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Distributed architectures

support increased loads on

popular Web sites by

dispatching client requests

transparently among multiple

server nodes. This article

evaluates several possible

approaches.

DYNAMIC LOAD
BALANCING ON
WEB-SERVER
SYSTEMS

VALERIA CARDELLINI

University of Rome Tor Vergata
MICHELE COLAJANNI

University of Modena
PHILIP S. YU

IBM T.J. Watson Research Center

The overall increase in traffic on the World Wide Web causes a dis-
proportionate increase in client requests to popular Web sites, espe-
cially in conjunction with special events, such as Olympic Games

and the NASA Pathfinder. Site administrators constantly face the need to
improve server capacity. One approach is to replicate information across
a mirrored-server architecture. This load-balancing technique lets users
manually select alternative URLs for a Web site. However, such architec-
tures are not user-transparent, nor do they allow the Web-server system to
control request distribution.

A more promising solution to load balancing is a distributed architec-
ture that can route incoming requests transparently among several server
nodes. Although this approach can improve throughput performance and
Web-server system scalability, there are many challenges to making a dis-
tributed-server system function as a single server within the HTTP and
Web browser framework.

A distributed Web-server system is any architecture consisting of multi-
ple Web-server hosts, distributed on LANs and WANs, with a mechanism
to spread incoming client requests among the servers. Each server in the
system can respond to any client request. Information can be distributed
among server nodes in two ways: content tree replication on a server’s local
disk, or information sharing by means of a distributed file system.

Replication works with both LAN and WAN Web-server systems;
information sharing works only for LANs. Successful load-balancing
approaches must be transparent to users, making a distributed system
appear as a single host to the outside world. All the approaches we discuss
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do this. The mirrored-server-based architecture, on
the other hand, is visible to users, which minimizes
its usefulness and therefore is not one of the sug-
gested solutions.

In this article we classify four distributed Web-
server architectures according to the entity that dis-
tributes the incoming requests among the servers.
The client-based solution we discuss requires soft-
ware modification on the client side; the other
three (DNS-based, dispatcher-based, server-based)
affect one or more components of the Web-server
system. We then evaluate the trade-offs among the
alternative approaches and techniques.

CLIENT-BASED APPROACH
Document requests to popular Web sites can be
routed from the client side in any replicated Web-
server architecture even when the nodes are loosely
(or not) coordinated. Routing to the Web cluster
can be provided by Web clients or by client-side
proxy servers. These approaches are not universally
applicable, but we include them for completeness.

Web Clients
Web clients, if they are aware of the Web-server sys-
tem’s replicated servers, can actively route requests.
After receiving a request, the Web client selects a
node of the cluster and, after resolving the address
mapping, submits the request to the selected node,
which is then responsible for responding to the
client. The same client can send another request
and reach another server.

Netscape Communications’ approach is one
example of Web-client scheduling. The load-bal-
ancing mechanism for the Netscape Web-server
system’s multiple nodes is as follows. When a user
accesses the Netscape home page (http://www.
netscape.com), Navigator selects a random num-
ber i between 1 and the number of servers and
directs the user request to the node wwwi.netscape.
com. This approach, which has very limited prac-
tical applicability and is not scalable, might offer
utility to corporate intranets.1

A second example of Web-client scheduling is
via smart clients. Unlike the traditional approach
that does not involve the Web client, this solution
migrates server functionality to the client through
a Java applet.2 The increased network traffic due to
the continued message exchanges among each
applet and server node to monitor node states and
network delays, however, is a major drawback.
Moreover, although this solution provides scalabil-
ity and availability, it lacks client-side portability.

Client-Side Proxies
From the Web cluster standpoint, proxy servers are
similar to clients. The proxy server is an important
Internet entity that can route client requests to
Web-server nodes. Like all Web-client approaches,
this one has limited applicability; however, Baentsch
and colleagues describe an interesting method that
combines caching and server replication.3

We do not further investigate proxy servers
because any load balancing mechanism they carry
out requires Internet component modification.
Typically, the same institution or company that
manages the distributed Web-server system does
not control the modifications.

DNS-BASED APPROACH
Distributed Web-server architectures that use
request routing mechanisms on the cluster side are
free of the problems of client-based approaches.
Architecture transparency is typically obtained
through a single virtual interface to the outside
world, at least at the URL level. (Other approach-
es provide a single virtual interface even at the IP
level, as we will explain). 

