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Parameterized Programming

JOSEPH A. GOGUEN

Abstract-Parameterized programming is a powerful technique for the stand the examples; in general, these follow [26]. Section VI
reliable reuse of software. In this technique, modules are parameterized presents some conclusions, and the appendixes present some
over very general interfaces that describe what properties of an environ- d
ment are required for the module to work correctly. Reusability is en-
hanced by the flexibility of the parameterization mechanism proposed
here. Reliability is further enhanced by permitting interface require- A. Parameterized Programming
ments to include more than purely syntactic information. This paper It is easier to reuse program parts than to reinvent them, pro-
introduces three new ideas that seem especially useful in supporting t

g f
parameterized programming: 1) theories, which declare global prop- vet the time needed for program understadin isls
erties of program modules and interfaces; 2) views, which connect than the time needed for program writing, and provided that
theories with program modules in an elegant way; and 3) module ex- the access time for the needed program parts is sufficiently
pressions, a kind of general structured program transformation which small; then total programming time and also debugging time
produces new modules by modifying and combining existing modules, are reduced. The basic idea of parameterized programming is
Although these ideas are illustrated with some simple examples in the to maximize program reuse by storing programs in as general
OBJ programming language, they should also be taken as proposals for
an Ada 1 library system, for adding modules to Prolog, and as consid- a form as possible. One can then construct a new program
erations for future language design efforts. OBJ is an ultra-high level module from an old one just by instantiating one or more
programming language, based upon rewrite rules, that incorporates parameters. For this to work, we need a suitable notion of
these ideas, and many others from modern programming methodology. parameterized module, along with the capability for instan-

Index Terms-Adaptability, interfaces, logic programming, method- tiating the parameters of such modules, and the capability for
ology, modularization, OBJ, parameterized programming, program encapsulating existing code into modules. The Ada notion of
library, programming, program transformation, reliability, reusability. a generic package provides much of what is needed- [10]; of

course, we also need that the module is actually available from

I. INTRODUCTION a library in some more general form.
A feature not provided by the Ada generic package that con-

B OTH the costs and the demands for software are enor- tributes especially to the reliable use of the parameterized pro-
Dmous; moreover, they are rapidly escalating. One prom- gramming paradigm is to provide a careful definition of module

ising approach for dealing with this situation is to reuse soft- interfaces, describing all of the resources needed by the
ware to the maximum possible extent. This paper presents a module. Then correct instantiation of the formal parameter of
technique called parameterized programming that can greatly a module is equivalent to placing that module into an environ-
extend the opportunities for reusing software modules. The

ametiwcit guarant to f o npo (n thement in which it iS guaranteed to function properly. (In the
paper also describes some language features that help to sup- following, we will interchangeably use the metaphors of in-
port parameterized programming, and then illustrates the use stantiating a parameter and interfacing with a module with an
of this technique with some simple examples in the OBJ environment.) This kind of semantic documentation of module
language. interfacing is also helpful in retrieving the right module from a
The main work of this paper occurs in Section V, which dis- library. Ada itself also provides no capability for reusing

cusses our parameterization concepts. Although these ideas separately compiled program parts that have been developed
are illustrated with some simple examples in the OBJ program- in a top-down manner; this is because of limitations to the use
ming language, they should also be taken as proposals for an of Ada's separate clause. Views and theories provide the for-
Ada library system (as developed in [18] ), for adding modules mal apparatus to accomplish these goals, as described below

to~~~ ~ ~~~~~~~~~ inlandrtuas considration for oasa dsrb eo
to Prolog (as developed in [22] ), and as considerations for and in [18].
future language design efforts, especially OBJ2. Sections I It often happens that there is a software part that we want
III, and IV provide the background in OBJ needed to under- to reuse, but it is not in exactly the right form. One way to

get it into the right form is to apply some program transforma-
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functionality. All three of these can be accomplished with of the language; it suffices that they can be implemented as
module expressions, guaranteeing the satisfaction of (selected) part of an environment for the language. This is the approach
program properties given in the form of theories. that we would advocate to provide fully parameterized pro-
As an example of parameterized programming, consider a gramming for Ada; see [18]. Notice that many of these fea-

parameterized module LEX [ X I that provides a lexicographic tures can also be seen as desirable for supporting software
ordering on lists of x's where the parameter x can be instan- reusability in general. Moreover, any feature that supports
tiated to any set with a designated ordering relation.2 Thus, if parameterized programming in general also supports what is
ID is a module that provides identifiers (and in particular, sometimes called programming-in-the-large, i.e., program de-
words) with their usual (lexicographic) ordering, then LEX [ID ] sign; this is certainly the case with the features listed below.
provides a lexicographic ordering on sequences of words (and 1) Modularity: Breaking a program into parts each of which
thus, for example, on book titles). Similarly, LEX [LEX [ ID j I is "mind-sized" and has a natural function, maximizes concep-
provides a lexicographic ordering on sequences of phrases tual clarity, modifiability, and ease of understanding; all these
(such as might be used in sorting a list of book titles), by in- properties enhance resuability.
stantiating the ordering that LEX [xI requires with the one 2) Hierarchical Structure: Particularly when modules are
that LEX [ID] provides, namely lexicographic ordering. An- being instantiated and then reused in other modules, it is help-
other example would be a module SLIST [ Y I that (for example, ful to keep explicit track of the hierarchical structure of pro-
bubble) sorts lists of Y's, for Y any set with a designated gram development, showing which modules make use of which
ordering relation; in particular, letting Y be LEX (LEX (ID I] others.
gives a program SLIST (LEX [LEX [ID ]I that sorts lists of 3) Libraries: In order to make the most effective use of
book titles. parameterized programming, it is necessary to actually get
Let us look at this example, a little more closely now, to see ahold of the module that can be instantiated to do what one

how theories and views are used. The formal parameter re- wants. This will require an appropriate library facility.
quirement theory for LEX iS POSET, the theory of partially 4) Strong Typing: This helps catch inconsistencies of a de-
ordered sets: in order that LEX IM I be meaningful for some sign as it is developed, and prevents confusion between logi-
module M, it is necessary that there be a view of M as a poset, cally distinct concepts. Moreover, it can serve as the basis for
i.e., it is necessary to designate a sort and binary relation error detection and exception handling by "abstract errors"
from M that satisfy the partial order axioms; in the case of ID, [13], and is also useful in supporting overloaded mixfLx syn-
the lexicographic ordering relation is provided by such a view, tax. All these contribute to reusability.
LEX [ID ] in turn provides another lexicographic ordering that 5) Parameterization: In order to maximize their reusability,
corresponds to a view of it as a POSET. It is this view that software modules should be as highly parameterized as pos-
makes it legal to instantiate LEX [XI with LEX [IDI to get sible; this means that by substituting different parameters, a
LEX (LEX [ID I] . The notation LEX [X: : POSET] iS used to given module can be reused in many different ways. These
indicate that any actual parameter of LEX must satisfy POSET, parameters need not be just numbers or some other indexes
i.e., must have a view as a poset. These views can be defined in that simply designate a particular member of a family of
advance of their use, and thus generally do not need to be modules, but rather could be collections of other software
mentioned at instantiation time. Often, as in this example, it modules; that is, the actual parameter of a parameterized
suffices just to mention the actual parameter since there is a module could be an environment. This leads to much greater
unique determined view of that module as the required theory reusability than mere indexical parameterization.
(see Appendix B for details). 6) Requirements for Parameters: Reliability is a potential
An important observation is that, in addition to having problem for parameterized modules if correctness of the

parameters, modules may also simply use other modules, that module depends critically upon certain requirements being
is, rely upon them being just as they are. Although this can be satisfied by the environment in which the module is used. To
seem as a special case of parameter instantiation, it is more achieve reliability, it is necessary to know exactly which in-
convenient to treat it separately; see Section II. stantiations of the parameters are going to work. Reliable

parameterized programming requires specifying the interface
B. Language Features to Support properties that must be satisfied in order for the module to
Parameterized Programming work correctly.
Not every programming environment will support param- 7) Theories and Views. Similarly, it is very helpful to be

eterized programming equally well; the following are some able to declare properties of modules that can be relied upon
features that seem especially helpful in supporting this tech- when they are used as parameters to another module. The
nique. It is not necessary that all of these actually be features purpose of a theory is to declare such properties, and the

purpose of a view is to indicate how a given module satisfies
2 In general, a module can define one or more data structures, and can a given theory.

