
Information Processing Letters 82 (2002) 299–305

A self-stabilizing enumeration algorithm

Emmanuel Godard
LaBRI U.M.R. 5800, Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France

Received 25 April 2001; received in revised form 21 September 2001
Communicated by L. Boasson

Abstract

This paper describes a self-stabilizing version of an algorithm presented by A. Mazurkiewicz [Inform. Process. Lett. 61
(1997) 233–239] for enumerating nodes by local rules on an anonymous network. The result improves the reliability aspects of
the original algorithm and underlines the importance of a non-ambiguous topology for a network. 2001 Elsevier Science B.V.
All rights reserved.

Keywords:Distributed computing; Self-stabilizing systems; Local computations; Anonymous networks

1. Introduction

Dijkstra first introduced the concept of self-stabi-
lizing algorithms in [1] with the view to design al-
gorithms with a demanding reliability; starting in any
corrupted initial state, these algorithms achieve the
sought goal in finite time without centralized inter-
vention. The theory of anonymous networks describes
the solvability or non-solvability of different prob-
lems of global conflicts by local computations with-
out a unique identity for each node being known.
An enumeration algorithm is a distributed solution to
the problem of affecting to each node of an initially
anonymous network a differentname, names are taken
in the set{1,2, . . . , n} (n is the size of the network).
This paper describes a self-stabilizing solution to the
Enumeration Problem.

Mazurkiewicz shows the enumeration problem was
only solvable in so-called non-ambiguous graphs, and
presents his algorithmic solution [5]. It is worth noting

E-mail address:godard@labri.fr (E. Godard).

that this algorithm, despite its simplicity, provides
all the underlying graph-related information that a
distributed algorithm can be required to compute [2].
In this paper, we show how to modify the original
algorithm in order to make it work properly even
starting from a corrupted state.

The existence of such a self-stabilizing algorithm
demonstrates that non-ambiguous topology is an inter-
esting topology for designing very robust distributed
algorithms that can recover from all kind of failures.
It is thus not only of theoretical interest to determine
what works in this very worst case scenario (unavail-
ability of helpful identities and arbitrary initial values),
it has also some important robustness consideration
since the family where the problem is solvable is quite
large.

This paper is organized as follows, first we present
some notations and definitions that are essentially
standard and we restate the definitions of [5]. We
describe the self-stabilizing enumeration algorithm
and prove its correctness: the main observation being
that the algorithm terminates with a bijective labeling

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00291-5

300 E. Godard / Information Processing Letters 82 (2002) 299–305

whose conversion to an enumeration is then a technical
question. We also give bounds on the time of execution
that were not given in the original paper.

2. Basic notions and notations

2.1. Graphs

The notation used here is essentially standard.
A graphG is defined as a finite setV (G) of vertices
together with a setE(G) ⊆ (

V
2

)
of edges. We only

consider finite, undirected graphs without multiple
edges and self-loops. Lete = {v, v′} be an edge: we
say thate is incident withv, and thatv is a neighbor
of v′. The set of neighbors of a vertexv is denoted
NG(v). Let alsoBG(v) = NG(v) ∪ {v}.

A path P from v1 to vi in G is a sequenceP =
(v1, e1, v2, e2, . . . , ei−1, vi) of vertices and edges such
that for all 1� j < i, ej is an edge incident with the
verticesvj and vj+1; the integeri − 1 is the length
of P . The distance between two vertices is the length
of the shortest path between those vertices. Letv be a
vertex,k an integer, we denote byBG(v, k) the ball of
centerv and of radiusk. Note thatBG(v,1) = BG(v).

G′ is a subgraph ofG if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). The subgraph ofG induced by a
subsetV ′ of V (G) is the subgraph ofG havingV ′
as vertex set and containing all edges ofG between
vertices ofV ′.

A homomorphism between two graphsG and H

is a mappingγ :V (G) → V (H) such that if{u,v}
is an edge ofG then {γ (u), γ (v)} is an edge ofH .
Since we deal only with graphs without self-loops, this
implies thatγ (u)
= γ (v) if {u,v} is an edge ofG.
Note also thatγ (NG(u)) ⊆ NH(γ (u)). We say thatγ
is an isomorphism ifγ is bijective andγ−1 is also a
homomorphism. ByG � G′ we mean thatG andG′
are isomorphic. A class of graphs will be any class
of graphs in the set-theoretical sense containing all
graphs isomorphic to some of its members. The class
of all graphs will be denotedG.