The cluster DNS—the authoritative DNS serv-
er for the distributed Web system’s nodes—trans-
lates the symbolic site name (URL) to the IP
address of one server. This process allows the clus-
ter DNS to implement many policies to select the
appropriate server and spread client requests. 

The DNS, however, has a limited control on the
request reaching the Web cluster. Between the
client and the cluster DNS, many intermediate
name servers can cache the logical-name-to-IP-
address mapping to reduce network traffic. More-
over, every Web client browser typically caches
some address resolution.

Besides providing a node’s IP address, the DNS
also specifies a validity period (Time-To-Live, or
TTL) for caching the result of the logical name res-
olution. When the TTL expires, the address-map-
ping request is forwarded to the cluster DNS for
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assignment to a Web-server node; otherwise, an
intermediate name server handles the request—Fig-
ure 1 shows both resolutions. This figure, like those
in the following sections, show the different
approaches for distributing requests on the basis of
a protocol-centered description.

If an intermediate name server holds a valid
mapping for the cluster URL, it resolves the
address-mapping request without forwarding it to
another name server. Otherwise, the address request
reaches the cluster DNS, which selects the IP
address of a Web server and the TTL. The URL-to-
IP-address mapping and the TTL value are for-
warded to all intermediate name servers along the
path and to the client.

Several factors limit the DNS control on
address caching. First, the TTL period does not
work on the browser caching. Moreover, the DNS
might be unable to reduce the TTL to values close
to zero because of noncooperative intermediate
name servers that ignore very small TTL periods.
On the other hand, the limited control on client
requests prevents the DNS from becoming a
potential bottleneck.

We distinguish the DNS-based architectures by
the scheduling algorithm that the cluster DNS uses
to balance the Web-server nodes’ load. With con-
stant TTL algorithms, the DNS selects servers on
the basis of system state information and assigns
the same TTL value to all address-mapping
requests. Alternatively, adaptive TTL algorithms
adapt the TTL values on the basis of dynamic
information from servers and/or clients.

Constant TTL
Algorithms
These algorithms are classified by
the system state information that
the DNS uses to select a Web-
server node—none, client load
or client location, server load, or
a combination.

System-stateless algorithms.
The Round Robin DNS (RR-
DNS) approach, first imple-
mented by the National Center
for Supercomputing Applications
(NCSA) to handle increased traf-
fic at its site, is for a distributed
homogeneous Web-server archi-
tecture.4 NCSA developed a Web
cluster comprising the following
entities: a group of loosely cou-

pled Web-server nodes to respond to HTTP
requests; a distributed file system that manages the
entire WWW document tree; and one primary
DNS for the entire Web-server system.

NCSA modified the primary DNS for its domain
to map addresses by a round-robin algorithm. The
load distribution under the RR-DNS is unbalanced
because the address-caching mechanism lets the DNS
control only a small fraction of requests. An uneven
distribution of client requests from different domains
further adds to the imbalance such that many clients
from a single domain can be assigned to the same
Web server, which overloads server nodes.5,6

Additional drawbacks result because the algo-
rithm ignores both server capacity and availability.
With an overloaded or nonoperational server, no
mechanism can stop the clients from continuing to
try to access the Web site by its cached address. The
RR-DNS policy’s poor performance needs research
into alternative DNS routing schemes that require
additional system information.

Server-state-based algorithms. Knowledge of
server state conditions is essential for a highly avail-
able Web-server system to exclude servers that are
unreachable because of faults or congestion. DNS
policies, combined with a simple feedback alarm
mechanism from highly utilized servers, effective-
ly avoid Web-server system overload.5 The Sun-
SCALR framework implements a similar approach
combined with the RR-DNS policy.7

Schemers based his proposed lbmnamed algo-
rithm’s scheduling decision8 on the current Web-serv-

Intermediate
name servers

Step 2: (Web-server IP address, TTL) selection
Step 3: Address mapping (URL -> address 1)

Step 5: Document response (address 1)

Step 3’: Address mapping (URL -> address 1)
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Step 1’: Address request reaches the DNS 
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Figure 1. DNS-based approach to load balancing. 
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er nodes’ load. The DNS, after receiving an address
request, selects the least-loaded server. To inhibit
address caching at name servers, the lbmnamed algo-
rithm requires that the DNS sets the TTL value to
zero. This choice limits applicability, as discussed later.

Client-state-based algorithms. Two kinds of
information can come from the client side: the typ-
ical load that arrives at the Web-server system from
each connected domain, and the client’s geograph-
ical location.

