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Abstract

This paper describes a self-stabilizing version of an algorithm presented by A. Mazurkiewicz [Inform. Process. Lett. 61
(1997) 233-239] for enumerating nodes by local rules on an anonymous network. The result improves the reliability aspects of
the original algorithm and underlines the importance of a non-ambiguous topology for a netv2@i®1 Elsevier Science B.V.
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1. Introduction that this algorithm, despite its simplicity, provides
all the underlying graph-related information that a
Dijkstra first introduced the concept of self-stabi- distributed algorithm can be required to compute [2].
lizing algorithms in [1] with the view to design al- In this paper, we show how to modify the original
gorithms with a demanding reliability; starting in any algorithm in order to make it work properly even
corrupted initial state, these algorithms achieve the starting from a corrupted state.
sought goal in finite time without centralized inter- The existence of such a self-stabilizing algorithm
vention. The theory of anonymous networks describes demonstrates that non-ambiguous topology is an inter-
the solvability or non-solvability of different prob- esting topology for designing very robust distributed
lems of global conflicts by local computations with- algorithms that can recover from all kind of failures.
out a unique identity for each node being known. |t is thus not only of theoretical interest to determine
An enumeration algorithm is a distributed solution to  what works in this very worst case scenario (unavail-
the problem of affecting to each node of an initially ability of helpful identities and arbitrary initial values),
anonymous network a differename names are taken it has also some important robustness consideration
in the se{1,2,...,n} (n is the size of the network).  since the family where the problem is solvable is quite
This paper describes a self-stabilizing solution to the |arge.
Enumeration Problem. This paper is organized as follows, first we present
Mazurkiewicz shows the enumeration problem was some notations and definitions that are essentially
only solvable in so-called non-ambiguous graphs, and standard and we restate the definitions of [5]. We
presents his algorithmic solution [5]. Itis worth noting  describe the self-stabilizing enumeration algorithm
and prove its correctness: the main observation being
E-mail addressgodard@!labri.fr (E. Godard). that the algorithm terminates with a bijective labeling
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whose conversion to an enumerationis then atechnicalover L will be denoted by(G, 1), whereG is a graph

guestion. We also give bounds on the time of execution
that were not given in the original paper.

2. Basic notions and notations
2.1. Graphs

The notation used here is essentially standard.
A graphG is defined as a finite sét(G) of vertices
together with a sefE(G) < (‘2/) of edges. We only
consider finite, undirected graphs without multiple
edges and self-loops. Let= {v, v’} be an edge: we
say thate is incident withv, and thatv is a neighbor
of v/. The set of neighbors of a vertexis denoted
Ng(v). LetalsoBg (v) = Ng (v) U {v}.

A path P from v1 to v; in G is a sequence® =
(v1, e1,v2, €2, ...,e1,v;) Of vertices and edges such
that for all 1< j <, e; is an edge incident with the
verticesv; anduv;;1; the integeri — 1 is the length
of P. The distance between two vertices is the length
of the shortest path between those vertices.lle¢ a
vertex,k an integer, we denote i (v, k) the ball of
centerv and of radius. Note thatBg (v, 1) = Bg (v).

G’ is a subgraph ofG if V(G € V(G) and
E(G’) € E(G). The subgraph ofG induced by a
subsetV’ of V(G) is the subgraph of; having V'
as vertex set and containing all edgesbetween
vertices ofV’.

A homomorphism between two graplis and H
is a mappingy : V(G) — V(H) such that if{u, v}
is an edge ofG then{y(u), y(v)} is an edge ofH.
Since we deal only with graphs without self-loops, this
implies thaty (u) # y (v) if {u, v} is an edge ofG.
Note also thay (Ng (1)) € Nu(y (u)). We say thaty
is an isomorphism ify is bijective andy 1 is also a
homomorphism. ByG >~ G’ we mean thatG and G’
are isomorphic. A class of graphs will be any class
of graphs in the set-theoretical sense containing all

and A:V(G) — L is the function labeling vertices.
The graphG is called the underlying graph, and the
mappingA is a labeling ofG. The class of labeled
graphs over some fixed alphabetwill be denoted
by gL.

Let (G,A) and (G’,)') be two labeled graphs.
Then (G, ») is a subgraph ofG’, 1), denoted by
(G,)) C (G, V), if Gis a subgraph of5’ andx is
the restriction of the labeling’ to V(G) U E(G).