provide one or more operations upon those structures, possibly making
use of other data structures and operations that are provided by other 8) Information Hiding: In order to ensure that a program
modules. For example, LEXIX] might provide both a binary relation, does not depend upon the way in which some abstraction is
lstl < lst2 meaning that lstl comes earlier in the lexicographic order actually implemented, it should be possible to "hide" details
than lst2, and a unary predicate, lex(lst), indicating that the list 1st 1iofths
lexicographically ordered. A module may also have internal states, °fth mplementation; this means ensuring that only opera-
although we do not discuss this issue in this paper. tions in the declared interface can be used by other modules
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[43]. This principle of information hiding, also called abstrac- conventional languages on conventional machines to the ex-
tion, includes the notion of abstract data type. tent that the rewrite rule machine could support the excecu-
9) Module Modification: Sometimes it is necessary to mod- tion of rewrite rules in parallel. The extensive use of structure

ify a module before it can be reused, for example, to change sharing and (at the user's discretion) of hash addressing for
the syntax or semantics of some operations, to add some new selected terms, render OBJI already competitive for some
functionality, or to delete some old functionality. Providing applications, in particular, for rapid prototyping [21]. This
language features to accomplish such tasks adds significantly permits the functional behavior of a system to be observed
to the power of parameterized programming and significantly early in its development cycle, which can lead to significant
enhances reusability. improvements and clarifications in the requirement, specifi-
10) Simplicity: An economical and conceptually coherent cation, and design phases, thus making it possible to deliver

syntax and semantics will maximize one's intuitive grasp of better code sooner. OBJ has been used in quite a number of
program text. Programs are then easier to understand and to different applications, including database systems [25 ]modest
read, and thus easier to reuse. One way to achieve this simplic- programming languages [21], [241 and some simple secure
ity is to base the denotational semantics of a language on some message and secure operating systems.
simple logical system, implemented by a correspondingly sim- An OBJ program is a sequence of "objects," each of which
ple operational semantics. This means that the specification may define one or more new sorts of data, together with asso-
and execution levels of program comprehension are identified, ciated operations that may create, select, interrogate, store, or
so that a logical axiomatization leads directly to a pattern of modify data. Such an object may use existing objects with
computation. This is the key idea of so-called "logic program- their sorts of data and operations. The object concept in-
ming" as, for example, in Prolog [8], [48]. cludes both "types" in the programming language sense (that
11) Formal Semantics: A simple underlying semantics for a is, a domain of values of variables together with operations

language will greatly enhance the understandability of pro- that access those values) and algorithms. These ideas are in
grams. It is also essential for program verification, and for the close conformity with methodology espoused for example by
retrieval of modules from a library using semantic keys. Jackson [36]. OBJ may be the only programming language
12) Interactive Program Development: Interactive program- to use this kind of abstraction as its fundamental mechanism

ming will maximize the ease of actually doing parameterized for structuring programs.
programming. This includes configuration and version man- Here is a summary of some main features of OBJ: 1) strong
agement, interactive structured editing, and running simple typing, with subtypes; 2) user definable abstract objects (in-
test cases. cluding abstract data types); 3) user definable "mixfix" syntax,
The advantages of modularity and abstraction (including with overloaded operations; 4) parameterized abstract objects;

data abstraction) lie primarily in the control of detail; this is 5) libraries; 6) exception raising and handling that can define
particularly important in view of the numerous changes that tight and informative boundaries for acceptable computations;
inevitably accompany large development efforts. The require- 7) theories, that declare properties of modules; 8) views, that
ments associated with parameterized modules provide a kind connect theories to modules; 9) full associative pattern match-
of high level documentation; this can reduce the possibilities ing, that can be used to define pattern driven demons; 10)
for misunderstanding, and moreover, can also facilitate pro- commands for modifying objects, making it possible to apply a
gram debugging, maintenance and reuse, as well as library broad range of (data type based) program transformations
access. right inside of programs; and 11) powerful interactive pro-

gramming and debugging aids, such as an editor that helps you

C. The OBJ Project get expressions to parse before permitting them to be executed.
OBJ is based upon a simple logical system, namely equa-

This paper illustrates parameterized programming with some tional logic; moreover, these high level descriptions of what a
simple examples written in the OBJ programming system now program does actually are the program; that is, one can exe-
under development at SRI. The version used in this paper cute them. Thus, OBJ is a "logic programming language," as
builds upon the earlier experimental OBJT and OBJI imple- are Prolog [9], pure LISP [40], and CDS [3]. As has been
mentations; it has much more powerful and descriptive mech- amply demonstrated by Prolog, this confers certain important
anisms for program parameterization, and replaces the error benefits: program transparency (which eases program modi-
algebra approach to exception handling with a simpler ap- fiability); separability of logic from control; and identity of
proach based upon subsorts. OBJ was originally designed by program logic with proof logic (which eases program proving
Goguen [13], and first implemented by Tardo [25], [471 as and program understanding).
OBJT. OBJl was implemented at SRI by D. Plaisted and runs Another language based upon rewrite rules is Hope [71.
under TOPS-20 or TENEX [26]. Both OBJT and OBJ 1 are Affirm [311 contains a system for the symbolic execution of
interpreters written in UCI-Rutgers LISP; it would be much abstract data types, and TEL [381 is another interesting early
more efficient to write the most critical parts of an OBJ inter- system based on rewrite rules. Still another related system is
preter in machine code, and better still to write an OBJ com- described by Lucas and Risch [391. The elegant work of
piler. We believe that OBJ would run very fast indeed on a Backus [11 is also related. Hoffman and O'Donnell [321 have
machine that could execute rewrite rules directly, and that been developing an efficient execution algorithm for a special
such a combination would exceed the performance of more class of rewrite rules.
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11. HIERARCHICAL STRUCTURE keyword; following this name comes the list of names of the
Conceptual clarity and ease of understanding are greatly objects that are used in this object, separated from the object

facilitated by breaking a program into modules, each of which name by a "slash" symbol, /, that can be pronounced "over."
is mind-sized and has a natural function. This in turn greatly Of course, if the current object depends upon no other ob-
facilitates both debugging and reusability. When there are a jects, then the slash and name-list can be omitted. Moreover,facilitates~~ ~ ~ ~ ~ ~~~~~iantdebuggin and

mentionedinetner used obec litXhnteeisignificant number of modules, it is helpful to keep track ex- if an object Is mentioned i the used object list, then there iS
licitly of the hierarchical structure of module dependence, no need to mention any of the objects that it uses, as all these
showing exactly which modules make use of which others. are already included by convention (that is, "used" is consi-
The collection of other modules used by a given module, dered a transitive relation, so that a given object may use any
together with the dependence relations among them, consis- object that is used by any object that it uses).5 After this
tute the immediate environment of the given module. comes the body of the object, details of which are discussed

In order to make this structure as explicit as possible, when- later in this paper.
ever a module uses data or operations from another module, For unparameterized objects, the name is a simple identi-
that other module should be explicitly mentioned and also fier, such as STACK-OF-INT, PHRASE, OBJ14 or CARD. Param-
have been defined earlier in the module sequence of the pro- eterized objects have more complex names, as discussed in
gram. A program developed in this way has the explicit struc- Section V. Optionally, the name of the object can be repeated
ture of a hierarchy, or more precisely, an acyclic graph, of ab- after the object ending keyword; this enhances readability in
stract modules.3 An environment is just such an acylic graph the case of nested objects (discussed in Section II-C). For
structure, and the context environment of a given module is example
the subgraph of other modules upon which it depends. It is OBJ PHRASE / LIST
important to notice that both parameterized and instantiated ...