The hidden load weight index measures the aver-
age number of data requests sent from each con-
nected domain to a Web site during the TTL
caching period following an address-mapping
request.5 (A normalized hidden load weight repre-
sents the domain request rate.) Proposed DNS
scheduling policies, which chiefly use this informa-
tion to assign requests to the most appropriate serv-
er,5 try to identify the requesting domain and the
hidden load weight imposed by this domain. One
example of this algorithm is the multitier round-robin
policy, which uses different round-robin chains for
requests in domains of different hidden load weights.

A commercially available alternative is Cisco Sys-
tems’ DistributedDirector, an Internet appliance in
the version that considers client/domain location
before selecting a server. In this mode, the Distrib-
utedDirector acts as a primary DNS that determines
the most suitable server on the basis of relative
client-to-server topological proximity and client-to-
server link latency. The DistributedDirector evalu-
ates the approximate client location using the IP
address of the client’s local DNS server.

A third alternative is the Internet2 Distributed
Storage Infrastructure Project (I2-DSI), which pro-
poses a smart DNS that implements address reso-
lution criteria on the basis of network proximity
information, such as round-trip delays.9

These geographic DNS-based algorithms do not
work well if URL-to-IP-address mapping is always
cached by the intermediate name servers. To make
them work, the cluster DNS sets the TTL to zero.
However, this solution is limited by noncoopera-
tive name servers.

Server- and client-state-based algorithms. DNS
algorithms are most effective when they use both
client and server state conditions. For example, the
DistributedDirector DNS algorithm uses server
availability information along with client proximi-
ty. Similarly, the hidden load weight may be insuffi-
cient to predict the load conditions at each Web-

server node. An asynchronous alarm feedback from
overutilized servers lets newer DNS policies exclude
those servers from request assignments during over-
load conditions and instead use the client-state-based
algorithms to select an eligible server from the
nonoverloaded servers.5 To acquire the system state
information needed by the enhanced DNS schedul-
ing algorithms requires efficient state estimators, and
several dynamic approaches have been suggested.10

Adaptive TTL Algorithms
To balance the load across multiple Web-server
nodes, the DNS can exert control through both the
policy for server scheduling and the algorithm for
selecting the TTL value. Constant TTL algorithms
cannot adequately address client request skew and
probable heterogeneity of server capacities, so we
have devised dynamic (adaptive) TTL scheduling
policies.10 The algorithms use some server- and
client-state-based DNS policy to select the server,
and dynamically adjust the TTL value.

The best alternative addresses the unevenly dis-
tributed domain load and heterogeneous server
capacities by assigning a different TTL value to each
address request. The rationale is that the hidden
load weight, independently of the domain, increas-
es with the TTL value. Therefore, by properly
selecting the TTL value for each address request, the
DNS can control the subsequent requests to reduce
the load skews that primarily cause overloading.10

Adaptive TTL algorithms use a two-step deci-
sion process. First, the DNS selects the Web-server
node similarly to the hidden load weight algo-
rithms. Second, the DNS chooses the appropriate
value for the TTL period. To resolve the uneven
domain load distribution, address requests coming
from very popular domains will receive a TTL
value lower than the requests originated by small
domains. As the popular domains have a higher
domain request rate, a shorter TTL interval evens
out the total requests generated.

Adaptive TTL algorithms can easily scale from
LANs to WANs because they require only infor-
mation that can be dynamically gathered by the

DNS algorithms are most effective
when they use both client and

server state conditions. 
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DNS; namely, the request rate associated with each
connected domain and the capacity of each server.10

DNS-Based Architecture Comparison
DNS policies based on detailed server state infor-
mation (for example, present and past load) do not
effectively balance client requests across servers.5 The
policies are ineffective because with address caching,
each address mapping can cause a burst of future
requests to the selected server and quickly obsolete
the current load information. The domain request
rate estimates the impact of each address mapping
and is more useful to guide routing decisions.

Scheduling algorithms based on the domain
request rate and alarms from overloaded servers can
lead to better load balancing than RR-DNS and
maintain high Web site availability.5 However, they
give less satisfactory results when generalized to a
heterogeneous Web-server system through proba-
bilistic routing.

To balance requests among distributed Web-
server systems, adaptive TTL algorithms are the
most robust and effective, despite skewed loads and
noncooperative name servers. The algorithms, how-
ever, do not consider the client-to-server distance
in making scheduling decisions. A policy that uses
adaptive TTL assignment combined with infor-
mation on geographical client location may per-
form better, although no DNS-based system has
yet considered this approach.

