
APPEARED IN PROCEEDINGS OF ECAL91 - EUROPEAN CONFERENCE ON ARTIFICIAL LIFE, PARIS, FRANCE,
ELSEVIER PUBLISHING, 134–142.

Distributed Optimization
by Ant Colonies

Alberto Colorni, Marco Dorigo, Vittorio Maniezzo
Dipartimento di Elettronica, Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

e-mail: dorigo@ipmel1.elet.polimi.it
maniezzo@ipmel1.elet.polimi.it

Abstract
Ants colonies exhibit very interesting behaviours: even if a single ant only has simple ca-
pabilities, the behaviour of a whole ant colony is highly structured. This is the result of coordi-
nated interactions. But, as communication possibilities among ants are very limited, interac-
tions must be based on very simple flows of information. In this paper we explore the implica-
tions that the study of ants behaviour can have on problem solving and optimization. We intro-
duce a distributed problem solving environment and propose its use to search for a solution to
the travelling salesman problem.

1. Introduction

In this paper we propose a novel approach to distributed problem solving and optimization
based on the result of low-level interactions among many cooperating simple agents that are not
aware of their cooperative behaviour. Our work has been inspired by the study of ant colonies:
in these systems each ant performs very simple actions and does not explicitly know what other
ants are doing. Nevertheless everybody can observe the resulting highly structured behaviour.

In section 2 we explain the background on which our speculations have been built. We
decided to develop a software environment to test our ideas on a very difficult and well known
problem: the travelling salesman problem - TSP. We call our system, described in section 3,
the ant system and we propose in this paper three possible instantiations to the TSP problem:
the ANT-quantity and the ANT-density systems, described in section 4, and the ANT-
cycle system, introduced in section 5. Section 6 presents some experiments, together with
simulation results and discussion. In section 7 we sketch some conclusions and prefigure the
directions along which our research work will proceed in the near future.

2. Motivations

The animal realm exhibits several cases of social systems having poor individual capabilities
when compared to their complex collective behaviours. This is observed at different evolution-
ary stages, from bacteria [11], to ants [8], caterpillars [5] molluscs and larvae. Moreover, the
same causal processes that originate these behaviours are largely conserved in higher level
species, like fishes, birds and mammals. These species make use of different communication
media, adopted in less ubiquitous situation but essentially leading to the same patterns of be-
haviours (see for example the circular mills [3]).

This suggests that the underlying mechanisms have proven evolutionarely extremely effec-
tive and are therefore worth of being analyzed when trying to achieve the similar goal of per-
forming complex tasks by distributing activities over massively parallel systems composed of
computationally simple elements.

One of the better studied natural cases of distributed activities regards ant colonies [2]: we
outline here the main features of the models so far proposed to explain ant colonies behaviour.
These features have been the basis for the definition of a distributed algorithm, that we have
applied to the solution of "difficult" (NP-hard) computational problems.

The problem of interest is how almost blind animals manage to establish shortest route paths
from their colony to feeding sources and back.

In the case of ants, the media used to communicate among individuals information regarding
paths and used to decide where to go consists of pheromone trails. A moving ant lays some
pheromone (in varying quantities) on the ground, thus marking the path it followed by a trail of
this substance. While an isolated ant moves essentially at random, an ant encountering a previ-
ously laid trail can detect it and decide with high probability to follow it, thus reinforcing the
trail with its own pheromone. The collective behaviour that emerges is a form of autocatalytic
behaviour — or allelomimesis — where the more are the ants following a trail, the more that
trail becomes attractive for being followed. The process is thus characterized by a positive
feedback loop, where the probability with which an ant chooses a path increases with the num-
ber of ants that chose the same path in the preceding steps.

In Fig.1 we present an example of how allelomimesis can lead to the identification of the
shortest path around an obstacle.