modules can occur in such a hierarchy, and are treated in es- JBO PHRASE
sentially the same way. (The main difference is that only fully
instantiated modules can be executed or compiled.) A. Built-Ins

In addition to its basic function of representing one aspect A programming language will usually provide, for efficiency
of program structure in an especially clear and convenient if for no other reason, a number of built-ins, for example,
manner, the module hierarchy structure can be used for a basic data types such as integer. In a sufficiently powerful
number of other particular purposes. For example, it can be language supporting user definable modules, it is not necessary
used to maintain multiple mutually inconsistent structures as to provide any built-ins because anything desired can be de-
subhierarchies. This is useful for keeping available more than fined as needed. But of course building in the most frequently
one way to do the same or related things, such as a family of needed modules can make a large difference in both efficiency
partially overlapping system designs. It can also be used to and convenience.
keep information from different sources in different places, OBJ has built-in objects TRUTH, BOOL, NAT, INT, and ID.
and to maintain multiple inconsistent worlds. This could be TRUTH provides the two truth values T and F that are used by
useful for exploring the consequences of various mutually the built-in equality and conditional operations (see Section
inconsistent assumptions, in the context of an environment of III-B). Because of this, is is assumed that every object uses
shared assumptions. Hierarchical structure can also be used to TRUTH whether or not it is explicitly mentioned following
reflect access properties of a physically distributed database; the slash after the object name. The built-in object BOOL is an
OBJ can also be useful in this context for describing the dif- enrichment of TRUTH that provides the syntax and semantics
ferent data representations used at different sites, and even for expected for Booleans (e.g., infix associative AND and OR, pre-
providing ways to translate among them [17] . fix NOT), as do NAT and INT for natural numbers and integers,
The most basic part of the syntax of the OBJ language is respectively. ID provides identifiers, with only the operations

concerned with this hierarchical structure. An OBJ object of equality and lexicographic order built-in. These identifiers
begins with the keyword OBJ (or OBJECT) and ends with must begin with the apostrophe symbol, e.g., 'A, 'B, '1040,
ENDO (or ENDOBJ or JBO or TCEJBO4 ). The name of the and 'VERYTIONGIDENTIFIER.
object being defined must be placed immediately after OBJ B Libraries
3This hierarchy differs from a Dijkstra-Parnas hierarchy of abstract Clearly, in order to reuse software, it must first be available.

machines because higher level modules are not implemented by lower This requires not only that the code itself can be obtained, butlevel "less abstract" machines; rather, higher level modules are elabora- also that it is clear what the code is supposed to do, and whattions or enrichments of previous lower level modules. (Note that in kn fevrneti eddfrtecd od tcretythis paper, the roots of the hierarchy graph are visualized as being at kn fevrnetl eddfrtecd od tcretythe bottom; these root modules embody the built-in capabilities of Libraries provide the means for storing and retrieving modules.OBJ, such as its basic data types.) Issues of documentation are discussed later. The important
4Wt tongue-in-check deference to popular convention in program-

ming language design, OBJ admits ending keywords that are the back- issue of preserving a module's relationship to its context isward spelling of the corresponding beginning keywords; alternatively, considered here.
One may think of TCEJBO as Polish for OBJECT. A more helpful
uniform convention in OBJ is that an ending keyword can always be 5 This default convention can be modified by information hiding, asof the form END (X) where (X) is the first letter of the corresponding discussed in Section III-D. An alternative convention is used in HISPbeginning keyword. [ 111.
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The basic OBJ library unit is the file, which may contain one or more generally, mixfix6 operations, in order to get a syntax
or more objects; a file may also contain top level OBJ com- that is maximally appropriate to a given problem domain.
mands. The basic way of processing such a library file in OBJ Obviously, there are many opportunities for ambiguity in
is to execute everything in it. In the case of objects, this means parsing such a syntax. OBJ's convention is that an expression
checking for internal consistency, as well as consistency with is well-formed if and only if it has exactly one parse.7 In
the current environment. Thus, the context of a given object keeping with the interactive nature of the language, the OBJ
can be preserved, by storing the other modules that it depends parser provides information about the difficulties that it en-
upon earlier in the same file. counters, and helps the user to correct them before attempting
OBJ provides a number of library commands. The IN com- to parse them again.

mand reads in and executes an arbitrary sequence of files; for
example, A. Sorts and Subsorts

IN LIBRARY62 MYSYS TEST4 ENDI We believe that a programming language should have a strong
but flexible type system; however, to avoid the confusion asso-

reads in the OBJ files LIBRARY62, MYSYS, and TEST4 adding ciated with the many uses of the word "type" we shall instead
to the current environment whatever objects they contain, and speak of "sorts" from here on to refer to the division of data
executing whatever commands they contain. The GET com- into sets and subsets of items of the same kind. Among the
mand will get an arbitrary sequence of objects from a named advantages of strong sorting are:
file and add them to the current environment. For example,

*it helps to catch meaningless expressions before they are
GET STACK ARRAY FROM ALIBRARY ENDG executed;

will get the objects STACK and ARRAY from ALIBRARY. * it supports overloading in syntax; and
The fact that files can contain other top level OBJ commands * when the notion of subsorts is added, we get

as well as object defmitions makes for great convenience and -- the utility of coercions without the associated confusion
flexibility in actually using OBJ. For example, one can ex- found in many programming languages,
pand storage, call for a PHOTO to be taken, and execute some as well as very convenient forms of error handling, and
test cases, in addition to defming a particular multiobject en- even
vironment. It seems especially appropriate that test cases backtrackprogramming (see [26]).
should be stored along with their associated objects. We have been experimenting with sort systems in OBJ for
More elaborate library facilities, making use of views and some time, trying to find an approach that raises minimal

theories for the retrieval of Ada code, are described in [18]. difficulties; our original approach based on "error algebras" is
C. Nested Modules given in [13], and has been elaborated by Plaisted [45]. An

alternative is given by Reynolds in [46]. Still another ap-
It is very convenient to be able to nest modules within one proach is based upon polymorphism as introduced by Milner

another. This permits local modules, with local names, local [41] and implemented in ML [29] and Hope [7] .
data types, and local operations (however, note that some in- This paper uses an approach based on the notion of a sub-
formation hiding is required to accomplish this, see Section sort. For example, the sort NAT is a subsort of the sort INT;
III-D). In the context of parameterized programming, note moreover, a module may declare the sort INT to be a subsort
that all the parameters and imported (i.e., used) modules of an of LIST-OF-INT. Then, the integer 2 can be coerced to the
enclosing module are available for use in every nested module. list with just one element, 2. The form of an OBJ subsort
Nesting taken together with parameterization and information declaration is
hiding give a very potent generalization of the traditional no-
tion of a block. OBJ's syntax for nesting is an obvious one. (sortl) < (sort2)

oBJ (namel) / (name-listl) which means semantically (that is, in terms of models) that the
set of things of (sortl) is a subset (not necessarily a proper

oBJ (namel.]) / (name-listl. 1) subset) of the things of (sort2). The form

JBO (sort-listl \,) < (sort-list2\,)
ow (namel.2) / (name-listl.2)

*. * *can also be used, meaning that each sort in <sort-listl> is <
JBQ each sort in <sort-list2>, and that the elements of the two

* * * ~~~~~~~~~~~listsare separated by commas.8
JBO

6 This term is due to P. Mosses. The word "distfix" is also used, an
III. EXPRESSION SYNTAX abbreviation for "distributed fix."