2.2. Labeled graphs

Throughout the paper we will consider only con-
nected graphs where vertices are labeled with labels
from a possibly infinite alphabetL. A graph labeled

overL will be denoted by(G,λ), whereG is a graph
and λ :V (G) → L is the function labeling vertices.
The graphG is called the underlying graph, and the
mappingλ is a labeling ofG. The class of labeled
graphs over some fixed alphabetL will be denoted
by GL.

Let (G,λ) and (G′, λ′) be two labeled graphs.
Then (G,λ) is a subgraph of(G′, λ′), denoted by
(G,λ) ⊆ (G′, λ′), if G is a subgraph ofG′ andλ is
the restriction of the labelingλ′ to V (G) ∪ E(G).

A mappingϕ :V (G) ∪ E(G) → V (G′) ∪ E(G′) is
a homomorphism from(G,λ) to (G′, λ′) if ϕ is a
graph homomorphism fromG to G′ which preserves
the labeling, i.e., such thatλ′(ϕ(x)) = λ(x) holds for
everyx ∈ V (G). The mappingϕ is an isomorphism if
it is bijective.

An occurrenceof (G,λ) in (G′, λ′) is an isomor-
phism ϕ between(G,λ) and a subgraph(H,η) of
(G′, λ′).

2.3. Ambiguous graphs

A labeling is saidlocally bijectiveif vertices with
the same label have isomorphic labeled neighbour-
hood. Formally,

Definition 1 [5]. LetL be a set of labels and let(G,λ)

be a labeled graph. The labelingλ is called locally
bijectiveif it verifies the following two conditions:
(1) For eachv ∈ V and for allv′, v′′ ∈ BG(v)

λ(v′) = λ(v′′)
⇒ v′ = v′′.

(2) For allv′, v′′ ∈ V

λ(v′) = λ(v′′)
⇒ λ
(
NG(v′)

) = λ
(
NG(v′′)

)
.

A graphG is saidambiguousif there exists a non-
bijective labeling ofG which is locally bijective.

See [5] for examples of ambiguous graphs. Note
that it is very unlikely for a graph to be ambiguous and
that, in particular, trees, chordal graphs, graphs with a
prime number of vertices are non-ambiguous.

3. Framework

We consider a network of processors with arbitrary
topology. It is represented as a connected, undirected

E. Godard / Information Processing Letters 82 (2002) 299–305 301

graph where vertices denote processors, and edges
denote direct communication links. Labels (or states)
are attached to vertices. Labels are modified locally,
that is, on a subgraph of the given graph, according to
certain rules depending on the subgraph only (local
computations). The relabeling is performed until no
more transformation is possible, i.e., until a normal
form is obtained. In this paper, local computations
will be presented in the framework of graph relabeling
systems that are very closed to the notion ofprotocol
of [5].

3.1. Local computations

Local computations as considered here can be
described in the following general framework [3]. Let
G be the class ofL-labeled graphs and letR ⊆ G × G
be a binary relation onG. Then R will denote a
graph rewriting relation. We assume thatR is closed
by isomorphism, i.e., whenever(G,λ)R(G′, λ′) if
(G1, λ1) � (G,λ) then (G1, λ1)R(G′

1, λ
′
1) for some

labeled graph(G′
1, λ

′
1) � (G′, λ′). In the remainder of

this paperR∗ stands for the transitive closure ofR.

Definition 2. Let R ⊆ G × G be a graph rewriting
relation.
(1) R is arelabeling relationif whenever two labeled

graphs are in relation then the underlying graphs
are equal,1 i.e.:

(G,λ)R(H,λ′)
⇒ G = H.

(2) R is local if only labels of a ball may be changed
byR, i.e.,(G,λ)R(G,λ′) implies that there exists
a vertexv ∈ V (G) such that

λ(x) = λ′(x)
for everyx /∈ V

(
BG(v)

) ∪ E
(
BG(v)

)
.

Local computations, where labels change locally
using only local information, are described precisely
in the next definition that states that a local relabeling
relation R is locally generatedif its restriction on
centered balls determines its computation on any
graph.

1 We say equal, not only isomorphic: the next notions and
definitions would be unnecessarily difficult to handle without equal
underlying graphs.

