce the projected com-
plexity of the system. Obviously, this kind of selection is
based on the acceptability of a function-point based metric.
Although not formally defined, function points seem to be
often accepted by the industry as a reliable hint, if not as a
real measure of the implementation cost, so the early avail-
ability of this information can help in taking decisions at this
stage.

5.3. Conflict identification

Circe manages conflicts differently based on their source.
If a conflict arises between two requirements from the same

requirement list, it is reported as aninconsistencyin the rel-
evant checking view (i.e., DFD or tag usage). If the con-
flict arises between a requirement from a certain user and
a requirement from a different user from the sameteam10,
Circe reports aconflict. In both cases, the semantic knowl-
edge leading to the discovery of a conflict is contained in a
checking module. Currently,Circe discovers only limited
classes of conflicts in the DFD model, in the tags assigned to
a term, and in the policies model.

Conflict resolutionis left to interested people, in keeping
with our choice of methodology-neutrality.

5.4. Enforcing good style in requirements

Circe can be profitably adopted as a means to induce the
use of a definedstylein the requirements. In fact, while the
matching algorithm used byCico leaves ample freedom on
the linguistic form of the fact one wants to express in the re-
quirements, the need to explicitly identify (via the glossary)
and categorize (via the tags) the entities and their relation-
ships that, together, form the fact, pushes the user to express
as clearly as possible the requirements.

While a well-expressed requirement, concerning a fact
covered by one of the available domains, has a well-defined
semantics given by the action/substitution pair of the corre-
sponding MAS-rule, a requirement that is incomplete or am-
biguous, or contains terms not defined in the glossary, is eas-
ily spotted (being refused byCico).

During the recognition phase, the tool will also report
any requirement withmissingparts, sometimes symptom of
the presence of some understood term, but not infrequently
spy of an embarassing confusion (often not recognized at a
conscious level) in the mind of the user. Our experience is
that this last case is more common than one could think; for
this very effect, an inspection on a document performed by
a third party is invariably more effective than an inspection
performed by the author himself.

6. Related works

The need to bridge the linguistic gap between problem
professionals and information professionals has already been
identified in the literature [32]; this is an important factor in
the information gathering problem that [16] judges “the most
difficult task in requirement engineering”. In the last few
years, solutions have appeared of three kinds:� full-fledged natural language processing and under-

standing systems, usually endowed with huge knowl-
edge bases, countless syntactic rules, statistical records,
and semantic nets [19, 26];� formal language-based systems, made more palatable to
the user by using a natural language like (but usually
strict) concrete syntax [15];

10Teams are defined by a declaration in the requirement list by which
a user states which other users are working on different parts of the same
project. Obviously, the users interested must have dual declarations in their
requirements.

� text-based approaches, that dispense with semantic has-
sles by limiting themselves to strictly textual and statis-
tical algorithms [2, 18].

In our opinion, all these solutions are missing some key el-
ement: the first case lacks a useful underlying model for
the knowledge extracted from the text11 and does not allow
the assignment of richer, context-specific meaning to com-
mon terms; the second case lacks desirable flexibility in the
use of natural language; the third one relies entirely on the
(sometime fortunate) equivalence between concrete syntax
(the text) and semantics (its meaning).

Database literature offers a number of proposals similar to
our one, e.g. [7, 10, 26], but almost invariably these propos-
als limit themselves to the extraction of a conceptual (E-R)
schema from a descriptive text, with no validation or mea-
surement.

The need for an informed validation of a formal model by
a customer was felt since a long time. This need has led to
interest in the field of natural language generation [1] and to
explainingsystems capable of producing a NL version of a
formal model [12, 30, 31]. As already said, these techniques
are not applicable in the early stages of requirement gathering
and elicitation, that usually start from NL material. Their full
strenght is best seen when they areintegratedwith the dual
approach, allowing editing both on the NL text and on the
formal models without losing consistency between the two
representations.