Policies requiring a zero TTL value, such as lbm-
named and that used by the DistributedDirector
and in the I2-DSI, seriously limit general applica-

bility and make DNS a potential bottleneck. Fur-
thermore, such policies do not consider the client-
level address caching, resulting in subsequent
requests from the same client (browser) being sent
to the same server. Problems exist even at the net-
work-level of address caching because most inter-
mediate name servers are configured such that they
reject very low TTL values.

DISPATCHER-BASED
APPROACH
To centralize request scheduling and completely
control client-request routing, a network compo-
nent of the Web-server system acts as a dispatcher.
Request routing among servers is transparent—
unlike DNS-based architectures, which deal with
addresses at the URL level, the dispatcher has a sin-
gle, virtual IP address (IP-SVA).

The dispatcher uniquely identifies each server in
the system through a private address that can be at
different protocol levels, depending on the archi-
tecture. We differentiate dispatcher-based architec-
tures by routing mechanism—packet rewriting
(single-rewriting or double-rewriting), packet for-
warding, or HTTP redirection.

Dispatcher-based architectures typically use sim-
ple algorithms to select the Web server (for exam-
ple, round-robin, server load) to manage incoming
requests, as simple algorithms help minimize
request processing.

Packet Single-Rewriting
In some architectures the dispatcher reroutes client-
to-server packets by rewriting their IP address, such
as in the basic TCP router mechanism.6 The Web-
server cluster consists of a group of nodes and a
TCP router that acts as an IP address dispatcher.
Figure 2 outlines the mechanism, in which address
i becomes the private IP address of the i-th Web-
server node.

All HTTP client requests reach the TCP router
because the IP-SVA is the only public address. The
dispatcher selects a server for each HTTP request
through a round-robin algorithm and achieves
routing by rewriting each incoming packet’s desti-
nation IP address. The dispatcher replaces its IP-
SVA with the selected server’s IP address. Because
a request consists of several IP packets, the TCP
router tracks the source IP address for every estab-
lished TCP connection in an address table. The
TCP router can thereby always route packets
regarding the same connection to the same Web-
server node.

Step 1: Document request (IP-SVA)

Step 2: Web-server selection

Step 3: Packet rewriting (IP-SVA -> address 1)

Step 6: Document response (IP-SVA)

Step 5: Packet rewriting (address 1 -> IP-SVA)

Step 4: Packet routing

1

6

4
User

Address dispatcher 
(IP-SVA)

2, 3

Server 1
(address 1)

Server N
(address N)

Client

5

Figure 2. Packet single-rewriting by the dispatcher.
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Furthermore, the Web server must replace its IP
address with the dispatcher’s IP-SVA before send-
ing the response packets to the client. Therefore,
the client is not aware that its requests are handled
by a hidden Web server.

This approach provides high system availabili-
ty because, when a front-end node fails, its address
can be removed from the router’s table to prevent
further request routing. Moreover, the TCP router
architecture can be combined with a DNS-based
solution to scale from a LAN- to a WAN-distrib-
uted Web system.

Packet Double-Rewriting
This mechanism also relies on a centralized dis-
patcher to schedule and control client requests but
differs from packet single-rewriting in the source
address modification of the server-to-client pack-
ets. Instead, the dispatcher modifies all IP address-
es, including those in the response packets. 

Packet double-rewriting underlies the Internet
Engineering Task Force’s Network Address Trans-
lator, shown in Figure 3. The dispatcher receives a
client request, selects the Web-server node and
modifies each incoming packet’s IP header, and also
modifies the outgoing packets that compose the
requested Web document.

Two solutions using this approach (with a serv-
er fault-detection mechanism) are the Magi-
crouter11 and Cisco Systems’ LocalDirector. The
Magicrouter architecture uses a fast packet inter-
posing mechanism. A user-level process, acting as
a switchboard, intercepts client-to-server and serv-
er-to-client packets and modifies them by chang-
ing the addresses and checksum fields. To balance
the load among the Web-server nodes, Magi-
crouter can use a round-robin, random, or incre-
mental load algorithm. The last is similar to select-
ing the lowest-load server based on the current
load estimate and the per-TCP-connection load
adjustment.

The LocalDirector Internet appliance rewrites
the IP information header of each client-to-server
packet according to a dynamic-mapping table of
connections between each session and the server to
which it has been redirected. The routing policy
selects the server with the least number of active
connections.

Packet Forwarding
Other solutions use the dispatcher to forward client
packets to the servers instead of rewriting their IP
addresses.