A mappinge: V(G) U E(G) — V(G)U E(G') is
a homomorphism from(G, 1) to (G', 1) if ¢ is a
graph homomorphism fror to G’ which preserves
the labeling, i.e., such that(¢(x)) = A(x) holds for
everyx € V(G). The mapping is an isomorphism if
it is bijective.

An occurrenceof (G, ) in (G’, ) is an isomor-
phism ¢ between(G, 1) and a subgraphH, n) of
(G, \).

2.3. Ambiguous graphs

A labeling is saidlocally bijectiveif vertices with
the same label have isomorphic labeled neighbour-
hood. Formally,

Definition 1 [5]. Let L be a set of labels and léG, 1)
be a labeled graph. The labelingis calledlocally
bijectiveif it verifies the following two conditions:
(1) Foreachy € V and for allv’, v’ € Bg(v)

AW =A0") = V=",
(2) Forallv,v" eV
AW) =A0") = AM(Nc())=1r(Nc").
A graphG is saidambiguousf there exists a non-
bijective labeling ofG which is locally bijective.

See [5] for examples of ambiguous graphs. Note
that it is very unlikely for a graph to be ambiguous and

graphs isomorphic to some of its members. The class that, in particular, trees, chordal graphs, graphs with a

of all graphs will be denoted.
2.2. Labeled graphs

Throughout the paper we will consider only con-

prime number of vertices are non-ambiguous.

3. Framework

nected graphs where vertices are labeled with labels We consider a network of processors with arbitrary

from a possibly infinite alphabdt. A graph labeled

topology. It is represented as a connected, undirected
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graph where vertices denote processors, and edge®efinition 3. Let R be a relabeling relation. Then

denote direct communication links. Labels (or states)
are attached to vertices. Labels are modified locally,
that is, on a subgraph of the given graph, according to
certain rules depending on the subgraph otbgd|
computations The relabeling is performed until no
more transformation is possible, i.e., until a normal
form is obtained. In this paper, local computations
will be presented in the framework of graph relabeling
systems that are very closed to the notiompadtocol

of [5].

3.1. Local computations

Local computations as considered here can be
described in the following general framework [3]. Let
G be the class of.-labeled graphsand IR C G x G
be a binary relation org. Then R will denote a
graph rewriting relation. We assume ttfatis closed
by isomorphism, i.e., wheneveiG, \)R(G’, 1)) if
(G1, A1) ~ (G, ) then (G, A)R(GY, A7) for some
labeled grapiG’, A7) ~ (G’, 1). In the remainder of
this paperR* stands for the transitive closure &f.

Definition 2. Let R € G x G be a graph rewriting

relation.

(1) R is arelabeling relationif whenever two labeled
graphs are in relation then the underlying graphs
are equalt i.e.:

(G,MR(H,}) = G=H.

(2) R islocalif only labels of a ball may be changed
by R,i.e.,(G, M)R(G, 1) implies that there exists
a vertexv € V(G) such that

Ax) =2 (x)
for everyx ¢ V(B (v)) U E(Bg(v)).

Local computationswhere labels change locally
using only local information, are described precisely
in the next definition that states that a local relabeling
relation R is locally generatedif its restriction on
centered balls determines its computation on any
graph.

1we say equal, not only isomorphic: the next notions and
definitions would be unnecessarily difficult to handle without equal
underlying graphs.

R is locally generatedif the following is satisfied:
For every labeled graphsG, 1), (G,)), (H,n),
(H,n") and every verticess € V(G), w € V(H)
such that the ball8s (v) and By (w) are isomorphic
via ¢:V(Bg(v)) - V(Bg(w)) and ¢(v) = w, the
following three conditions:
(1) A(x) = n(p(x)) andA'(x) = n'(p(x)) for all x €
V(Bg(v)) U E(Bg (v)),
(2) A(x) =1/ (x), forall x ¢ V(B (v)) U E(Bg(v)),
() n(x)=n'(x), forallx ¢ V(B (w)) U E(By (w))
imply that (G, ,)R(G, 1) if and only if (H, n)R(H,
).

In the following, we consider relatio® that will
always be locally generated by a recursive set of rules.
The labeled grapliG, 1) is R-irreducible if there
is no (G, 1) such that(G, \)R(G, ). Let (G, 1) €
g, then Irred; ((G, A)) denotes the set dR-irredu-
cible graphs (or irreducible iR is fixed) which can
be obtained from G, 1) usingR. The relationR is
noetherian if there is no infinite relabeling sequence
(G, M)R(G, 2R ...