Definition 3. Let R be a relabeling relation. Then
R is locally generatedif the following is satisfied:
For every labeled graphs(G,λ), (G,λ′), (H,η),
(H,η′) and every verticesv ∈ V (G), w ∈ V (H)

such that the ballsBG(v) andBH (w) are isomorphic
via ϕ :V (BG(v)) → V (BH (w)) and ϕ(v) = w, the
following three conditions:
(1) λ(x) = η(ϕ(x)) andλ′(x) = η′(ϕ(x)) for all x ∈

V (BG(v)) ∪E(BG(v)),
(2) λ(x) = λ′(x), for all x /∈ V (BG(v)) ∪E(BG(v)),
(3) η(x) = η′(x), for all x /∈ V (BH (w)) ∪ E(BH (w))

imply that (G,λ)R(G,λ′) if and only if (H,η)R(H,

η′).

In the following, we consider relationR that will
always be locally generated by a recursive set of rules.

The labeled graph(G,λ) is R-irreducible if there
is no (G,λ′) such that(G,λ)R(G,λ′). Let (G,λ) ∈
G, then IrredR((G,λ)) denotes the set ofR-irredu-
cible graphs (or irreducible ifR is fixed) which can
be obtained from(G,λ) usingR. The relationR is
noetherian if there is no infinite relabeling sequence
(G,λ1)R(G,λ2)R

3.2. Distributed computations of local computations

The notion of relabeling sequence defined above,
obviously, corresponds to a notion ofsequentialcom-
putation. Let us also note that a locally generated
relabeling relation also allows parallel rewritings,
since non-overlapping balls may be relabeled indepen-
dently. Thus we can define a distributed way of com-
puting by saying that two consecutive relabeling steps
concerning non-overlapping balls may be applied in
any order. We say that such relabeling steps commute
and they may be applied concurrently. More generally,
any two relabeling sequences such that the latter one
may be obtained from the former one by a succession
of such commutations lead to the same resulting la-
beled graph. Hence, our notion of relabeling sequence
may be regarded as aserialization [4] of some dis-
tributed computation. This model is clearly asynchro-
nous: several relabeling stepsmaybe done at the same
time but we do not require that all of them have to be
performed. In the sequel we will essentially deal with
sequential relabeling sequences but the reader should
keep in mind that such sequences may be done in a
distributed way.

302 E. Godard / Information Processing Letters 82 (2002) 299–305

3.3. Enumeration on graphs

The nodes uses a specialregister to describe their
identity, it will be denoted ID.

Definition 4. A relabeling systemR is said to self-
stabilize to anEnumeration Solutionon a graphG if
R is noetherian and for any initial labelingλ0, the final
labeling (G,λf) ∈ Irred((G,λ0)) of any relabeling
chain is locally bijective and is of the formλf (v) =
(ID(v), c(v)) where
– ID is a bijection fromV (G) to {1, . . . , |V (G)|}.
– c is any mapping toL.

Theorem 5 [5]. If G is ambiguous then there is
no relabeling system stabilizing to an enumeration
solution onG.

Proof. Theorem 2 of [5] states it is true even if we
require only uniform initial labelings. ✷

In the following section we present a relabeling
system that, onnon-ambiguous graphs, self-stabilizes
to an enumeration of the vertices.

4. Self-stabilizing enumeration algorithm

This result will be addressed in the following way:
first we present our modified version of Mazurkiewicz’
Enumeration Algorithm. We will prove an important
characterization of the final labelings obtained with
this algorithm. Then we describe a procedure for enu-
merating nodes that uses this final labeling. Finally we
give some bounds on the time of stabilization.

4.1. Modifying Mazurkiewicz’ Enumeration
Algorithm

An enumeration algorithm on a networkG is a dis-
tributed algorithm such that the result of any computa-
tion is a labeling of the vertices that is a bijection from
V (G) to {1,2, . . . , |V (G)|}. In particular, an enumer-
ation of the vertices where vertices know whether the
algorithm has terminated solves the election problem.

In [5], the computation model is equivalent even
thought it is described in the different formalism
of protocols. Our self-stabilizing version will be de-
notedM.

Description. We give first a general description of
the algorithmM. Every vertex attempts to get its
own name, which shall be an integer between 1 and
|V (G)|. A vertex chooses a name and broadcasts it
together with its neighborhood all over the network.
If a vertexu discovers the existence of another vertex
v with the same name, then it compares itslocal view,
i.e., the labeled ball of centeru, with the local view
of its rival v. If the local view of v is “stronger”,
thenu chooses another name.u also chooses another
name if its appears twice in the view of some other
vertex as a result of a corrupted initial state. Each
new name is broadcast again over the network. At
the end of the computation it is not guaranteed that
every node has a unique name, unless the graph is non-
ambiguous. However, all nodes with the same name
will have the same local view, i.e., isomorphic labeled
neighborhoods. These names cannot be straight used
as identities because they can be arbitrary large, but it
is possible to compute the rank of the name in all the
existing names and set it as its ID.