Network Dispatcher. IBM’s Network Dispatch-
er12 extends the basic TCP router mechanism. The
Network Dispatcher works with both LANs and
WANs. The LAN Network Dispatcher assumes
that the dispatcher and the server nodes are on the
same local network. All share an IP-SVA address;
however, the client packets reach the dispatcher
because the Web nodes have disabled the Address
Resolution Protocol (ARP) mechanism. The dis-
patcher can forward these packets to the selected
server using its physical (MAC) address on the
LAN without IP header modification. Unlike the
basic TCP router mechanism, neither the LAN
Network Dispatcher nor its Web servers need
modify the response packets’ IP header. With this
mechanism, similar to that shown in Figure 2,
address i is the private hardware MAC address of
the i-th Web-server node. This solution is both
client- and server-transparent because it does not
require packet rewriting. The dispatcher’s sched-
uling policy can be dynamically based on server
load and availability.

Extending the dispatcher to a WAN-distributed
architecture requires two levels. In Figure 4  (next
page), cluster i is the IP address of the second-level
dispatcher for the i-th cluster. The first level acts like
a packet single-rewriting mechanism because it
replaces the IP-SVA address with the IP address of
the second-level Network Dispatcher that coordi-
nates the chosen cluster. 

The second-level dispatcher then changes this
IP address back to the original IP-SVA and selects
a Web server. As the second-level Network Dis-

1 4

Step 2: Web-server selection
Step 3: Packet rewriting (IP-SVA -> address 1)
Step 4: Packet routing
Step 5: Server sends each packet to the dispatcher
Step 6: Packet rewriting (address 1 -> IP-SVA)
Step 7: Document response (IP-SVA)

7

5

Step 1: Document request (IP-SVA)

User

Server N
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(IP-SVA)

2, 3,
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Server 1
(address 1)
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Figure 3. Packet double-rewriting by the dispatcher. 
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patcher and the Web-server nodes of this cluster are
on the same LAN, the packet forwarding mecha-
nism based on the MAC address can assign the
client requests to one Web server. This solution lim-
its the dispatcher’s rewriting to the client-to-server
packets that in a Web environment are typically
much smaller than server-to-client packets. This
solves most dispatcher-based architectures, which
require packet rewriting in both directions.

ONE-IP address. Another forwarding approach
uses the if config alias option to configure a Web-
server system with multiple machines.13 This solu-
tion publicizes the Web-server system’s IP-SVA as
the same secondary IP address of all nodes and can
be implemented with two techniques.13

Routing-based dispatching requires that all pack-
ets directed to the ONE-IP address are first rerout-
ed by the subnetwork router to the IP address dis-
patcher of the distributed Web-server system. The
dispatcher selects the destination server based on a
hash function that maps the client IP address into a
server’s primary IP address, then reroutes the pack-
et to the selected server. This approach provides a
static assignment; however, it guarantees that all
packets belonging to the same TCP connection are
directed to the same server.

Broadcast-based dispatching requires that the sub-
network router broadcast the packets having ONE-
IP as a destination address to every server in the
Web system. Each server evaluates whether it is the

actual destination by applying a
hash function to the client IP
address and comparing the result
with its assigned identifier.

Using a hash function to select
the server based on the client IP
address is the weak point of the
ONE-IP approach. Although the
hash function could be dynami-
cally modified to provide fault
tolerance, this approach disallows
dynamic load balancing based on
server load. To further scale the
system, the ONE-IP approach
can be combined with a DNS-
based solution.

HTTP Redirection
A centralized dispatcher receives
all incoming requests and dis-
tributes them among the Web-
server nodes through the

HTTP’s redirection mechanism. The dispatcher
redirects a request by specifying the appropriate sta-
tus code in the response, indicating in its header the
server address where the client can get the desired
document. Such redirection is largely transparent;
at most, users might notice an increased response
time. Unlike most dispatcher-based solutions,
HTTP redirection does not require IP address
modification of packets reaching or leaving the
Web-server system. HTTP redirection can be
implemented with two techniques.

Server-state-based dispatching, used by the Dis-
tributed Server Groups architecture,14 adds new
methods to HTTP protocol to administer the Web
system and exchange messages between the dis-
patcher and the servers. Since the dispatcher must
be aware of the server load, each server periodical-
ly reports the number of processes in its run queue
and the number of received requests per second.
The dispatcher then selects the least-loaded server.