 A

E

Obstacle

B

D

H C

A

E

Obstacle

B

D

C

A

E

a) b) c)

Fig.1 - a) Some ants are walking on a path between points A and E

b) An obstacle suddenly appears and the ants must get around it

c) At steady-state the ants choose the shorter path

The experimental setting is the following: there is a path along which ants are walking (for
example it could be a path from a food source A to the nest E - Fig.1a). Suddenly an obstacle
appears and the previous path is cut off. So at position B the ants walking from E to A (or at
position D those walking in the opposite direction) have to decide whether to turn right or left
(Fig.1b). The choice is influenced by the intensity of the pheromone trails left by preceding
ants. A higher level of pheromone on the right path gives an ant a stronger stimulus and thus an
higher probability to turn right. The first ant reaching point B (or D) has the same probability to
turn right or left (as there was no previous pheromone on the two alternative paths). Being path
BCD shorter than BGD, the first ant following it will reach D before the first ant following path
BGD. The result is that new ants coming from ED will find a stronger trail on path DCB,
caused by the half of all the ants that by chance decided to approach the obstacle via ABCD and
by the already arrived ones coming via BCD: they will therefore prefer (in probability) path
DCB to path DGB. As a consequence, the number of ants following path BCD will be higher,

in the unit of time, than the number of ants following BGD. This causes the quantity of
pheromone on the shorter path to grow faster than on the longer one, and therefore the
probability with which any single ant chooses the path to follow is quickly biased towards the
shorter one. The final result is that very quickly all ants will choose the shorter path (Fig.1c).
However, the decision of whether to follow a path or not is never deterministic, thus allowing
a continuos exploration of alternative routes.

Computational models have been developed, to simulate the food-searching process [3], [8].
The results are satisfactory, showing that a simple probabilistic model is enough to justify
complex and differentiated collective patterns. This is an important result, where a minimal
level of individual complexity can explain a complex collective behaviour.

An increase in the computational complexity of each individual, once established the lowest
limit needed to account for the desired behaviours, can help in escaping from local optima and
to face environmental changes. Trail laying regulated by feedback loop just eases ants to pursue
the path followed by the first ant which reached its objective, but that path could easily be
suboptimal. If we move from the goal of modeling natural reality to that of designing agents
that perform food-seeking in the most efficient possible way, an increase in the individual
agent's complexity could direct the search in front of an increment of computational cost. In
this case we face the trade-off between individual performance and computational overhead
caused by increasing population size: we are interested in the simplest models that take into
account efficient shortest route identification and optimization.

3. The Ant system

We introduce in this section our approach to the distributed solution of a difficult problem by
many locally interacting simple agents. We call ants the simple interacting agents and ant-al-
gorithms the class of algorithms we have defined. We first describe the general characteristics
of the ant-algorithms and then introduce three of them, called ANT-density, ANT-quantity
and ANT-cycle.

As a first test of the ant-algorithms, we decided to apply them to the well-known travelling
salesman problem (TSP), to have a comparison with results obtained by other heuristic ap-
proaches: the model definition is influenced by the problem structure, however we refer the
reader to [1] to see how the same approach can be used to solve related optimization problems.

Given a set of n towns, the TSP problem can be stated as the problem of finding a minimal
length closed tour that visit each town once. Let bi(t) (i=1, ..., n) be the number of ants in
town i at time t and let

m = bi(t)∑
i=1

n

be the total number of ants.

Call pathij the shortest path between towns i and j; in the case of euclidean TSP (the one
considered in this paper) the length of pathij is the Euclidean distance dij between i and j (i.e.

dij=[(x1
i -x1

j)
2
 + (x2

i -x2
j)

2
]
1/2

).

Let τij(t+1) be the intensity of trail on pathij at time t+1, given by the formula

τij(t+1)=ρ.τij(t)+∆τij(t,t+1) (1)

where
ρ is an evaporation coefficient;

∆τ ij(t,t+1) = ∆τ ij
k (t,t+1)∑

k=1

m
, where ∆τ ij

k (t,t+1) is the quantity per unit of length of trail sub-

stance (pheromone in real ants) laid on pathij by the k-th ant between time t and t+1.

The intensity of trail at time 0, τij(0), can be set to arbitrarily chosen values (in our experi-
ments a very low value on every pathij).

We call visibility the quantity ηij = 1/dij, and define the transition probability from town i to
town j as

pij(t) =
[τ ij(t)]α⋅[η ij]β

[τij(t)]α∑
j=1

n

⋅[η ij]β

(2)

where α and β are parameters that allow a user control on the relative importance of trail versus
visibility. Therefore the transition probability is a trade-off between visibility, which says that
close towns should be chosen with high probability, and trail intensity, that says that if on
pathij there is a lot of traffic then it is highly desirable.