3.2. Distributed computations of local computations

The notion of relabeling sequence defined above,
obviously, corresponds to a notionsgquentiacom-
putation. Let us also note that a locally generated
relabeling relation also allows parallel rewritings,
since non-overlapping balls may be relabeled indepen-
dently. Thus we can define a distributed way of com-
puting by saying that two consecutive relabeling steps
concerning non-overlapping balls may be applied in
any order. We say that such relabeling steps commute
and they may be applied concurrently. More generally,
any two relabeling sequences such that the latter one
may be obtained from the former one by a succession
of such commutations lead to the same resulting la-
beled graph. Hence, our notion of relabeling sequence
may be regarded as serialization[4] of some dis-
tributed computation. This model is clearly asynchro-
nous: several relabeling stepsybe done at the same
time but we do not require that all of them have to be
performed. In the sequel we will essentially deal with
sequential relabeling sequences but the reader should
keep in mind that such sequences may be done in a
distributed way.
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3.3. Enumeration on graphs

The nodes uses a speciabisterto describe their
identity, it will be denoted .

Definition 4. A relabeling systenR is said to self-
stabilize to arEnumeration Solutioln a graphG if
‘R is noetherian and for any initial labelirig, the final
labeling (G, A ¢) € Irred((G, Ao)) of any relabeling
chain is locally bijective and is of the forths(v) =
(ID(v), ¢(v)) where

— ID is a bijection fromV (G) to {1, ..., |V(G)|}.

— cis any mapping td..

Theorem 5 [5]. If G is ambiguous then there is

no relabeling system stabilizing to an enumeration

solution onG.

Proof. Theorem 2 of [5] states it is true even if we
require only uniform initial labelings. O

In the following section we present a relabeling
system that, omon-ambiguous graphself-stabilizes
to an enumeration of the vertices.

4, Self-stabilizing enumeration algorithm
This result will be addressed in the following way:

first we present our modified version of Mazurkiewicz’
Enumeration Algorithm. We will prove an important

characterization of the final labelings obtained with
this algorithm. Then we describe a procedure for enu-
merating nodes that uses this final labeling. Finally we

give some bounds on the time of stabilization.

4.1. Modifying Mazurkiewicz’ Enumeration
Algorithm

An enumeration algorithm on a netwogkis a dis-

tributed algorithm such that the result of any computa-

tion is a labeling of the vertices that is a bijection from
V(G)to{L,2,...,|V(G)|}. In particular, an enumer-

ation of the vertices where vertices know whether the
algorithm has terminated solves the election problem.

In [5], the computation model is equivalent even
thought it is described in the different formalism
of protocols. Our self-stabilizing version will be de-
noted M.

E. Godard / Information Processing Letters 82 (2002) 299-305

Description. We give first a general description of
the algorithm M. Every vertex attempts to get its
own name, which shall be an integer between 1 and
[V(G)|. A vertex chooses a hame and broadcasts it
together with its neighborhood all over the network.
If a vertexu discovers the existence of another vertex
v with the same name, then it comparedaisal view

i.e., the labeled ball of center, with the local view

of its rival v. If the local view of v is “stronger”,

thenu chooses another namealso chooses another

name if its appears twice in the view of some other
vertex as a result of a corrupted initial state. Each
new name is broadcast again over the network. At
the end of the computation it is not guaranteed that
every node has a unique name, unless the graph is non-
ambiguous. However, all nodes with the same name
will have the same local view, i.e., isomorphic labeled
neighborhoods. These names cannot be straight used
as identities because they can be arbitrary large, but it
is possible to compute the rank of the name in all the
existing names and set it as its.|

The crucial property of the algorithm is based on a
total order on local views such that the “strength” of
the local view of any vertex cannot decrease during
the computation. To describe the local view we use
the following notation: ifv has degreed and its
neighbors have names, ..., ng, Withni > --- > ny,
thenN (v), the local view, is thel-tuple (n1, ..., ng).

Let £ be the set of such ordered tuples.

The alphabetic order defines a total ordgron L.
Verticesv are labeled by triples of the forii, N,

M) representing during the computation:

— n(v) € N is the name of the vertex

— N(v) € Lis the latest view ob,

— M(v) C N x L is the mailbox ofv and contains all
information received at this step of the computation.
We need other notations. We want to count the

number of times a given name appear in a local view.

For a local viewN, andn € N, we defineSy (n) to be

the cardinality ofz in the tupleN.

For a given viewN, we denote by sulv, n, n’) the
copy of N where any occurrence ofis replaced by:'.