Location-based dispatching, used by Cisco Sys-
tems’ DistributedDirector appliance, provides two
dispatching modes. The first applies the DNS-
based approach with client and server state infor-
mation; the second, HTTP redirection. The Dis-
tributedDirector estimates a client’s server
proximity and the node availability with algo-
rithms that apply to the DNS-based solution.
Client requests are redirected to the server that is
evaluated as most suitable for each request at a cer-
tain time.

Step 1: Document request (IP-SVA)
Step 2: Web-cluster selection

Step 8: Document response (IP-SVA)

Step 5: Web-server selection
Step 6: Packet rewriting (cluster k -> IP-SVA)

Step 4: Packet routing

Step 7: Packet forwarding

Step 3: Packet rewriting (IP-SVA -> cluster k) 
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Figure 4. WAN Network Dispatcher architecture.
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Dispatcher-Based
Architecture Comparison
Packet double-rewriting by the
dispatcher presents problems
because the dispatcher must
rewrite incoming as well as out-
going packets, and outgoing
packets typically outnumber
incoming request packets.

Packet single-rewriting, which
the TCP router architecture uses,
sustains the same overhead of
rewriting in both directions but
it reduces dispatcher bottlenecks
because the Web servers rewrite
the more numerous server-to-
client packets. The WAN Net-
work Dispatcher’s more efficient
solution rewrites (twice) only the
client-to-server packets.

Packet-forwarding mecha-
nisms are an effort to resolve the
overhead of packet rewriting.
The ONE-IP approach, however, can have prob-
lems with the static scheduling algorithm, which
does not consider the server state for routing deci-
sions. While routing-based dispatching requires
double rerouting of each packet, broadcast-based
dispatching broadcasts all packets to every server,
thus causing even higher server overhead.

The LAN Network Dispatcher architecture
avoids most of ONE-IP’s traffic problems, and
TCP router and double-rewriting overheads, but it
lacks geographical scalability as it requires the same
network segment to connect the dispatcher and the
Web-server nodes.

HTTP redirection can be finely applied to LANs
and WANs, but it duplicates the number of neces-
sary TCP connections.

SERVER-BASED APPROACH
These techniques use a two-level dispatching mech-
anism. The primary DNS of the Web system ini-
tially assigns client requests to the Web-server
nodes; then, each server may reassign a received
request to any other system server. Unlike the
DNS-based and dispatcher-based centralized solu-
tions, the distributed scheduling approach lets all
servers participate in load balancing the system
through the request reassignment mechanism. Inte-
grating the DNS-based approach with redirection
techniques executed by the Web servers solves most
DNS scheduling problems, such as unevenly dis-

tributed client requests among the domains and
limited control over the requests reaching the Web
system.

Server-based proposals differ in redirection deci-
sion implementation. One solution involves
HTTP redirection; the other, packet redirection.

HTTP Redirection
The scalable server World Wide Web (SWEB) sys-
tem15 and similar architectures16 use a two-level dis-
tributed scheduler, as shown in Figure 5. Client
requests, initially assigned by the DNS to a Web
server, can be reassigned to another server via
HTTP redirection. Figure 5 shows server 1 receiv-
ing the client request, then redirecting the request
to server 2. As was also shown in Figure 1, the first-
level Web server selected by the DNS can be pre-
vented by the intermediate name servers’ caching
a valid address mapping.

A request is served or redirected depending on
several factors. Redirection mechanisms are syn-
chronously or asynchronously activated, and redi-
rected entities can be individual clients or entire
domains.16 Asynchronous activation occurs when
the DNS-selected server determines that another
server would better answer the client request—per-
haps one server is overloaded, or another server is
closer to the client domain.

Redirecting individual client connections is cru-
cial to better load balancing at a fine granularity level.

Intermediate
name servers

Step 2: (Web-server, TTL) selection
Step 3: Address mapping (URL -> address 1)

Step 5: Web-server selection

Step 3’: Address mapping (URL -> address 1)
Step 4: Document request (address 1)

Step 1: Address request (URL)
Step 1’: Address request reaches the DNS 

Step 6: HTTP redirection
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Figure 5. HTTP redirection by the server.
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In most instances, however, it is preferable to com-
bine client redirection with domain redirection.16

The SWEB architecture uses a round-robin
DNS policy as a first-level scheduler and a purely
distributed asynchronous scheme as a second-level
scheduler. Each Web server redirects requests
according to server selection that minimizes the
client request’s response time, a value estimated on
the basis of server processing capabilities and Inter-
net bandwidth/delay.

These mechanisms imply an overhead of intra-
cluster communications, as every server must peri-
odically transmit status information to the cluster
DNS16 or other servers,15 but such cost only negli-
gibly affects client-request-generated network traf-
fic. To users, HTTP redirection’s main drawback is
increased response time, since each redirected
request requires a new client-server connection.

