
Software Factories
Assembling Applications with Patterns, Models,

Frameworks and Tools

Jack Greenfield
Visual Studio Enterprise Frameworks & Tools

Microsoft Corporation
One Microsoft Way

Redmond, WA 98053
jackgr@microsoft.com

Keith Short
Visual Studio Enterprise Frameworks & Tools

Microsoft Corporation
One Microsoft Way

Redmond, WA 98053
keithsh@microsoft.com

ABSTRACT
The confluence of component based development, model driven
development and software product lines forms an approach to
application development based on the concept of software
factories. This approach promises greater gains in productivity
and predictability than those produced by incremental
improvements to the current paradigm of object orientation,
which have not kept pace with innovation in platform
technology. Software factories promise to make application
assembly more cost effective through systematic reuse, enabling
the formation of supply chains and opening the door to mass
customization.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques], D.2.11 [Software
Architectures]: languages, patterns, domain-specific
architectures, D.2.13 [Reusable Software] domain engineering.

General Terms
Design, Languages.

Keywords
Design Patterns, Domain-Specific Languages, Model-Driven
Development, Software Product Lines, Software Factories.

1. INTRODUCTION
1.1 Industrializing Software Development
The software industry remains reliant on the craftsmanship of
skilled individuals engaged in labor intensive manual tasks.
However, growing pressure to reduce cost and time to market,
and to improve software quality, may catalyze a transition to
more automated methods. We look at how the software industry
might be industrialized, and we describe technologies that might
be used to support this vision. We suggest that the current
software development paradigm, based on object orientation,
may have reached the point of exhaustion, and we propose a
model for its successor.

Some have suggested that software development cannot be
industrialized because of its creative character. Others have

suggested that significant progress can still be made on the
foundation of object orientation, especially in light of the
growing agility of development methods. We are quite
sympathetic with these points of view, and have seen that small
teams of skilled developers can develop complex applications on
time and on budget, with high levels of quality and customer
satisfaction. However, we have also seen that such results are
the exception, not the rule. Recognizing that software
development is an inherently people-oriented discipline that
cannot be reduced to purely mechanical and deterministic
processes, however, we propose a people-oriented approach to
industrialization, one that uses vocabularies that are closer to the
problem domain, and that leaves more of the mechanical and
deterministic aspects to development tools.

1.2 Lessons from Other Industries
Over the last ten years, the software industry has met the
demands of an increasingly automated society by honing the
skills of individual developers, just as artisans met the demands
of an increasingly industrialized society in the early stages of the
industrial revolution by honing the skills of individual
craftsmen. Up to a point, this is an effective way to meet
demand. Beyond that point, however, the means of production
are quickly overwhelmed, since the capacity of an industry
based on craftsmanship is limited by its methods and tools, and
the by size of the skilled labor pool. A quick look at the state of
software projects suggests that we are already struggling to meet
demand using the current means of production.

According to the Standish Group [26], businesses in the United
States spend more than $250 billion annually on software
development, with the cost of the average project ranging from
$430,000 to $2,300,000, depending on the company size. Only
16% of these projects are completed on schedule and on budget.
Another 31% are canceled, primarily due to quality problems,
creating losses of about $81 billion annually. Another 53% cost
more than planned, exceeding their budgets by an average of
189%, creating losses of about $59 billion annually. Projects
that reach completion deliver an average of only 42% of the
originally planned features.

These results are likely to be exacerbated by continuing platform
technology innovation, which has outstripped the methods and
tools used to develop software over the last ten years. In the
business application market, for example, we can now integrate
heterogeneous systems in different businesses located anywhere
on the planet, for example, but we hand-stitch the applications
deployed on this platform technology one at a time, treating
each one as an individual, implementing coarse grained, domain

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

specific concepts like stock trades and insurance claims using
fine grained, generic concepts like loops, strings and integers.
Similar observations can be made in markets for mobile devices,
media, smart appliances, embedded systems and medical
informatics.

When faced with similar challenges many years ago, other
industries moved from craftsmanship to industrialization by
learning to customize and assemble standard components to
produce similar but distinct products, by standardizing,
integrating and automating their production processes, by
developing extensible tools that could be configured to automate
repetitive tasks, by developing product lines to realize
economies of scale and scope, and by forming supply chains to
distribute cost and risk across networks of highly specialized
and interdependent suppliers. These changes enabled the cost
effective production of a wider variety of products to satisfy a
broader range of customer demands.

What will industrialization mean in the software industry? No
one will know until it happens, of course, but we can make
educated guesses by looking at how the software industry has
evolved. We can also gain insights by looking at what
industrialization has meant in other industries, and by comparing
them with ours to see how our experience might be similar or
different.

1.3 Economies of Scale and Scope
Others have drawn and debated such analogies between the
software industry and industries that produce physical goods [4,
12, 13]. However, some of the discussion has involved an
apples-to-oranges comparison between mass production in
industries that produce physical goods, on the one hand, and the
development of designs and one-off implementations in the
software industry, on the other. There are two keys to clearing
up the confusion.

• The first is to distinguish between economies of scale and
scope. While both refer to the realization of cost reductions
by producing multiple products jointly, rather than
independently, they arise in different situations. Economies
of scale arise in the production of multiple implementations
of a single design, while economies of scope arise in the
production of multiple designs and their initial
implementations. Economies of scale arise in the
production of software, as in the production of physical
goods, when multiple copies of an initial implementation
are produced mechanically from prototypes developed by
engineers. Economies of scope arise when the same styles,
patterns and processes are used to develop multiple related
designs, and again when the same languages, libraries and
tools are used to develop the initial implementations of
those designs [14]. When used to drive mass production,
these initial implementations are called prototypes.
Accurate comparisons between the software industry and
industries that produce physical goods should compare
economies of scale in the mass production of copies in one
industry with the same measure in the other, or they should
compare economies of scope in the development of
prototypes in one industry with the same measure in the
other. They should not compare economies of scale in the
mass production of copies in one industry with the
development of prototypes in the other.