We recall that in the self-stabilizing context, the
initial labels of all vertices are arbitrary elements in
the set of labeld..

The rules are described below for a given centered
ball B = B(vg) with centervg. The verticesv of
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B have labelgn(v), M (v)). N(vg) is the local view 4.2. Properties ojM

of vo, hence the ordered tuple of the names of its

neighbors. The labels obtained after applying a rule  The proof will follow the scheme of the one
are(n’(v), M’(v)). To make the rules easier to be read, used in [5]. LetG be a graph, let us denote by
we omit labels that are left unchanged. (n; (v), M;(v)) the label of a vertex of G and by
N;(v) the local view ofv after theith step of the

Diffusion rule: . e
computation of M. See the remark on serialization

Precondition

Section 3.2.
v, M (v) # M (vo) (1a) We first prove some lemmas. We suppose the step
is fixed.
(n(vo), N(vo)) ¢ M (vo) (1b) We say that a name is known byw, if (m, N) €
Vo M (v) for someN. Let us noter the greatest of all
N (vo) # N (vo) (1c) names known to the graph nodes at step 0. For showing
Relabeling termination, we claim _that wheneve_r a ngrmeis
known andmn > r, there is a vertex having this name.
— Forallv,
M'(v) = U M (w) U (n(vo), N (v0)), Lemma6. Yv € V(G) Vm > r such tha@lN (m, N) €
weB M; (vg), w € V(G) such thaty; (w) =m.

N'(v0) := N (vo)
- 0) = 0)- .
Proof. Assume that the name > r is known bywvg

RenamingrL_JIe: and letU = {u € V(G) | 3j < i, nj(u) = m}, then
Precondition U is not empty because, as > r, there has to be
N cM 2a a vertex gettlng_ this name b?elabe_lmg rule Let w
(n(UO) (UO)) (vo) (22) be the vertex with the strongest neighbourhoodin

A\ . .
N (vo) = N (vo) (2b) then theRenaming ruleeannot be applied ta, hence
A ni(w)=m. 0O
Yu, M(v) = M(vo) (2¢)
A Lemma7. Yv e V(G) Vm > r, §ny(m) < L.
n(vg) =0 (2d)
Y Proof. Suppose the assertion is false, then there exists
n(vo) > 0 and3N1 (n(vo), N1) € M (vo) m andv with two neighbors namea. As there were
andN (vo) < N1 (2e) nom in the initial labeling;n had to be set by former
% applications ofRelabeling rule Consider the vertex
n(vo) > 0 and3(ny, N1) € M (vo) wy having been last named. w, hasv as a neighbor
such thady, (n(vo)) > 2 (2) and the first application d®elabeling rul$_hould have
madem known bywv, thus byw, before it can apply
Relabeling anyRelabeling ruleYields a contradiction. O
— n'(vo) =1+ maxn € N | (n,N) € M(uvo) for Next, we claim that whenever a name greater than
someN € L}, / is known, all positive names greater thaand smaller
— N (v) :=Sub(N (v), n(vo), n’ (vo)), than that name are assigned to some vertex.
— The mailbox contents changes to
M (v) := M(vg) U {(n’(vo), N(Uo))} Lemma 8. Vi, Yv € V(G) such thatn; (v) # r Vm,

—, r <m < n;(v), 3w € V(G) such thatr; (w) = m.
U (n(w), N (w)).
weB Proof. We show this claim by induction oh At the
Since the bs are not used by1, their computation initial stepi = 0 the assertion is true. Suppose that it
is described later, in Section 4.3. holds fori > 0. If Diffusion ruleis used, the assertion
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is true fori + 1. If we useRenaming rulepplied tovg
then we just have to verify it farp, and more precisely
for all namesm € [n;(vo), ..., ni+1(vo)] N [r, +o0l.
The property fom;11(vg) is clear and; (vg) will be
treated later.

If the interval [n;(vo) + 1,...,n;4+1(vo) — 1] N
[r, +o0o[ is empty then the condition is obviously
satisfied. Otherwise by definition of tiReenaming rule
and the previous claim there exisis# vg such that
ni(w) = n;y1(w) =n;+1(vo) — 1. Form € [n;(vo) +
1,...,ni+1(vo) — 1], the assertion is then true by
induction hypothesis omw.