We believe that it is worth some extra implementation effort 7An elaboration required by subsorts is discussed in Section IlI-A.
tim to supr sytxtas as flxbeas. 8The metasyntactic notation (a-listn\ x>) indicates the n'th list ofand~~~~~processinga ta l a Ielb,a a's, with x's as separators; if there is no \x there th sPartri sue

informative, and as close to users' intuitions as possible. In to be a space; also a "carriage return"' can always be used as a separator
particular, users should be able to define prefix, postfix, infix, instead of an x or space.
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The OBJ syntax skeleton for the concepts so far introduced is If desired, DEPTH could be made a hidden operator; see Sec-
tion III-D. Notice that without resorting to such relatively

SORTS<name>ist> <name-liuntractable devices as partial functions, we get POP and TOPSORTS <sort-list> defined only on nonempty stacks; moreover, we get appropri-
SUBSORTS <subsort-decl-list\;> ate error messages when they are applied to overflown stacks.

JBO B. Operation Syntax
and is illustrated by This subsection discusses one way of supporting user de-

finable mixfix syntax. It seems clear that the sorts of the argu-
OBJ LIST-OF-INT / INT ments and value of an operation should be defined at the same

SORTS LIST time that its syntactic form is defined. We distinguish two
SUBSORTS INT < LIST cases. The first provides a simple way to get the usual func-

*. * *tional notation. For example
JBO

F: S1 S2 - > S3
OBJ checks for cycles of subsorts, and complains if it finds

any. But OBJ does not complain about ambiguities intro- indias the ua parthsizd-refix-with-commasnota-
duced by the subsort relation; it simply regards each expres- tion, as in F(X, Y) of sorts3 for x of sort 5S and y of sort
sion as having the smallest possible sort in the partial ordering S2 (It is obligatory to use commas as separators in well-found
of sorts induced by the given subsort relation. Foundations expressions using this syntactic form.)
for this approach are given in [14] and [22]. A fashionable fhe second case uses place-holders, indicated by an under-
way to describe this feature is to say that OBJ's type system bar,-, as in the prefix declaration
implements "multiple inheritance"; OBJ has had this feature TOP-: STACK - > INT
from its earliest days [13].
Subsorts give an elegant way to treat errors. We illustrate for TOP as used in expressions like TOP PUSH (A, B). Similarly,thisowth a b ndedast eample.9 Real tis. lsholte the "outfix" form of the set singleton operation, as in { 4 }, isthis with a bounded stack example.9 Really, this should be

iniae
.

by
a parameterized object, with both the elements to be stacked indicated by
and the maximum depth of the stack as parameters; however, {_}: INT - > SET
because we have not yet introduced the machinery for param- and the infix form for addition, as in 2 + 3, is
eterization, we take the concrete case of stacks of INT'S of
depth less than io ooo. The sort STACK includes expressions _ +_: INT INT - > INT
to describe the results of overflowing this bound, as well as . .
correct stacks in the subsort OK-STACK, and nonempty OK- W
STACKS in the deeper subsort NE-STACK. The expression fol- IF_THEN ELSE_Fl: BOOL INT INT - > INT
lowing SORT-DECLS defines the overflow condition; its seman-

tics isdescribedin [14].~~~~~~ One such conditional operation is provided for each built-in
sort, and also for each user declared sort.

OBJ BSTACK-OF-INT / INT NAT Between the : and the - > in such a syntax declaration
SORTS STACK comes the aity of the operation, a list of sorts each of which
SUBSORTS NE-STACK < OK-STACK < STACK must have been previously declared; after the - > comes the
OPS value sort of the operation. The general format for these syn-

EMPTY : STACK tactic declarations is
PUSH : INT STACK - > STACK
POP: NE-STACK -> OK-STACK (form): (sort-list) - > (sort)
TOP: NE-STACK -> INT where a (form) is a non-empty string of (identifier)'s and
DEPTH: OK-STACK- > NAT underbars, having exactly as many underbars in the (form)

VARS as sorts in the (sort-list). The form having just one underbar
I: INT S : OK-STACK is excluded, as this corresponds to a subsort declaration, for

SORT-DECLS which the notation already given is preferred (although pre-
(AS NE-STACK : PUSH (I, S) IF DEPTH (S) < 10000) vious versions of OBJ took the opposite point of view). Con-

EQNS stants are declarations with empty arity. The rank of an oper-
(DEPTH(EMPTY) = 0) ation consists of its arity plus its value sort. Operations that
(DEPTH (PUSH (I, 5)) = INC (DEPTH(S))) have the same rank but different forms can be declared to-
(POP (PUSH (I, 5)) = 5) gether, for example
(TOP (PUSH (I, 5)) = I)

ENDO ONE, ZERO : -> S

and
Thsexample draws on earlier versions due to Jouannaud and

Meseguer, which in turn drew on (14]. _+_,_*_: SS~> S
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The signature of an object consists of its sorts, its subsort example, the built-in object INT has
relation, and its operations, where each operation has a form,

arity, and valuesort. _ ~~~+ _: INT INT -> INT (ASSOC 5)arity, and value sort.
Although strong sorting often serves to prevent expressions and

that use overloaded operators from being ambiguous, some- INT INT > INT (ASSOC 8)
times it does not suffice; one may then qualify expressions. - -
For example, one might write (x (IS-IN. BAG) SETi UNION so that the expression A + B * C is parsed as expected, as
SET2) to indicate that the expression is supposed to be a natu- A + (B * C).
ral number (as used for bags) rather than a truth value (as used
for sets). D. Infonration Hiding

A basic problem in programming is to control the complexity
C. Attributes of large programs. One of the most useful ideas of modern

It is convenient to consider certain properties, such as asso- programming methodology is intended to address just this
ciativity, commutativity and identity, as attnibutes of an oper- problem. It is variously called "information hiding," "abstrac-
ation. Although such properties are closely associated with tion," and "encapsulation" [43], [441. For example, the
the syntax of a given operation, they are also in part semantic representation of an abstract data type in an Ada package may
properties. be hidden. Information hiding goes a step beyond modulariza-

In OBJ, such attributes are declared in parentheses after the tion to permit declaring that some of the information inside a
syntax declaration of an operation. Binary infix operations module cannot be assessed outside that module. Using this
can have an ASSOCIATIVE attribute (which can be abbreviated tactic ensures the important property that if it is desired to
ASSOC); for example, change a data representation, all that is required is to reimple-

-OR_ BOOL. BOOL -> BOOL (ASSOC) ment all the operations that the module provides, using the
new representation; one does not have to search through the

indicates that OR is an associative binary infix operation on entire program for subtle uses of the old representation because
truth values. This means that: there cannot be any; this is because only the operations that
* the parser does not require full parenthesization--for ex- the module actually exports can be used outside of it.

ample the term (T OR (F OR T)) can be written (T OR F OR T); There are several different approaches for hiding information
* the deparser will omit unnecessary parentheses; and in a strongly sorted modularized language. For example, one
* we also get the effects of an associativity equation. can declare operations and/or sorts to be hidden; one can use
An identity attribute can be declared for a binary infix oper- the convention that everything is visible unless declared hid-

ation. For example, in den, or one can take the opposite view. One also may or may
_OR _: BOOL, BOOL - > BOOL (ASSOC ID: F) not permit a sort visible at one level of nesting to become hid-

den at some enclosing level. When an operation is declared
the attribute ID: F gives us the effects of the identity equa- hidden, an expression containing that operation is considered
tions (B OR F = B) aiid (F OR B = B). syntactically correct only inside the module where it is de-
Binary infix operations can also be given the COMMUTATIVE dlared; in particular, no other module can use it, not even a

attribute, abbreviated COMM. This is equivalent to adding a module that depends upon the one in which the operation is
commutative equation, and is implemented by sorting argu- declared.
ments according to lexicographic ordering. Finally, operations In OBJ, sorts and operations are visible unless declared
can be IDEMPOTENT, abbreviated IDMPT. otherwise. Hidden sorts are declared after the keyword H-
For each sort s, there is a built-in equality operation with SORTS, and hidden operations after H-OPS. When a sort is

syntactic form declared hidden, every operation that involves that sort is
automatically considered hidden, and therefore does not need

_== _:S,S - > BOOL to be so declared explicitly. If a sort or operation is visible in
Any binary BOOL-valued operation can be given the attribute some nested object, and if it is desired at a given level ofnesting
(EQUALITY), whlch makes it equal to the built-in equality. to prevent it from being exported to further enclosing levels,
For example, this can be accomplished by redeclaring that sort or operation

as hidden at the given level. However, a sort or operation that
IFF: BOOL BOOL - > BOOL (EQUALITY) is hidden cannot be redeclared visible at an enclosing level.