In order to satisfy the constraint that an ant visits n different towns (i.e., it identifies a n-
towns cycle), we associate to each ant a data structure, called tabu list1, that memorizes the
towns already visited up to time t and forbids the ant to visit them again before a cycle has been
completed. When a cycle is completed the tabu list is emptied and the ant is free again to choose
its way.

Different choices about how to compute ∆τ ij
k (t,t+1) and when to update the τij(t) cause dif-

ferent instantiations of the ant-algorithm. In the next section we present three algorithms we
used as experimental test-bed for our ideas. Their names are ANT-density, ANT-quantity
and ANT-cycle.

4. The ANT-quantity and ANT-density algorithms

In the ANT-quantity model a constant quantity Q1 of pheromone is left on pathij every time an
ant goes from i to j; in the ANT-density model an ant going from i to j leaves Q2 units of
pheromone for every unit of length.

Therefore, in the ANT-quantity model

 ∆τ ij
k (t,t+1) =

Q1

dij
 if k-th ant goes from i to j between t and t+1

 0 otherwise

(3)

and in the ANT-density model we have

 ∆τ ij
k (t,t+1) =

 Q2 if k-th ant goes from i to j between t and t+1

 0 otherwise
 (4)

From these definitions it is clear that the increase in pheromone intensity on pathij when an
ant goes from i to j is independent of dij in the ANT-density model, while it is inversely pro-

1 Even though the name chosen recalls tabu search, proposed in [6] and [7], there are substantial differences
between our approach and tabu search algorithms. We mention here (1) the absence of any aspiration function
and (2) the difference of the elements recorded in the tabu list: permutations in the case of tabu search, cities in
our case.

portional to dij in the ANT-quantity model (i.e. shorter paths are made more desirable by ants in
the ANT-quantity model, thus further reinforcing the visibility factor in equation (2)).

The ANT-density and ANT-quantity algorithms are then

1 Initialize:
Set t:=0

Set an initial value τij(t) for trail intensity on every pathij

Place bi(t) ants on every node i

Set ∆τij(t,t+1):= 0 for every i and j

2 Repeat until tabu list is full {this step will be repeated n times}
2.1 For i:=1 to n do {for every town}

For k:=1 to bi(t) do {for every ant on town i at time t}
Choose the town to move to, with probability pij given by equation (2), and
move the k-th ant to the chosen location
Insert the chosen town in the tabu list of ant k
Set ∆τij(t,t+1):= ∆τij(t,t+1) + ∆τ ij

k (t,t+1) computing ∆τ ij
k (t,t+1) as defined in (3)

or in (4)

2.2 Compute τij(t+1) and pij(t+1) according to equations (1) and (2)

3 Memorize the shortest path found up to now and empty all tabu lists
4 If not(End_Test)

then
set t:=t+1
set ∆τij(t,t+1):=0 for every i and j
goto step 2

else
print shortest path and Stop

{End_test is currently defined just as a test on the number of cycles}.

In words the algorithms work as follows.
At time zero an initialization phase takes place during which ants are positioned on different

towns and initial values for trail intensity are set on paths. Then every ant moves from town i to
town j choosing the town to move to with a probability that is given as a function (with pa-
rameters α and β) of two desirability measures: the first (called trail - τij) gives information
about how many ants in the past have chosen that same pathij, the second (called visibility -
ηij) says that the closer a town the more desirable it is (setting α = 0 we obtain a stochastic

greedy algorithm with multiple starting points, with α = 0 and β -> ∞ we obtain the standard
one).

Each time an ant makes a move, the trail it leaves on pathij is collected and used to compute
the new values for path trails. When every ant has moved, trails are used to compute transition
probabilities according to formulae (1) and (2).

After n moves the tabu list of each ant will be full: the shortest path found is computed and
memorized and tabu lists are emptied. This process is iterated for an user-defined number of
cycles.