To prove the assertion fof; (vo), first we remark
that if n; (vg) > r, by Lemma 7, we are in subcondi-

E. Godard / Information Processing Letters 82 (2002) 299-305

It is obviously true for the vertices that are not con-
cerned by the rule applied at stepand for the other
vertices, we note thaenaming rulenly increments
n;(vo), that Diffusion rule only adds elements to the
mailboxes.

Moreover, one of the inequalities is strict for at least
one vertex, namely the one for which the previous
relabeling rule was applied. Thef 5 x'+1 for all i.

As, by Lemma 8, there is no more thatifferent
assignedi-labels at a given step/ € X, for all i. We
can now conclude fox is a finite ordered space. The
sequence!’ is finite and the algorithm terminates.

The properties of the final labeling are easily de-
rived from the fact that no more rule could be applied.

tion (2e) and the assertion is a direct consequence of(1) OtherwiseDiffusion rulecould be applied.

Lemma 6's proof: the vertex with the strongest neigh-

bourhood inU hasn;(vp) as aname at step+ 1. O

The labeling function obtained at the end of a run

& of Mazurkiewicz’ algorithm is notedI¢. If v is a
vertex of G, the couplellg (v) associated withy is
denoted(ng (v), Mg (v)). We also note the final local
view of v by Ng¢(v). For a given mailboxM and

a givenn € N, we note Ny, (n) the local view such
that for all N, (n, N) e M = N < Ny (n). Except
for the first corrupted staged ) (n) is actually the
“strongest local view” ofz.

Theorem 9. A run of Mazurkiewicz’ Enumeration
Algorithm on a connected grap& with any initial
labeling finishes and computes a final labelingy
verifying the following conditions for all verticas v’
of G:

(1) Mg(v) =M (v)).

(2) Nmg(ng()) =N() = Ng(v).

(3) ng induces a locally bijective labeling @F.

Proof. Lettr =r +n. Let I ={0,...,t} ordered by
the natural order on integer§; be the set of thd-
labeled balls of5, ordered byx. P(I x L;) is ordered
by inclusion. LetX =TI x P(I x L;). The product
order < defines a partial order ox"(©). We note
xl = ((ni (v), M;(v))vev(c), We will show that(x’);
is a strictly increasing sequence ¥f

First we claim that, for each, i,
= ni(v) <ni11(v),
- M;(v) € Mj+1(v).

(2) Remark that for alb, (ng (v), Ng(v)) € Mg(v) =
Mg (v), otherwise precondition (1b) diffusion
rule would hold. Then, as the precondition (2e)
does not hold, we get the property.

(3) OtherwiseRenaming ruleould be applied to ver-
tices having the same name and non-isomorphic
local views. Remember that is atotal order. O

4.3. Enumeration

Now, each vertex shall compute locally the set of
final names from the final mailboX¢. We noteG¢
the graph defined by
Ve ={ng() [ve V(G)},

Eg ={(ng(v1),ng(v2)) | (v1,v2) € E(G)}.
For a mailboxM and and integer, we define the
setVM (n) by induction.
Vo' = {n},
vM i =vMUlt13se VM, Sy @) =1).
If igis such thai[/igW = Vi24+1 then we defin&™ (n) =
VM,
OFinaIIy, we have,

Lemma10. For all u, VMe (ng(u)) = Vs.

Proof. Let n = ng(v) for somev. By induction, we
prove thatVng = Bg.(n,i) for all i. It is obviously
true for i = 0. Suppose it is true for. Then by
definition and by Theorem 9(2)*, c Bg, (n, ).
Letm € Bg.(n,i +1) \ Bg.(n,i), m has a neighbor
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in Bg.(n,i) = Vl.M by induction hypothesis. Hence Thus, with correct initial labels, the algorithm
me Vl.f‘fl and finally VMe (ng(u)) = Ve. O stabilizes in at mosiv (G)|3 steps.

And at any time, each vertex set its b by
computing itsenumeration indexi.e., the rank of 5. Conclusion
n(u) in the ordered setV™®(n(y)). Lemma 10 . o _
means that the O registers finally get a correct The extension of Mazurkiewicz' Algorithm pre-
attribution. Thus, as presented in [5], in the case of Sented here has interesting self-stabilizing properties.
non-ambiguous graphs, after a run of Mazurkiewicz’ Furthermore, the quite low time of stabilization shows
algorithm, b induces a one-to-one correspondence that on non-ambiguous graphs, it should be possible

between the set of vertices 6fand the set of integers 10 design robust algorithms on the basis on the self-
(L,.... V(G stabilizing identities provided by the algorithm pre-
sented in this paper.
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