The crucial property of the algorithm is based on a
total order on local views such that the “strength” of
the local view of any vertex cannot decrease during
the computation. To describe the local view we use
the following notation: if v has degreed and its
neighbors have namesn1, . . . , nd , with n1 � · · · � nd ,
thenN(v), the local view, is thed-tuple(n1, . . . , nd).
Let L be the set of such ordered tuples.

The alphabetic order defines a total order,�, onL.
Verticesv are labeled by triples of the form(n,N,

M) representing during the computation:
– n(v) ∈ N is the name of the vertexv,
– N(v) ∈ L is the latest view ofv,
– M(v) ⊂ N ×L is the mailbox ofv and contains all

information received at this step of the computation.
We need other notations. We want to count the

number of times a given name appear in a local view.
For a local viewN , andn ∈ N, we defineδN(n) to be
the cardinality ofn in the tupleN .

For a given viewN , we denote by sub(N,n,n′) the
copy ofN where any occurrence ofn is replaced byn′.

We recall that in the self-stabilizing context, the
initial labels of all vertices are arbitrary elements in
the set of labelsL.

The rules are described below for a given centered
ball B = B(v0) with center v0. The verticesv of

E. Godard / Information Processing Letters 82 (2002) 299–305 303

B have labels(n(v),M(v)). N(v0) is the local view
of v0, hence the ordered tuple of the names of its
neighbors. The labels obtained after applying a rule
are(n′(v),M ′(v)). To make the rules easier to be read,
we omit labels that are left unchanged.

Diffusion rule:
Precondition:

∃v,M(v)
= M(v0) (1a)
∨ (

n(v0),N(v0)
)
/∈ M(v0) (1b)

∨
N(v0)
= N(v0) (1c)

Relabeling:

– For allv,

M ′(v) :=
⋃

w∈B

M(w) ∪ (
n(v0),N(v0)

)
,

– N
′
(v0) := N(v0).

Renaming rule:
Precondition:

(
n(v0),N(v0)

) ∈ M(v0) (2a)
∧

N(v0) = N(v0) (2b)
∧

∀v, M(v) = M(v0) (2c)

∧ {
n(v0) = 0 (2d)

∨
n(v0) > 0 and∃N1 (n(v0),N1) ∈ M(v0)

andN(v0) ≺ N1 (2e)
∨

n(v0) > 0 and∃(n1,N1) ∈ M(v0)

such thatδN1

(
n(v0)

)
� 2 (2f)}

Relabeling:

– n′(v0) := 1 + max{n ∈ N | (n,N) ∈ M(v0) for
someN ∈L},

– N
′
(v) := sub(N(v), n(v0), n

′(v0)),
– The mailbox contents changes to

M ′(v) := M(v0) ∪ {
(n′(v0),N(v0))

}
⋃

w∈B

(
n(w),N

′
(w)

)
.

Since the IDs are not used byM, their computation
is described later, in Section 4.3.

4.2. Properties ofM

The proof will follow the scheme of the one
used in [5]. Let G be a graph, let us denote by
(ni(v),Mi(v)) the label of a vertexv of G and by
Ni(v) the local view ofv after the ith step of the
computation ofM. See the remark on serialization
Section 3.2.

We first prove some lemmas. We suppose the stepi

is fixed.
We say that a namem is known byv, if (m,N) ∈

M(v) for someN . Let us noter the greatest of all
names known to the graph nodes at step 0. For showing
termination, we claim that whenever a namem is
known andm> r, there is a vertex having this name.

Lemma 6. ∀v ∈ V (G) ∀m > r such that∃N(m,N) ∈
Mi(v0), ∃w ∈ V (G) such thatni(w) = m.

Proof. Assume that the namem > r is known byv0
and letU = {u ∈ V (G) | ∃j < i, nj (u) = m}, then
U is not empty because, asm > r, there has to be
a vertex getting this name byRelabeling rule. Let w
be the vertex with the strongest neighbourhood inU ,
then theRenaming rulecannot be applied tow, hence
ni(w) = m. ✷
Lemma 7. ∀v ∈ V (G) ∀m> r, δN(v)(m) � 1.