Sometimes one may want to hide more than half of the sorts
Similarly, any BooL-valued binary operation can be given the or operations of a module; then it is more convenient to list
attribute LEX. This declares it equal to the built-in lexico- what is to be visible than to list what is to be hidden. This is
graphic ordering operation on its arity sort. All of OBJ's built- accomplished by listing the sorts to be visible following the
in objects except TRUTH have such a built-in lexicographic keyword V-SORTS, and similarly V-OPS for visible operators.
Ordering, denoted <; for user defined objects, it is determined One can also have mixed cases, such as H-SORTS with v-OPS.
by the order in which operations are declared, with earlier
declared operations being earlier in the ordering. E. Interactive Syntax
An integer precedence attribute can be given to the parser; It is a considerable help in programming if simple semantic

the higher the integer, the more binding the operation. For checks can be run at entry time, rather than only after com-
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pilation. This is one motivation for structured editors and The syntactic form of a rewrite rule in OBJ is
similar facilities. In fact, by the time an OBJ program gets to ((expl) = (exp2')
the stage where it can be executed, it has survived a great deal
more checking than most compilers even try to provide. where (expl) and (exp2) are both well formed OBJ expres-

In OBJ, when an expression fails to parse or has more than sions, possibly using previously declared variables. In addition,
one parse, it is immediately reported along with any diagnostic there are conditional rewrite rules, of the form
information generated by a spelling checker that looks for and ((expl) = (exp2) IF (bexp)
reports tokens (and token sequences, for the mixfix case) that
have not been defined. The implementation is incremental where (bexp) is an expression of sort BOOL. Such a rule can
and interactive: assuming that OBJ is reading from a file (using be thought of as a "pattern driven demon" that fires only
the IN_ENDI command), when an error is detected, comments when its (bexp) is true.
are inserted into the file (using OBJ's ***_$*** comment
syntax) and the user may subsequently edit that file, working A. Some Examples
onward from the object where the error was first detected. Let us illustrate this with a simple LIST-OF-INT object.
When the editor (which is EMACS) is exited, OBJ again tries OBJ LIST-OF-INT / INT NAT BOOL
to execute these objects. Objects that were previously ac- SORTS LIST
cepted are left unchanged; however there are commands to SUBSORTS INT < LIST
undo and edit any desired objects, or even whole files. More- OPS
over, there is a command (at the operating system level) to LIST LIST- > LIST (ASSOC ID: NIL)
resume executing the session that was last exited. EMPTY?- LIST -> BOOL
OBJ has a HELP facility, and also a PHOTO command to LENGTH : LIST > NAT

record in a designated file the objects and runs of a given ses- VARS L: LIST
sion. (Many details and several commands have been omitted I: INT
in this discussion; see [26].) In summary, user experience has EQNS
shown that OBJI's sophisticated interactive user interface (LENGTH NIL= 0)
tremendously improved programmer productivity over the LENGTH I= 1
previous version, by reducing the time required to find spelling (LENGTH I = I N
and other syntax errors, and by eliminating the need to re- (EMPTY? L = L = = NIL)
process objects upon which an object containing a corrected JBO
error depended.

We now evaluate some expressions from this LIST-OF-INT
IV. REWRITE RULES object. An expression E to be evaluated is presented to OBJ

in one of the three formsSo far we have considered only declarations, either con-
cerned with interface specification or else with expression (E)
syntax. But every programming language must have an opera- RUN E NUR
tional component. OBJ's is rather unusual, being based upon RUN E ENDR
rewrite rules. These are written declaratively as equations, but The value is computed by matching the expression with the
are interpreted as rules for replacing one subexpression by lefthand sides of equations, and then replacing the matched
another. This is a completely general programming formalism, subexpression with the corresponding substitution instance
because Bergstra and Tucker [2] have shown that any com- of the righthand side, i.e., evaluation proceeds by applying
putable function can be realized in this manner; see also [23]. the rewrite rules. For example,
It is especially convenient for defining abstract data types
because of all the research that has been done on algebraic RUN LENGTH 17 . NIL . -4 ENDR
approaches to data abstraction ([15], [23], [27], [301, [50] ), gives
and it also seems to be a natural formalism for expressing the
production rules used in expert systems; in fact, we believe AS NAT: 2
that rewrite rules are a simple and natural way of describing by the following sequence of rewrite rule evaluations
any kind of nonnumerical processing.
For a simple example of how equations are interpreted as (LENGTH 17 . NIL . -4) = >

rewrite rules, (LENGTH 17 . -4) = >
(INC (LENGTH - 4)) - >

POP (PUSH (I, S)) = S INC (1) =>

is used as a rule to rewrite the term TOP (POP (PUSH (2, PUSH
(IS EMPTY))) to the term TOP (PUSH (1, EMPTY)) by replacing where the first step is by identity property of NIL, and the
POP (PUSH (2, PUSH (1, EMPTY))) by PUSH (1, EMPTY). I and second uses the rule with lefthand side (LENGTH I . L), match-
s in this rule are variables, l of sort INT and s of sort STACK. ing Ito 17 and L to - 4; this last match works because the inte-
OBJ requires that all such variables be declared before they are ger -4 can be regarded as a LIST since INT iS a subsort of LIST.
used. It is now possible to apply the equation (LENGTH I = 1)? to this
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singleton list, with I = -4. Then finally the built-in operations (NOT X = X + VALID)
for NAT give the answer 2. (X * ZERO = ZERO)
For another example, (ZERO * X = ZERO)

RUN EMPTY? 17. NIL . (3. 4) ENDR (X + X ZERO)
(X * (Y + Z)- X * Y + X * Z)

gives ((X + Y) * z = x * z + Y * Z)

AS BOOL: F JBO

Giving an operation the SAVERUNS attribute causes the re-
sults of evaluations of terms headed by this operation to be

(EMPTY? 17 . NIL . (3 . 4)) = > saved. Thus the work of reduction is not repeated if the term
(EMPTY? 17 . 3 . 4) = > appears again. The user may give any operations that he wishes
(17 . 3 . 4 = - NIL) = > the SAVERUNS attribute. OBJ uses hashing to implement this
F very efficiently; this is an area in which term-rewriting systems

where the first step uses the ASSOc and ID attributes, and the have an advantage over unification based systems like Prolog.
last s u tb -SAVERUNS also causes OBJ to use structure sharing for com-last step uses the built-in equality on LIST-OF-INT.

mon subexpression, which can greatly reduce storage require-
thee arfetwoOfurther testAcaseSforSLOST-OF-CNT,:illustrating ments in some problems. Both the idea and the implementa-the effect of ASSOC:

tion are due to D. Plaisted.
RUN 1 . 2 . (3. 4) NUR Now some sample runs in the context of the PROC object.

gives RUN ('A IMPLIES 'B) EQUIV ((NOT 'B) IMPLIES (NOT 'A))

ENDR
AS LIST-OF-INT: 1 . 2 . 3 . 4

AS S: VALID

and
RUN (NOT ('A OR 'B)) EQUIV ((NOT 'A) AND (NOT 'B))

RUN 3 . 4 . ((3 + 7), (3 * 8)) NUR ENDR

AS S: VALIDgives
RUN ('C OR ('C AND 'D)) EQUIV 'C ENDR

AS LIST-OF-INT: 3 . 4 . 10 . 24
AS S: VALID

Now an example of how a rewrite rule operational semantics RUN 'A EQUIV (NO1 'B) ENDR
provides a decision procedure for a theory of practical interest, AS S 'A + 'B
the propositional calculus; this decision procedure is due to
Hsiang [33] and was programmed in OBJ by D. Plaisted [26]. RUN 'A * 'B + 'C + 'B * 'A ENDR
The rules in the object PROPC below reduces valid proposi- AS S: 'C
tional formula in the connectives OR, IMP, NOT, EQUIV and
AND, to VALID, and reduce all other formulas to a canonical B. Order of Evaluation
form in the connectives +, * and NOT (note that + here is ex- It is necessary to consider certain further points before ac-
clusive or). cepting that an object really does what it is supposed to do.