5. The ANT-cycle algorithm

In the ANT-cycle system we introduced a major difference with respect to the two previous
systems. Here ∆τ ij

k
 is not computed at every step, but after a complete tour (n steps). The value

of ∆τ ij
k (t,t+n) is given by

∆τ ij
k (t,t+n) =

Q3

Lk
 if k-th ant uses pathij in its tour

 0 otherwise

(5)

where Q3 is a constant and Lk is the tour length of the k-th ant. This corresponds to an adapta-
tion of the ANT-quantity approach, where trails are updated at the end of a whole cycle instead
than after each single move.

The value of the trail is also updated every n steps according to a formula very similar to (1)

τ ij(t+n) = ρ⋅τij(t)+∆τ ij(t,t+n) (1')

where

∆τ ij(t,t+n) = ∆τ ij

k (t,t+n)∑
k=1

m

.

The ANT-cycle algorithm is then

1 Initialize:
Set t:=0

Set an initial value τij(t) for trail intensity on every pathij

Place bi(t) ants on every node i

Set ∆τij(t,t+n):= 0 for every i and j
2 Repeat until tabu list is full {this step will be repeated n times}

2.1 For i:=1 to n do {for every town}
For k:=1 to bi(t) do {for every ant on town i at time t}

Choose the town to move to, with probability pij given by equation (2), and
move the k-th ant to the chosen location
Insert the chosen town in the tabu list of ant k

2.2 Compute ∆τ ij
k (t,t+n) as defined in (5)

2.3 Compute

∆τ ij(t,t+n) = ∆τ ij

k (t,t+n)∑
k=1

m

2.4 Compute the new values for τij(t+n) and pij(t+n) according to equations (1') and
(2)

3 Memorize the shortest path found up to now and empty all tabu lists
4 If not(End_Test)

then
set t:=t+n
set ∆τij(t,t+n):=0 for every i and j
goto step 2

else
print shortest path and Stop

{End_test is currently defined just as a test on the number of cycles}.

6. Computational results

The three reported algorithms have a performance which strongly depends on the parameter
setting under which they are run. The parameters are: α (sensibility to trails), β (sensibility to
distance), ρ (evaporation rate of pheromone trails) and Qh (algorithm-specific, related to how
much pheromone is laid down to form trails). Moreover, we are interested in studying how our
algorithms scale up with the increase of the number of the towns in the tour and how the num-
ber of ants affects the overall performance.

Since we have not yet developed a mathematical analysis of the models, which would yield
the optimal parameter setting in each situation, we ran several simulations, to collect statistical
data for this purpose. The results are sketched in the following, for each algorithm.

ANT-quantity and ANT-density
The outcomes of these two models are very similar, except that the ANT-quantity has shown to
be slightly more prone to get stuck in local minima (see [1] for a more detailed analysis of their
differences).

Simulations run on small-sized problems (10 cities, CCAO problem from [9], see Fig.2) and
with initially an ant per city have shown that these two models are very sensible to β, while
their behaviour is almost unaffected by trails.

Fig.2 - CCA0 problem and relative optimal tour

We tested several values for each parameter, all the other being constant, over ten simulations
for each setting in order to achieve some statistical information about the average evolution. The
values tested were: α∈{0, 0.5, 1, 2, 5, 10}, β∈{0, 0.5, 1, 2, 5, 10}, ρ∈{0.5, 0.7, 0.9} and
Qh∈ {10, 100, 10000}. The results show that for β=0 the algorithms were consistently
incapable of finding the optimum, for β=0.5 it took them an average of 12.4 cycles to find it,
for every β≥1 the optimum was found in about 3 or 4 cycles. These results hold for each
combination of values of α, ρ and Qh. With β=5 or β=10 we noticed an increase in the number
of times in which the algorithms found the optimum at the first iteration, but it was not
statistically significative (at a level of confidence of 0.05).

Parameters α, ρ and Qh affected the time required to have a uniform behaviour in the ant
population (i.e. the same tour followed by every ant). An increase of Qh proved equivalent to
an increase of α. Even though in no case we had a complete convergence after having found an
optimum, in almost all the cases when the simulation was allowed to go on for some thousands
of iterations, the average population tour converged to the best tour and the trail pattern
converged to the single tour commonly followed.