Proof. Suppose the assertion is false, then there exists
m andv with two neighbors namedm. As there were
nom in the initial labeling,m had to be set by former
applications ofRelabeling rule. Consider the vertex
w2 having been last namedm. w2 hasv as a neighbor
and the first application ofRelabeling ruleshould have
madem known byv, thus byw2 before it can apply
anyRelabeling rule. Yields a contradiction. ✷

Next, we claim that whenever a name greater thanr

is known, all positive names greater thanr and smaller
than that name are assigned to some vertex.

Lemma 8. ∀i, ∀v ∈ V (G) such thatni(v)
= r ∀m,

r � m � ni(v), ∃w ∈ V (G) such thatni(w) = m.

Proof. We show this claim by induction oni. At the
initial step i = 0 the assertion is true. Suppose that it
holds fori � 0. If Diffusion ruleis used, the assertion

304 E. Godard / Information Processing Letters 82 (2002) 299–305

is true fori + 1. If we useRenaming ruleapplied tov0

then we just have to verify it forv0, and more precisely
for all namesm ∈ [ni(v0), . . . , ni+1(v0)] ∩ [r,+∞[.
The property forni+1(v0) is clear andni(v0) will be
treated later.

If the interval [ni(v0) + 1, . . . , ni+1(v0) − 1] ∩
[r,+∞[is empty then the condition is obviously
satisfied. Otherwise by definition of theRenaming rule
and the previous claim there existsw
= v0 such that
ni(w) = ni+1(w) = ni+1(v0) − 1. Form ∈ [ni(v0) +
1, . . . , ni+1(v0) − 1], the assertion is then true by
induction hypothesis onw.

To prove the assertion forni(v0), first we remark
that if ni(v0) > r, by Lemma 7, we are in subcondi-
tion (2e) and the assertion is a direct consequence of
Lemma 6’s proof: the vertex with the strongest neigh-
bourhood inU hasni(v0) as a name at stepi + 1. ✷

The labeling function obtained at the end of a run
E of Mazurkiewicz’ algorithm is notedΠE . If v is a
vertex ofG, the coupleΠE (v) associated withv is
denoted(nE (v),ME (v)). We also note the final local
view of v by NE (v). For a given mailboxM and
a givenn ∈ N, we noteNM(n) the local view such
that for all N , (n,N) ∈ M ⇒ N � NM(n). Except
for the first corrupted stages,NM(v)(n) is actually the
“strongest local view” ofn.

Theorem 9. A run of Mazurkiewicz’ Enumeration
Algorithm on a connected graphG with any initial
labeling finishes and computes a final labelingΠE
verifying the following conditions for all verticesv, v′
of G:
(1) ME (v) = ME (v′).
(2) NME (v′)(nE (v)) = N(v) = NE (v).
(3) nE induces a locally bijective labeling ofG.

Proof. Let t = r + n. Let I = {0, . . . , t} ordered by
the natural order on integers,LI be the set of theI -
labeled balls ofG, ordered by�.P(I ×LI) is ordered
by inclusion. LetX = I × P(I × LI). The product
order � defines a partial order onXV (G). We note
xi = ((ni(v),Mi(v)))v∈V (G), we will show that(xi)i
is a strictly increasing sequence ofX.

First we claim that, for eachv, i,
– ni(v) � ni+1(v),
– Mi(v) ⊆ Mi+1(v).

It is obviously true for the vertices that are not con-
cerned by the rule applied at stepi, and for the other
vertices, we note thatRenaming ruleonly increments
ni(v0), that Diffusion ruleonly adds elements to the
mailboxes.

Moreover, one of the inequalities is strict for at least
one vertex, namely the one for which the previous
relabeling rule was applied. Thenxi � xi+1 for all i.

As, by Lemma 8, there is no more thatt different
assignedn-labels at a given step,xi ∈ X, for all i. We
can now conclude forX is a finite ordered space. The
sequencexi is finite and the algorithm terminates.

The properties of the final labeling are easily de-
rived from the fact that no more rule could be applied.
(1) Otherwise,Diffusion rulecould be applied.
(2) Remark that for allv, (nE (v),NE (v)) ∈ ME (v) =

ME (v′), otherwise precondition (1b) ofDiffusion
rule would hold. Then, as the precondition (2e)
does not hold, we get the property.