Packet Redirection
Distributed Packet Rewriting (DPR) by the server uses
a round-robin DNS mechanism to schedule the
requests among the Web servers.17 The server reached
by a request reroutes the connection to another serv-
er through a packet-rewriting mechanism that, unlike
HTTP redirection, is transparent to the client.

Two load-balancing algorithms spread client
requests. The first uses static (stateless) routing,
where a hash function applied to both the sender’s
IP address and the port number determines each
packet’s destination server. However, this simple
policy is impractical because IP packet fragmenta-
tion does not provide the port information in each
fragment. 

The second algorithm uses periodic server com-
munications to determine the servers’ current load.
It typically redirects the requests to the least-loaded
server. DPR can be applied to both LAN- and

WAN-distributed Web-server systems, but the
packet-rewriting and -redirecting mechanism caus-
es a delay that can be significant in WAN-distrib-
uted Web-server systems.

COMPARING THE APPROACHES
Table 1 outlines the features and trade-offs of the
various approaches we have discussed.

Approach Trade-off Summary
Client-based approaches, which reduce Web-serv-
er loads by implementing routing at the client side,
lack general applicability because the client must
be aware that the Web site is distributed.

DNS-based approaches minimize bottlenecks
and can be easily scaled from LAN- to WAN-dis-
tributed Web-server systems. This approach can-
not, however, use more than 32 Web servers for
each public URL because of UDP packet size con-
straints.12 DNS-based architectures determine the
destination of client requests through address map-
ping. Address caching, however, permits only a
coarse-grained load-balancing mechanism if the
assigned TTL is greater than zero, so the DNS
scheduler requires sophisticated algorithms to
achieve acceptable performance. Algorithms are
typically based on additional state information,
such as hidden load weight from each domain,
client location, and server load conditions. Fur-
thermore, adaptively setting the TTL value for
each address-mapping request greatly improves the
performance applied to heterogeneous server envi-
ronments.

Dispatcher-based approaches are hampered by
a single-decision entity, which can be a bottleneck
with increased requests, and in centralized sched-
uling, a failed dispatcher can disable the system.
The dispatcher can, however, achieve fine-grained

Table 1. Pros and cons of load-balancing approaches.

Approach Scheduling Pros Cons
Client-based Client side No server overhead Limited applicability

Distributed LAN and WAN solution Medium-coarse-grained balancing
DNS-based Web system side No bottleneck Partial control

Centralized LAN and WAN solution Coarse-grained balancing
Dispatcher-based Web system side Fine-grained balancing Dispatcher bottleneck

Centralized Full control (typically) LAN solution packet rewriting overhead
Server-based Web system side Distributed control Latency time increase (HTTP)

Distributed Fine-grained balancing Packet-rewriting overhead (DPR)
LAN and WAN solution



D Y N A M I C  L O A D  B A L A N C I N G

37IEEE INTERNET COMPUTING h t tp ://computer.org/in terne t/ MAY • JUNE 1999

load balancing, and the single virtual IP address
prevents client- or network-level address caching
problems that affect DNS-based solutions. Regard-
ing server topology, solutions that adopt the pack-
et rewriting mechanism (except for the WAN Net-
work Dispatcher) are most applicable to server
clusters on a LAN or high-speed intranet. Other-
wise, the delay caused by the modification and
rerouting of each IP packet that flows through the
dispatcher can degrade performance.

In the server-based approach, distributed sched-
uling provides scalability without introducing a sin-
gle point of failure or potential bottleneck. It also
achieves the same fine-grained control on request
assignments as dispatcher-based solutions. The char-
acteristic server-based redirection mechanism, how-
ever, typically increases users’ perceived latency.

Performance Evaluation
Our performance criterion is the cumulative fre-
quency of maximum cluster utilization—the prob-
ability (or fraction of time) that the maximum clus-
ter utilization is below a certain value. By focusing
on the highest utilization among all Web servers in
the cluster, we can determine if the Web-server sys-
tem is overloaded.

We developed a simulator to run experiments
so that we could evaluate the load-balancing per-
formance of the various approaches. We did this
by tracking the maximum cluster utilization
observed, at intervals, and plotting their cumula-
tive frequencies.5

We conducted the simulation experiments with
an average offered load equal to two-thirds of the
cluster capacity. Since we evaluated performance
from the Web-server cluster’s perspective, we did-
n’t model the Internet traffic but did consider
major Web components affecting the Web-server
cluster performance. Components included the
intermediate name servers and any details con-
cerning a given client session. We assumed that the
clients, having local name servers and connecting
to the network through gateways, were partitioned
among these network subdomains based on a Zipf
distribution. We considered both the exponential
distribution model and the heavy-tailed distribu-
tion model to represent the client load.