First, we need to consider the order that rewrite rules will be
OBJ PROPC / ID applied, and whether or not that order makes any difference; a

SORTS S set of rules with the desirable property that the order of appli-
SUBSORTS ID < S cation of the rules does not matter, is said to be Church-Rosser.
OPS Secondly, we need to know that the process ofapplying rewrite
_+_: S S -> S (ASSOC COMM 10 SAVERUNS ID: rules will actually terminate; when it always does so, the set of
ZERO) rules is said to be finite terninating. [34] and [35] give good
* _: S S - > S (ASSOC COMM IDMPT 11 SAVERUNS general discussions of term rewriting systems; see also [23],
ID: VALID) [37], [42].

_OR_: S S -> S (ASSOC 6) In the case of the propositional calculus decision procedure
_IMPLIES_: S S - > S (4) given in Section IV-A, the rules have been shown by [331 to
NOT: S-> be Church-Rosser and finite terminating modulo the equations
_EQUIV _: S S -> 5 (2) that correspond to the attributes ASSOC and COMM; the ID:
_AND _: S S - > S (11) attribute should be taken as abbreviating an identity equation

VARS X Y Z :S for this purpose. Secondly, we should show that the OBJ
EQNS implementation using this particular combination of rewrite

(X AND Y-= X * Y) rules and attributes is really correct. The difficulties here
(X OR Y-= X * Y + X + Y) center on the distributive law, and are discussed in [26].
(X IMPLIES Y = X * Y + X + VALID) Here, we just note that it is necessary to give both versions of
(X EQUIV Y - X + Y + VALID) the distributive law, even though there is a commutative law
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for *. This is because OBJ's COMM attribute is implemented This enrichment is equivalent to the following:
with lexicographically ordered lists of values, so that one can-
not be sure which of the two distributive laws may apply to a TH TRIV *
given case. SORTS ELT

OPS *:-> ELT

V. PARAMETERIZATION ENDTH
The basic building blocks of parameterized programming are Next, the theory of partially ordered sets (some would call

parameterized modules. Three concepts that go beyond Ada these quasi-ordered sets, because there is no antisymmetric
generic packages and still seem quite practical are theories, law). Its models have a binary infilx BOOL-valued operation <
views, and miodule expressions. Theories are used to define that is reflexive and transitive.
the properties required of an actual parameter for it to be
meaningfully substituted for the formal parameter of a given TH POSET / BOOL
parameterized module. Views are used to express that a given SORTS ELT
module satisfies a given theory in a particular way (this is nec- OPS _< _: ELT ELT - > BOOL
essary because it is possible for some modules to satisfy some VARS El E2 E3 : ELT
theories in more than one distinct way). Module expressions EQNS
are used to modify modules, by adding, deleting or renaming (El < El = T)
functionality. The final basic ingredient is the instantiation of (El < E3 = T IF El < E2 AND E2 < E3)
a parameterized module to an actual parameter, using a parti- ENDTH
cular view; this results in creating a new module. Our approach
to parameterization is inspired by the Clear specification lan- The theory of an equivalence relation also has a binary infix
guage [4], [5]*lo BOOL-valued operation; it is denoted EQ and is reflexive, sym-

metric and transitive.
A. Theories

TH EQV / BOOL
The purpose of a theory is to express properties of a module SORTS ELT

(or module interface) as a whole. This subsection considers OPS _EQ _ : ELT ELT - > BOOL
theories, while the next two subsections consider how theories VARS El E2 E3 ELT
are related to modules by formal parameters and by views, EQNS
respectively. This is in direct contrast to the usual "assertions" (El EQ E = T)
of program verification, which talk about the state changes (El EQ E2l E2 EQET)
that occur when a statement (or sequence of statements) is (El EQ E3 E2 EQEl)
executed. ENT EQ E3 = T IF El EQ E2 AND E2 EQ E3)

In general. OBJ theories can have whatever structure objects
can have; the difference is that objects are executable, while Finally, the theory of mor-ids. This will serve as a param-
theories define unexecutable properties. In particular, theories eter requirement theory for an iterator that will yields sums
can use other theories, can use objects, can be parameterized, and products over lists in Section V-D.
and can even have views. We next give some examples of OBJ
theories. They all express properties that parts of a software TH MONOID
environment ought to satisfy for a given module to perform SORTS M
correctly. OPS_ M M-M > M (ASSOC ID: I)
The first example is the trivial theory TRIV, which requires ENDTH

nothing of a model except that it have a sort; this sort is des- B. Parameterized Modules
ignated ELT in the theory.

Theories are the requirements that the actual parameters of
TH TRIV a parameterized module must satisfy in order for an instan-

SORTS ELT tiated module to behave as desired. A theory must have been
ENDTH previously defined in the program before it can be used in

The next theory is an enrichment of TRIV, requiring that this way. For example, here is part of a parameterized LIST
models also have a given element of the given sort; this ele- object.
ment is designated * in the theory. OBJ LIST [X-: TRIVI / NAT BOOL

TH TRIV * / TRIV SORTS LIST
OPS * -> ELT ~~~~~~~SUBSORTS X < LIST

ENDTH OPS
_._: LIST LIST -> LIST (ASSOC ID: NIL)

101n particullar, the notion of view was developed in collaboration EMPTY? :LIST -> BOOL
with R. M. Burstall for use in Clear, although it has not yet been pub- LENGTH _ : LIST - > NAT
lished in that connection. Clear's approach was in turn inspired by
some ideas in general system theory [121, [20 J, suggesting the sys-
tematic use of colimits. ENDOBJ
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In general, an object (or a theory) may have more than one where opl, opl', op2, etc. may be either operation forms, or
parameter; this is indicated with the notation forms plus arity and value sort, if that is needed for disambig-

uation.[X: THI ;Y: : TH2u
Thus, each mapping consists of a set of pairs. These two sets

Here both theories, TH i and TH2, and their corresponding of pairs together are called a view body. The syntax for de-
formal parameters, x and Y respectively, may involve more fining a view adds to this names for the source and target theory
than one sort, and of course may involve many operations or object, and a name for the view. For example,
among their various sorts.
Here is an example of a parameterized theory, the theory VIEW NATD IS: NAT AS: POSET BY:

of vector spaces over a field F. SORTS (ELT IS: NAT)
OPS (< IS: DIVIDES)

TH VECTOR-SP f F: : FIELD], ENDV

SORTS V defines a view called NATD of NAT as a POSET; we may also
OPS

_ V V -> V (ASSOC COMM ID:0)use the notation NATD: POSET = > NAT.