On the other hand, a growing number of modelling tech-
niques have been and are being developed: SADT [25], Your-
don [33], Shlaer-Mellor [29], OMT [28], UML [8] and many
others. All these techniques, however, fall short on the field
of customer interaction — effectivelyencoding too earlythe
requirements.

Our approach, while surely inferior to most of the alter-
natives cited under at least some respect, is novel in that it
integrates natural language processing, modeling and valida-
tion aspects, in our hope offering a useful tool to assist in
requirement elicitation and validation.

7. Conclusions and future work

The creation of complete, precise and adherent require-
ments is a task that cannot leave out of consideration an in-
volvment of the customer, both in her traditional role of sup-
plier of information and in the less widely recognized one of
final judge on the suitability of the requirements produced —
the latter implying a greater responsibility on her part.

To allow the customer to succesfully play both roles,
a customer-understandable (and thus, typically natural lan-
guage) form of thefinal requirements must be provided.

In this paper we discussed the requirements for a system
supporting creation and evolution of high-quality natural lan-
guage requirements, and described several tools we built to
this end and associated techniques. These tools, easily cus-
tomizable, can build (semi)formal models in an almost au-
tomatic fashion extracting information from the natural lan-
guage text of the requirements, and can measure and check

11Usually, these systems use semantic nets to store this knowledge: a
representation barely useful to a software engineer.

the consistence of these models. Our experiences with these
tools [5], currently covering five differents projects in both
academic and industrial environments, make us confident on
the value of the approach, that can also be used to obtain an
initial OMT model whose equivalence with the natural lan-
guage requirements is implicitly certified.

The remarkable flexibility of the tools we built allows for
easy evolution and maintenance, and makes it rather easy to
adapt them to different contexts, or adopting modelling tech-
niques different from the ones we used in our example. More
work is needed to enrich the set of domains to whichCirce
can be applied; we will add new domains (e.g., temporal)
and views on them in the near future. We also plan to further
investigate several issues related to distributed cooperative
work on the requirements, e.g., how to split, join, and ver-
ify the consistency of distinct sets of requirements, maybe
reflecting different viewpoints, about the same system [17].

We believe that in allowing requirements validation both
by the customer and by tools through all their evolution, thus
strictly tying requirements production and validation [16],
we have made a step forward to higher-quality requirements
and higher user’s satisfaction.

References

[1] G. Adorni and M. Zock, editors.Trends in Natural Language
Generation: An Artificial Intelligence Perspective. Number
1036 in LNCS. Springer, 1993.

[2] C. S. Aguilera and D. M. Berry. The use of a repeated phrase
finder in requirements extraction.Journal of Systems and
Software, 13(9), 1990.

[3] J. Allen. Natural Language Understanding. Addison-Wesley,
1987.

[4] V. Ambriola and V. Gervasi. Cico: A tool for natural language
requirement processing. Technical report, Dipartimento di In-
formatica, Pisa, Italy, 1997. (in preparation).

[5] V. Ambriola and V. Gervasi. An environment for cooperative
construction of natural-language requirement bases. InPro-
ceedings of the Eighth Conference on Software Engineering
Environments. IEEE Computer Society Press, 1997.

[6] D. M. Berry. The importance of ignorance in requirements
engineering. Journal of Systems and Software, 28(2):179–
184, Feb. 1995.

[7] W. J. Black. Acquisition of conceptual data models from nat-
ural language descriptions. InProc. of the 3rd Conference of
the European Chapter of the ACM, Danemark, 1987.

[8] G. Booch, J. Rumbaugh, and I. Jacobson.Unified Modeling
language, version 1.0. Rational Software Corporation, 2800
San Tomas Expressway, Santa Clara, CA 95051-0951, 1997.

[9] F. Brum-Cottan and P. Wall. Using video to re-present the
user.Communications of the ACM, 38(5), May 1995.