Cycles

Fig.3 - A 1000 cycles run for the ANT-quantity on the 30 cities problem
(α=2, β=5, ρ=0.7,Q1=100)

More demanding tests were run on problems with 30, 50 and 75 cities, taken from [10] and
[4] (the data we used in our experiments can be found also in [12]). The results were consistent
with those of the ten cities case: the most important parameter is β, the other ones affect the rate
of convergence. Increasing sensibility to trail (or relative trail intensity) results in easing con-
vergence, according to the inspiring autocatalytic paradigm. With problems of increasing size,
the individuation of the best known solution becomes increasingly more rare; however in all
cases the algorithms early individuated good solutions, exploring tours composed primarily of
the contextually better edges so far individuated (see fig.3). In Fig.4 we present a typical run of
the ANT-density algorithm for the 30 cities problem [10] (parameters: 1 ant per city, α=1, β=5,
ρ=0.7, Q2=100).

Fig.4 - A typical evolution of ANT-density (real length = 424.635; integer length = 421) on
the 30 cities problem

A second set of experiments was run, in order to assess the impact of the number of ants on
the efficiency of the solving process. In this case, the test problem involved finding a tour in a
4 by 4 grid of evenly spaced points: this is a problem with a priori known optimal solution (16
if we put to 1 the edge distance of any four evenly neighbouring cities that form a square). In
this case we determined the average number of cycles needed in each configuration to reach the
optimum, if the optimum could be reached within 200 cycles. In Fig. 5 we present the results
obtained for the ANT-density algorithm: on the abscissa there are the total number of ants used
in each set of runs, on the ordinate there is the average number of cycles required to reach the
optimum, multiplied by the number of ants used (in order to evaluate the efficiency per ant).
When the majority of tests with a given configuration could not reach the optimum, we gave an
high default value to the corresponding variable.

0
5 0 0

1 0 0 0
1 5 0 0

Number of
one-ant cycles

4 8 1 6 3 2 6 4

Number
of ants

Unable to reach
optimum

Fig.5 - Number of cycles required to reach optimum rated to the total number of
ants for the 4x4 grid problem

It can be seen that only configurations with more than an ant per city were able to reach the
optimum in less than 200 cycles, and an increase in the number of ants results in an increased
efficiency of the overall system.

ANT-cycle
This algorithm performs significantly better than the other two, especially on the harder prob-
lems, and is more sensible to variations of parameter values. Problem CCAO, used to roughly
determine the sensitivity to each parameter, suggested the following results, changing
parameters one at a time with respect to the default configuration α=1, β=1, ρ=0.7, Q3=100:

α: small values of α (<1) lead to slow convergence, the slower the smaller. Moreover for

low values of α most of the times only bad solutions can be found. For α≥2 we ob-
served an early convergence to suboptimal solutions. The optimal range seems to be
1≤α≤1.5.

β: for β=0 there is no convergence at all, progressively higher values lead to progressively
quicker convergence. The behaviour is similar to that observed in the two other models,
except that for β >5 the system quickly gets stuck in suboptimal tours.

ρ: values below 0.5 slow down convergence, such as values above 0.8. There seems to be
an optimum around 0.7.

Q3: we tested three values, Q3=1, Q3=100 and Q3=10000 but the differences were not
significant. Further experimentation is going on.

Experiments run on the 30 cities problem gave results in accordance to those of CCAO: slow
or no convergence for β≤1, progressively quicker convergence for increasing betas, too quick
for β>5. Values of α in the range [1, 1.5] yield better results than higher or lower values,

ρ≈0.7 is a good value for evaporation, and Q3=100 for the quantity of trail dropped. On this
problem ANT-cycle reached the best-known result with a frequency over the number of test
runs statistically higher than that of the other two algorithms and, on the whole, identification
of good tours seems to be much quicker, even though we devised no index to quantify this. We
also found a new optimal tour of length 423.741 (420 with distances rounded to integers; the
previous best known tour on the same problem, published in [12] was of integer length 421);
see [1] for details.

We tested the algorithm over the Eilon50 and Eilon75 problems [4] on a limited number of
runs and with the number of cycles constrained to 3000. Under these restrictions we never got
the optimum, but the quick convergence to satisfying solutions was maintained for both the
problems (Fig. 6).

Fig. 6 - The new optimal tour obtained
with 4200 iterations of ANT-cycle for the
30 cities problem (α =1, β=5, ρ=0.7,
Q3=100).
Real length = 423.741.
Integer length = 420.