VFV >V (ASSOC COMM ID: 0) Every object has a default view as TRIV using the first sortFFV > v

VARS F Fl F2 : F in its (sort-list) (or the first sort of the first object that it isVARS F Fl F2: F built upon if it doesn't have a first sort itself, and so on back-
V VI V2 V ward recursively); this sort is called the principal sort of the

EQNS
object (or theory). A determined view is one that will be used((FI+ F2) * V = (F I * V) + (F2 * V)) unless another is explicitly provided instead; many determined((Fl * F2) * V = (Fl * (F2 * V))) views are default views, determined by the default rules for

(F * (Vl + V2) = (F * Vl) + (F * V2)) omitting parts of view bodies that are given informally below,
ENDTH

and more formally in Appendix 11. For example, the default
The instantiation of parameterized objects is discussed in view TRIV = > NAT iS

Section V-D.
VIEW NATV IS: NAT AS: POSET BY:

C. Views SORTS (ELT IS: NAT)

The purpose of a view is to show explicitly how a given OPS (< IS: <) ENDV
module (either object or theory) satisfies another given theory. More generally, when there is only one sort in the source
It may not suffice to write LEXfNATI to define a module theory Tand the SORTs line of a view is omitted, it is assumed
giving a lexicographic ordering to LIST'S of NAT's, because that ELT is paired with the principal sort of T. For example,
there are many different order relations that could be used on in
the natural numbers. The most obvious is the usual "less-than-
or-equal," but "divides" and "greater-than-or-equal" are other VIEW NATD IS: NAT AS: POSET BY:
possibilities. The purpose of a view of NAT as a POSET, indi- OPS (< IS: DIVIDES) ENDV
cated POSET => NAT, is to indicate just which ordering is to the default (ELT IS: NAT) is assumed.
be used; the three choices of ordering mentioned above corre- There is also a default convention for oPs, namely corre-
spond to three different views of NAT as POSET. spondences of the form (op Is: oP) can be omitted. For
More precisely, a view of an object A as a theory Tconsists example, under this convention, the default view of NAT as

of a mapping from the sorts of T to the sorts of A that pre- POSET has (ELT IS: NAT) and (< Is: <). Thus, according to
serves the subsort relation, and a mapping from the operations these conventions, the default view of NAT as a MONOID iS
of T to the operations ofA that preserves arity, value sort and
certain attributes, including ASSOC, COMM, ID: and IDPT (if VIEW NAT * IS: NAT AS: MONOID BY:
they are present), such that every equation in T is provable SORTS (M IS: NAT)
of every model of A." The mapping of sorts is expressed in OPS (* IS: *)
the form (I IS: 1)

ENDV
SORTS (S I IS: S') where we know that 1 is an identity for * in NAT because the

ID: attribute is preserved by views. The following is a non-
default view of NAT as a MONOID.

and the mapping of operations is expressed in the form
VIEW NAT + IS: NAT AS: MONOID BY

OPS (op1 IS: opi') OPS (* IS: +) (I IS: O)
(0p2 IS: op2'i) ENDV

- Actulally, (I IS: 0) could be omitted, again by preservation
1 Tech}nicallly, a view is a theory niorphisml in the sensec of [5 j. of the ID : attribute.
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Next, a view that involves a derived operation: uses the default view TRIV = > NAT to instantiate the param-
VIEW NATG IS: NAT AS: POSET BY: eterized module LIST with the actual parameter NAT. Simi-

VARS Ni N2 : NAT larly, we might have
OPS (Ni < N2 IS: N2 < N1) ENDV MAKE RAT-LIST IS: LIST [RAT] ENDM

More generally, one might have any expression (of the cor- where RAT is the field of rational numbers, using a default
rect sort) on the right-hand side of the Is:; it is also necessary view TRIV = > RAT; also
to declare the variables that are used in these derived expres-
sions. MAKE RAT-VSP IS: VECTOR-SP [RAT ENDM

There is a useful generalization of the default rule that per- uses a default view FIELD = > RAT, and
mits omitting an operation pair of the form (op IS: op),
namely a pair (op IS: op') can be omitted provided that the MAKE RAT-LIST-LIST IS: LIST [LIST [RAT II ENDM
arity and sort of op' equal the translations (under the SORTS uses two default views.
mapping) of those of op, and op' is the only operation (in To illustrate the case where an explicit view is used, let
its object or theory) having that particular arity and sort. P Ix : POSET j be a parameterized object. Then we can form
Sometimes it may be impossible to tell which if several oper-

ations or sorts with the same name, but from different objects MAKE P-NATD IS: P [NATD I ENDM
or theories, is actually meant. For this purpose, qualifiers can using the view NATD from Section V-C.
be used to disambiguate the expression involved by providing It is sometimes desirable to use (after the slash) module ex-
the additional information of the object or theory where an pressions to identify objects (or theories) used in the body and
operation is declared. For example in the actual parameter. For example,

OBJ UNION [X Y:: TRIV*I OK LEXL [X:: POSETI / LIST [X1
SORTS UNION OPS_<< _: LIST LIST-> BOOL
SUBSORTS (ELT . X), (ELT . Y) < UNION VARS L L': LIST

VIEW AS: TRIV * BY: (* IS: (* . UNION)) ENDV E E': ELT
OPS : -> UNION EQNS
EQNS (E < < NIL = F)

X)= (* . Y)) (NIL < < L = NOT L = = NIL)
( . UNION = (* . X)) (E. L < < E'. L'= IF E ==E' THEN L < < L' ELSE

ENDO E < E' FI)

Qualifiers can also be applied to mixfix operations, as in ENDO

X (IS-IN . M47) FILE in which LIST[XI uses the default view of x as TRIV, and
provides lists of the actual parameter's principal sort. More

wheie M47 is some module. generally, one might have
It is sometimes desirable to include views inside objects, as in

OBJ P1[X : : THI1 /P2[VIEWJ
OBJ LEXL [X:: POSETJ / LIST [XI

VIEW AS: MONOID BY OPS (* IS: .) ENDV with VIEW : TH2 = > TH1, where TH2 is the requirement
OPS _<_: LIST LIST -> BOOL theory of P2. The most general case is to use a list of module

expressions; see Section V-E and Appendix A.
ENDO Now here is a very powerful module for defining iterators:

Once a view as T is included inside an object A, then the de- osJ ITER [M: : MONOID ]/ LIST [ M
termined view of A as T becomes the included one; see the OPS ITER: LIST- > M
more detailed discussion in Appendix B. VARS E: M; L: LIST

EQNS (ITER (NIL) = I)
D. Instantiation (ITER (E; L) = E * ITER (L))
To actually use a parameterized module, it is necessary to ENDO

instantiate it with an actual parameter. This subsection con- where LIST[M uses the default vieW TRIV > MONOID; note
siders how this might be done, and in particular introduces a that I is the identity of m. We now use this object for two
number of convenient conventions. rathe iteigxm s
The MAKE command applies a parameterized object to an

actual, by use of a view; if the name of an object is used in- MAKE SIGMA IS: ITER[NAT+J -ENDM
stead, the default view of that object as the requirement of
the parameterized object is used if there is one. For example, sums a list of numbers, while

MAKE NATLIST IS: LIST [INTJ ENDM MAKE PI IS: ITER(NAT *] ENDM
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multiplies a list of numbers. We think that these are impres- We next consider an image construction, which uses a
sively concise and clear programs for these functions. Note (view-body), that is, a sort mapping and an operation map-
that this approach avoides the complexities of higher order ping, to create a new module (object or theory) from an old
operations, but still has an equivalent power and is moreover one, by renaming the parts of the old one according to the
modular. instructions in the view body. The syntactic form for this

Similarly, construction is

MAKE NATLEX IS: LEX [NAT] ENDM (mexp) * (view-body)

uses the detault view of NAT as POSET to give a lexicographic What this does is to create a new copy of (mexp), with its
ordering on lists of natural numbers, and syntax modified as indicated in (view-body).

MAKE NATLEXD IS: LEX [NATD I ENDM Functionality can be deleted from a module by the HIDE
construction. The syntax is

orders lists of NAT'S using the divisibility ordering on NAT'S. HIDE SORTS (sort-list) ops (op-list) IN (mexp).
Similarly,Similarly, It might also sometimes be more convenient to indicate

MAKE PHRASE IS: LEX [ID I ENDM which sorts and/or operations are to be visible. This could be

uses the lexicographic ordering < given on ID to give a lexico- done with the syntax

graphic ordering on lists of identifiers, and thus in particular VISIBLE SORTS (sort-list) HIDE OPS
on titles of books; and (op-list) IN (mexp).