[10] C. P. C. Rolland. A natural language approach for require-
ments engineering. In P. Loucopoulos, editor,Advanced
Information Systems Engineering, number 593 in LNCS.
Springer-Verlag, 1992.

[11] M. Costantino, R. J. Collingham, and R. G. Morgan. Natural
language processing in finance.The Magazine of Artificial
Intelligence in Finance, 2(4), Jan. 1996.

[12] H. Dalianis. A method for validating a conceptual modelby
natural language discourse generation. InAdvanced Informa-
tion Systems Engineering, number 593 in LNCS. Springer-
Verlag, 1992.

[13] R. A. DeMillo et al. Software Testing and Evaluation. The
Benjamin/Cummings Publishing Company, Inc., 1987.

[14] K. El Emam, S. Quintin, and N. H. Madhavji. User partici-
pation in the requirements engineering process: an empirical
study.Requirements Engineering Journal, 1(1), 1996.

[15] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi,
and P. Moreschini. Assisting requirement formalization by
means of natural language translation.Formal Methods in
System Design, 4(3), 1994.

[16] A. Finkelstein. Requirements engineering: a review and re-
search agenda. InProceedings of the First Asian & Pacific
Software Engineering Conference, pages 10–19. IEEE CS
Press, 1994.

[17] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nu-
seibeh. Inconsistency handling in multiperspective specifi-
cations. IEEE Transactions on Software Engineering, 20(8),
Aug. 1994.

[18] L. Goldin and D. M. Berry.AbstFinder, a prototype nat-
ural language text abstraction finder for use in requirements
elicitation. InAutomated Software Engineering, 1997. (To
appear).

[19] A. Hars. Advancing CASE productivity by using natural lan-
guage processing and computerized ontologies: The ACA-
PULCO system. InProceedings of the Eleventh Automated
Software Engineering Conference, 1996.

[20] M. Jackson. Software Requirements and Specification.
Addison-Wesley, 1995.

[21] C. Jones. A Short History of Function Points and Feature
Points. Software Productivity Research, Inc., Burlington,
Mass., June 1986.

[22] D. B. Lenat. CYC: A large-scale investment in knowledgein-
frastructure.Communications of the ACM, 38(11), Nov. 1995.

[23] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shep-
herd. Cyc: Toward programs with common sense.Communi-
cations of the ACM, 33(8), Aug. 1990.

[24] Y. Maarek and D. M. Berry. The use of lexical affinities inre-
quirements extraction. Technical report, Faculty of Computer
Science, Technion, Haifa, Israel, 1988.

[25] D. A. Marca and C. L. McGowan.SADT : Structured Analysis
and Design Techniques. McGraw-Hill, New York, 1988.

[26] L. Mich and R. Garigliano. Design of an object extraction al-
gorithm from natural language requirements. InProceedings
of AICA 95, Cagliari, Sept. 1995.

[27] B. Nuseibeh. Conflicting requirements: When the customer
is not always right.Requirements Engineering Journal, 1(1),
1996.

[28] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen.Object–Oriented Modelling and Design. Pren-
tice Hall, Englewood Cliffs, New Jersey, 1991.

[29] S. Shlaer and S. J. Mellor.Object–Oriented Systems Analysis:
Modeling the World in Data. Prentice Hall, Englewood Cliffs,
New Jersey, 1988.

[30] W. R. Swartout. GIST english generator. In D. Waltz, editor,
Proceedings of the National Conference on Artificial Intelli-
gence, Pittsburgh, PA, 1982. AAAI Press.

[31] W. R. Swartout. The GIST behavior explainer. In M. A. Gene-
sereth, editor,Proceedings of the National Conference on Ar-
tificial Intelligence, Washington, DC, 1983. AAAI Press.

[32] J. L. Whitten, L. D. Bentley, and V. M. Barlow.System anal-
ysis and design. Burr Ridge, 1994.

[33] E. Yourdon.Modern Structured Analysis. Prentice–Hall, En-
glewood Cliffs, 1989.