(3) OtherwiseRenaming rulecould be applied to ver-
tices having the same name and non-isomorphic
local views. Remember that� is atotal order. ✷

4.3. Enumeration

Now, each vertex shall compute locally the set of
final names from the final mailboxME . We noteGE
the graph defined by

VE = {
nE (v) | v ∈ V (G)

}
,

EE = {
(nE (v1), nE (v2)) | (v1, v2) ∈ E(G)

}
.

For a mailboxM and and integern, we define the
setVM(n) by induction.

VM
0 = {n},

VM
i+1 = VM

i ∪ {
t | ∃s ∈ VM

i , δNM(s)(t) = 1
}
.

If i0 is such thatVM
i0

= VM
i0+1 then we defineVM(n) =

VM
i0

.
Finally, we have,

Lemma 10. For all u, VME (nE (u)) = VE .

Proof. Let n = nE (v) for somev. By induction, we
prove thatVME

i = BGE (n, i) for all i. It is obviously
true for i = 0. Suppose it is true fori. Then by
definition and by Theorem 9(2),VM

i+1 ⊂ BGE (n, i).
Let m ∈ BGE (n, i + 1) \ BGE (n, i), m has a neighbor

E. Godard / Information Processing Letters 82 (2002) 299–305 305

in BGE (n, i) = VM
i by induction hypothesis. Hence

m ∈ VM
i+1 and finallyVME (nE (u)) = VE . ✷

And at any time, each vertexu set its ID by
computing itsenumeration index, i.e., the rank of
n(u) in the ordered setVM(u)(n(u)). Lemma 10
means that the ID registers finally get a correct
attribution. Thus, as presented in [5], in the case of
non-ambiguous graphs, after a run of Mazurkiewicz’
algorithm, ID induces a one-to-one correspondence
between the set of vertices ofG and the set of integers
{1, . . . , |V (G)|}.

4.4. Complexity

The detection of termination is not relevant in the
self-stabilization context because a corrupted initial
state could made some node to believe they are on a
final state, the important problem is then to compute
the time of stabilization. In this section, we prove a
bound of O(t|v(G)|2) steps, wheret is the sum of the
number of vertices and of the highest name initially
known.

Proposition 11. An execution ofM on a graphG has
at mostt × |V (G)|2 relabeling steps.

Proof. As there are at mostt n-labels for every vertex,
the relabeling rule is applied at mostt ×|V (G)| times.
And for any relabeling, there are at most|V (G)|
applications of Diffusion rule case (1a), one for each
other node. Furthermore, case (1b) or (1c) appears
at most once for each vertex, because once a vertex
v apply the diffusion rule,(n(v),N(v)) ∈ M(v) and
N(v) remains correct (simple induction2). Hence,
every vertex is involved in a Diffusion at most the
number of applications of Relabeling rules. Hence the
bound yields. ✷

2 Note thatN is maintained only for this complexity purpose.

Thus, with correct initial labels, the algorithm
stabilizes in at most|V (G)|3 steps.

5. Conclusion

The extension of Mazurkiewicz’ Algorithm pre-
sented here has interesting self-stabilizing properties.
Furthermore, the quite low time of stabilization shows
that on non-ambiguous graphs, it should be possible
to design robust algorithms on the basis on the self-
stabilizing identities provided by the algorithm pre-
sented in this paper.

Acknowledgements

The author wish to thanks the anonymous referees
for fruitful comments and observations.

References

[1] E.W. Dijkstra, Self-stabilizing systems in spite of distributed
control, Comm. ACM 17 (11) (1974) 643–644.

[2] E. Godard, Y. Métivier, A characterization of classes of graphs
recognizable by local computations with initial knowledge
(ext. abstract), in: SIROCCO 8, 8th International Colloqium
on Structural Information and Communication Complexity,
Proceedings in Informatics, Vol. 11, Carleton Scientific, Ottawa,
ON, 2001, pp. 179–194.

[3] I. Litovsky, Y. Métivier, W. Zielonka, On the recognition
of families of graphs with local computations, Inform. and
Comput. 118 (1) (1995) 110–119.

[4] A. Mazurkiewicz, Trace theory, in: W. Brauer et al. (Eds.),
Petri Nets, Applications and Relationship to Other Models
of Concurrency, Lecture Notes in Comput. Sci., Vol. 255,
Springer, Berlin, 1987, pp. 279–324.

[5] A. Mazurkiewicz, Distributed enumeration, Inform. Process.
Lett. 61 (1997) 233–239.