MAKE PHRASE-LIST IS: LEX [PHRASE I ENDM and its obvious variants.
Finally, we consider ways of adding functionality. The sim-

uses the lexicographic ordering on PHRASE to give a lexi- ..
cographic ordering on lists of book titles. This is really a plest is just to "add" together a number of modules, using the

very concise program for what is really a rather complex syntax
functionality. (mexp) + - + (mexp)

E. Module Expressions and a more complex possibility is

An important addition to parameterized programming is a ENRICH (mexp) WITH SORTS (sort-list) SUBSORTS
capability for modifying parameterized modules in various (subsort-decl-list) ops (op-list) VARS (var-decl-list)
ways. This makes it possible to apply a given module in a EQNS (eqn-list) ENDEN
wider variety of circumstances. Among the possible modi-fi- However, since this construction can be hard to read, it is rec-
cations are: to restrict a module, by eliminating some of its . .

a s5 1 . r r ~~~ommended that it be avoided if possible, and it is not included
functionality; to rename parts of the external interface of a in the syntax for module expressions given in Appendix A.
module; and to enrich a module by adding to its functionality.
These operations make possible a broad range of (data type
based) program transformations right inside of programs. No VI. DENOTATIONAL SEMANTICS OF OBJ
other programming language that we know has such features Whereas the operational semantics of a programming language
as commands in the language itself. (Earlier versions of OBJ is useful for showing how computations are actually carried
had a similar capability, but as theories were not used, it was out, the denotational semantics of a language is useful for giving
somewhat dangerous, because there was no explicit statement precise meanings to programs in a conceptually clear and sim-
of what properties the result might have.) ple way; in addition, it permits the already established proof
Module expressions are expressions which define new mod- theory of the underlying logical system to be utilized in prov-

ules out of old ones by combining and modifying the old ones ing properties of programs. In the case of OBJ, the denota-
according to a specific set of operations. The simplest case is tional semantics is algebraic, as in the well-known algebraic ap-
that of the constant expressions, which are just built in. These proach to abstract data types; thus, the denotation of an OBJ
include BOOL, NAT, INT, ID, and REAL. The application of object is an algebra, that is, a collection of sets with functions
an nary parameterized module to n > 1 actuals provides a way among them; and the well-known proof theory for equational
of forming module expressions that is already familiar. In logic can be used for proving properties of these functions.
general, the n actuals must be views from the n requirement This is not the place for a detailed explanation of the alge-
theories that come along with the parameterized module; but braic approach to abstract data types; for this, see, for ex-

these can be supplanted by default or other determined views, ample, [15], [27], [30], [50]. The basic idea is that alge-
and therefore (sometimes) by just the names of the actual braic equations involving the operations in the signature should

modules to be used. completely define the results of executing the operations. The
Another built in n-ary module constructor is the n-ary TUPLE initial algebra approach [271, [28], uses as a model the unique

constructor, which can form an n-tuple of modules for each (up to isomorphism) most representative algebra which satis-
n> 1; all n of its requirement theories are TRIV. Thus, for fies the equations (there may of course be many other models).
example, TUPLE[INT, BOOLI iS a module expression whose It is known that this initial algebra always exists; moreover, it
principle sort consists of pairs of an integer and a truth value, provides a representation-independent standard of comparison
Another is TUPLE( LIST(INT I, INT, BOOL1 . for correctness, that is, it provides an abstract algebraic seman-
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tics. [6] (see also [23]) shows that a model is initial if and 5) (mexp) => (viewname) ((viewname) must name a view.)
only if it has the following properties: 6) (viewbody) > SORTS (sort-pair-list) ops

1) no junk: all elements are namable using the given con- (op-pair-list)
stantand operation symbols; and 7) (mexp) =: HIDE SORTS (Sort-list) ops (Op-list)

stant IN (mexp) VISIBLE SORTS (Sort-list) oPS2) no confusion: all propositions true of the model can be (Oplist) (m ) tc
proved using the given propositions as axioms. 8) (Mexp) (mexp) + (mexp) + (mexp)
Under certain mild conditions, the rewrite rule operational (There must be at least 2 (mexp)'s.)

semantics agrees with initial algebra semantics. These condi- 9) (sort-pair-list) X (sort-name) IS: (sortname)
tions are just that 1) there are no infinite sequences of rewrites 10) (op-pair-list) a- (opname) IS: (oplname) ...

(finite termination), and 2) all sequences of rewrites give the Note that views are defined at the top interactive level of OBJ
same final result (Church-Rosser). This is proved in [16] ; see rather than in module expressions.
also [49]. A formal semantics for procedure application can Two remarks regarding the implementation of module ex-
be given by using colimits; see [19] . pressions: since they really are expressions, they can be evalu-

ted with a stack mechanism, just like arithmetic expressions;
VII. CONCLUSIONS of course, the values are not numbers, but module bodies. The

We hope to have shown that parameterized programming is a resulting action on the database can be just to add whatever
powerultchniereeres of s are. I tsthe module expression says to add, without trying to generate

technique, mduesae rabeered ov verenera in a disjoint copy. This means that sometimes we wil get am-
faces that describe exactly what properties are required of an biguopareerrors, because there are two versions of the
environment for the module to work correctly. Reusabiity is same operator (It would be possible to check whether this is
enhanced by the flexibility ofthe parameterization mechanism, happening as operators are being added, but the error message
which allows other modules as parameters. Reliability is en- could not be made very informative in any case because mod-
hanced by permitting interface requirements to include more ules created during the evaluation of (mexp)'s do not have
than purely syntactic information. This paper has introduced names.)
three new ideas that seem especially useful in supporting APPENDIX B
parameterized programming 1) theories, which declare global VIEW CALCULUS
properties of program modules and interfaces; 2) views, which We assume familiarity with the notion of a many-sorted sig-
connect theories with program modules in an elegant way; and nature; see for example [6], [19], [23]. We also assume that
3) module expressions, which produce a new modules by any given operation op in a signature I has a set attr(op) of
modifying existing modules. The latter can be considered a attributes, chosen from ASSOC, COMM, IDMP and ID:.
kind of generalization of program transformations that permits Definition 1: Let z and Z' be signatures. Then a view 0:certain specific kinds of transformations that are semantically D-Y is a pair (f, g) where f: S-S' and g :2sw s+2'fw fs.
well-behaved, to be combined in a structured manner. These ' '
ideas have been illustrated with some simple examples in the is

There is of course an extra condition on views betweenOBJ programming language, but should also be taken as pro- m n o
posals for an Ada library system, for adding modules to Prolog, modules, namely preservation of all equations and constraints
and as considerations for future language design efforts. OBJ vFact 2: If p = (f, g): -- I' and 0 = (f', g'): '-+z are

views then so is their composition, fo0: X->", defined to beis an ultra-high level programming language, based upon re- (fof' ,9
write rules, that incorporates these three ideas and many We d a tf w k o s5~~~~~~We distinguish among the following kinds of views.others from modern programming methodology.

1) Explicit: declared and named at the top level.
2) Abbreviated: computed from a partial description, using

APPENDIX A the "default" rules.
MODULE EXPRESSIONS 3) Default: abbreviated to nothing.

4) Internal: defined inside the target object (there can be atThe purpose of this Appendix is to give syntax for some OBJ ms n e agtmdl)most one per target module).constructions concerned with views and hiding. The syntactic 5) Determined: the view with the given source and targetvariables used are indicated in italics between 's. Thus, t view/~~~~~~~~~~~~~~~ t- _--x1_-_ 1--1 I.1 ,hat will be used in the absence of an named explicit viw(mexp) for module expression, (actual) for the actuals to a
parameterized module application, plus obvious compounds Note that there may not be any determined view for a given
like (sort-list). The rules defilning module expressions are source and target.

1) (mexp)'~ID,INT, NAT BOOL, REALDefinition 3: The principal sort of a module is either:
2) (mexp) XTUPL [(actual)1,..* ,(actual)n] , for n> 1 1) the first new sort introduced in the module (if any) or
3) (mexp) =t (n-ary-mod) [ (actual)1,..., 2) the principal sort of the first parameter theory (if any) or

(actual)n)], for n > 0 (These actuals must satisfy additional 3) the principal sort of the first module among the modules
semantic conditions.) used.

4) (mexp) X~ (mexp) * (viewbody) Note that these rules are ordered.
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