In the exponential distribution model, the num-
ber of page requests per session and the time
between two page requests from the same client
were assumed to be exponentially distributed. The
hit service time (time to serve each object of an
HTML page) and the interarrival time of hit

requests to the servers were also assumed to be
exponentially distributed.5

The heavy-tailed distribution model incorpo-
rated a real Web workload’s key characteristics, par-
ticularly those concerning Web traffic. The high
client-load variability was represented through
heavy-tailed functions, such as the Pareto and
Weibull distributions. We based our workload
model on Barford and Crovella’s work.18,10

Our simulations represented best-case scenarios
for the DNS-based, dispatcher-based, and server-
based load-balancing approaches. To evaluate the
DNS-based approach, we implemented the con-
stant TTL algorithm with server and client infor-
mation, and the adaptive TTL algorithm. We also
considered the RR-DNS solution. We kept the per-
centage of requests needing address mapping
resolved by the cluster DNS to below 5 percent.

To evaluate the dispatcher-based approach, we
simulated a distributed Web cluster in which the
scheduler controls incoming requests. We assumed
the dispatcher to have sufficient processing capac-
ity to implement any algorithm. However, in real-
ity, to avoid bottlenecks, system administrators
would minimize the dispatcher’s request process-
ing using simple algorithms such as round-robin,
hash functions, or least-loaded node. Our simula-
tion used a round-robin algorithm, which demon-
strated better performance than even the least-
loaded node approach.

To evaluate the server-based approach, we
implemented a simplified version of the HTTP
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Figure 6. Exponential distribution model showing performance of
distributed Web-server architectures.
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and packet redirection policies. A server node
replies to a client request unless its load exceeds a
predetermined limit and sets off an alarm. If so, the
server redirects the requests to the least-loaded serv-
er in the cluster. This policy requires that each serv-
er be kept informed of the load on every other serv-
er. The information exchange frequency must be
fairly high for this to succeed.

For each approach under the exponential distri-
bution model, Figure 6 shows the maximum clus-
ter utilization and its cumulative distribution on
the x-axis and y-axis, respectively. The idealized, dis-
patcher-based architecture clearly outperforms all
other approaches because it keeps the Web-server
node utilization below 0.8. 

Both the DNS-based approach with adaptive
TTL and the server-based policies also work well,
because the maximum cluster utilization is below
0.90 with a probability close to 1—no server is
overloaded. On the other hand, the DNS-based
architecture with constant TTL has at least one
overloaded Web node (utilized above 0.90) for
almost 20% of the time. However, both constant
and adaptive TTL DNS-based architectures per-
form much better than the basic RR-DNS solution
that overloads at least one server node more than
70 percent of the time.

Figure 7 shows the architectures’ performance
under the more realistic heavy-tailed distribution
model. As expected, the results degrade for all
approaches. Although the average offered load is
still about two-thirds of the cluster capacity, it can

afford more frequent server overloading because
most of the distributions we used have infinite vari-
ance. Although both approaches perform well, the
DNS-based adaptive TTL approach is a realistic
alternative to the dispatcher-based solution; its
slightly worse results carry no bottleneck risks.

The server-based approach performs poorly, with
at least one server overloaded more than half the
time, where our simulation implementation redi-
rected requests to the least-loaded server. This policy
works fine when the client load has a limited vari-
ability, such as in the exponential distribution model,
but is unacceptable when the past and future node
load are poorly correlated as in the heavy-tailed dis-
tribution model. To be useful, this architecture needs
more sophisticated scheduling policies.16

CONCLUSIONS
An in-depth understanding of the trade-offs posed
by the approaches we have examined requires a
more detailed quantitative comparison of the archi-
tectures. Furthermore, network bandwidth—more
so than server node capacity—can constrain load-
balancing performance. LAN-distributed Web-
server clusters are thus a limited solution to
increased client requests. A more effective approach
requires geographically distributed Web-server
nodes residing on separate networks. In these
instances, the dispatching algorithm must take net-
work load and client proximity into account when
distributing requests. One difficulty that these
approaches must address is in dynamically evaluat-
ing such information, as it varies frequently in the
Internet environment. ■
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