Fig.7 - A typical evolution of ANT-cycle on
the Eilon50 problem (α=1, β=2, ρ=0.7,
Q3=100).
Real length = 441.572.
Integer length = 438.
Best known solution: integer length = 428.

The tests on the performance with increasing number of ants were conducted with the same
modality described for the ANT-density and ANT-quantity systems. The results are shown in
Fig.8: it is interesting to note that:
• the algorithm has been consistently able to identify the optimum with any number of ants;
• the computational overhead caused by the management of progressively more ants causes the

overall efficiency to decrease with a high number of ants.

3/4/94 11

Number of one-ant cycles

Number
of ants

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

4 8 1 6 3 2 6 4

Fig.8 - Number of cycles required to reach optimum rated to the total number of
ants for the 4x4 grid problem

7. Conclusions and further work

In this paper we presented a new methodology based on an autocatalytic process and its
application to the solution of a classical optimization problem. Simulation results are very en-
couraging and we believe the approach can be extended to a broader class of problems. Still a
basic questions remains largely with no answer: Why does the ant-algorithm work?

The general idea underlying this model is that of an autocatalytic process pressed by a
"greedy force". The autocatalytic process alone tends to converge to a suboptimal path with
exponential speed, while the greedy force alone is incapable to find anything but a suboptimal
tour. When they work together it looks like the greedy force can give the right suggestions to
the autocatalytic process and let it converge on very good, often optimal, solutions very
quickly.

We believe that further work can be done along four main research directions:

• the formulation of a mathematical theory of the proposed model and of autocatalytic pro-
cesses in general;

• the evaluation of the generality of the approach, through an investigation on which classes
of problems can be well solved by this algorithm;

• the study of the implications that our model can have on artificial intelligence, particularly in
the pattern recognition and machine learning fields;

• the possibility to exploit the inherent parallelism of the proposed model mapping it on paral-
lel architectures.

References

[1] Colorni A., Dorigo M., Maniezzo V.: "An Autocatalytic Optimizing Process", Technical
Report n. 91-016 Politecnico di Milano, 1991.

[2] Denebourg J.L., Pasteels J.M., Verhaeghe J.C.: "Probabilistic Behaviour in Ants: a
Strategy of Errors?", J. theor. Biol., 105, 1983, pag. 259-271.

3/4/94 12

[3] Denebourg J.L., Goss S.: "Collective patterns and decision-making", Ethology, Ecology
& Evolution, 1, 1989, pag. 295-311.

[4] Eilon S., Watson-Gandy T.H.., Christofides N.: "Distribution management:
mathematical modeling and prcatical analysis", Operational Research Quarterly, 20,
1969.

[5] Fitzgerald T.D., Peterson S.C.: "Cooperative foraging and communication in caterpil-
lars", Bioscience, 38, 1988, pag. 20-25.

[6] Glover F.: "Tabu Search — Part I", ORSA Jou. on Computing, 1, 1989.
[7] Glover F.: "Tabu Search — Part II", ORSA Jou. on Computing, 2, 1990.
[8] Goss S., Beckers R., Deneubourg J.L., Aron S., Pasteels J.M.: "How Trail Laying and

Trail Following Can Solve Foraging Problems for Ant Colonies", in Hughes R.N. (ed.),
NATO ASI Series, Vol. G 20, Behavioural Mechanisms of Food Selection, Springer-
Verlag, Berlin, 1990.

[9] Golden B., Stewart W.: "Empiric analysis of heuristics", in Lawler E.L., Lenstra J.K.,
Rinnooy-Kan A.H.G., Shmoys D.B.: "The Travelling Salesman Problem", Wiley,
1985, pag. 228.

[10] Lin S., Kernighan B.W.: "An effective Heuristic Algorithm for the TSP", Operations re-
search, 21, 1973.

[11] Shapiro J.A.: "Bacteria as multicellular organisms", Scientific American, 1988, pag. 82-
89.

[12] Whitley D., Starkweather T., Fuquay D.: "Scheduling Problems and Travelling
Salesmen: the Genetic Edge Recombination Operator", Proc. of the Third Int. Conf. on
Genetic Algorithms, Morgan Kaufmann, 1989.