• The second is to distinguish between mass markets and
custom markets. In mass markets, where the same product
can be sold many times, economies of scale can be realized
in software production, as in the production of physical
goods, by copying prototypes mechanically. In custom
markets, each product is unique. Instead of being copied,
the prototypes are delivered to customers. Here, software
production is more like the construction of bridges and
skyscrapers. In custom markets, economies of scope can be
realized in software production, as in commercial
construction, through systematic reuse, by using the same
assets to develop multiple unique but similar products.

Of course, while the realization of economies of scale in the
mechanical replication of software is well understood, the
realization of economies of scope in the development of
multiple unique but similar software products is not well
understood. We therefore focus on the latter as an avenue for
further progress toward the industrialization of software
development.

1.4 Software Factories
Economies of scope can be realized in the context of a product
family, whose members vary, while sharing many common
features. A product family may contain either end products, such
as portfolio management applications, or components, such as
account management frameworks used by portfolio management
and customer relationship management applications.

According to Parnas, a product family provides a context in
which many problems common to family members can be
solved collectively [23]. Building on software product line
concepts, software factories exploit this context to provide
family wide solutions, while managing variation among the
family members [10]. Instead of waiting for serendipitous
opportunities for ad hoc reuse to arise under arbitrary
circumstances, a software factory systematically captures
knowledge of how to produce the members of a specific product
family, makes it available in the form of assets, like patterns,
frameworks, models and tools, and then systematically applies
those assets to automate the development of the family
members, reducing cost and time to market, and improving
product quality over one-off development.

Of course, there is a cost to developing a software factory in
order to realize these benefits. In other words, software factories
exhibit the classical cost-benefit trade-off seen in product lines
[28]. While the benefit side of the equation cannot be increased
through the production of many copies in custom markets, it can
be increased through the production of many related but unique
products or product variants, as documented by many case
studies [10]. In addition, the cost side of the equation can be
reduced by making product lines less expensive to build. In our
view, the key to industrialization is enabling the cost effective
construction and operation of software factories.

1.5 A Vision of Software Factories
Before looking at how software factories work, we offer the
following vision of the future, when software factories are
widely used to produce applications. Of course, in order to paint
this vision, we necessarily gloss over many issues. This does not
mean that we have ignored those issues. Indeed, we have written
a book identifying and examining as many as we can, and

suggesting resolution strategies, where possible [24]. In other
words, while this is a vision, and therefore necessarily
incomplete, we think it is close enough to reality to start guiding
the way we think now. It implies significant changes, not only in
methods and tools, but also in the economics of software
development, as expertise comes from field organizations with
problem domain knowledge, instead of from platform vendors.

1.5.1 Development by Assembly
Application developers will build about 30% of each
application. The remaining 70% will be supplied by ready-built
vertical and horizontal components. Most development will be
component assembly, involving customization, adaptation, and
extension. Instead of residing in large amounts of new code
written in house from scratch, new functionality will be
distributed across many ready-built and built-to-order
components provided under contract by many suppliers, each of
whom will write small amounts of new code from scratch.
Standard components will be commoditized, and custom
component suppliers will become ubiquitous, specializing in a
wide variety of domains. Software that would be prohibitively
expensive to build by current methods will become readily
available.

1.5.2 Software Supply Chains
To feed the demand for components created by software
factories, supply chains will emerge, creating standard product
types with standard specification formats that help consumers
and suppliers negotiate requirements, standard architectures and
implementation technologies that let third parties assemble
independently developed components, standard packaging
formats that make components easy to consume, standard tools
that can be reconfigured for product specific feature variations,
and standard development practices. One of the keys to making
this work will be the use of standard architectures that reduce
component mismatch and simplify the management of supplier
relationships by describing the contexts in which components
operate. Architectural alignment has been a challenge to supply
chain pioneers in the automotive and telecommunications
industries.

1.5.3 Relationship Management
Requirements capture, analysis and negotiation will become
critical elements of customer relationship management. Service
level agreements documenting the expectations of consumers
and suppliers will be govern transactions. Following product
delivery and acceptance, repairs and assistance will be provided
on a warranty basis. In most cases, consumers will lease
components from suppliers, allowing them to receive patches
and upgrades systematically. Dynamic patch and upgrade
mechanisms will become ubiquitous and much less intrusive.
Tools that manage the configurations of deployed products will
become critical parts of the platform. Data generated from
customer and supplier interactions will be used to improve
service levels, to optimize production and delivery, and to plan
future product offerings.

1.5.4 Domain Specific Assets
At every step, including final assembly, developers will use
tools configured for the purpose at hand. Tools for banking and
health care application development, for example, will be
readily available. These tools will use powerful abstractions and

appropriate best practices encoded as languages, patterns and
frameworks for specific domains. Application developers will
no longer hand craft large amounts of code in general purpose
languages. Instead, they will build variants of existing products,
customized to satisfy unique requirements, writing small
amounts of code in domain-specific languages to complete
frameworks. Imagine tools that look like user interface builders
for assembling web services and business logic. These
languages, frameworks, patterns and tools will be inexpensive to
build, enabling organizations with domain expertise to
encapsulate their knowledge as reusable assets. Of course, we
are not suggesting that no one will write code by hand any more.
When this vision is realized, product line developers will build
the languages, frameworks and tools used by application
developers, in much the same way that operating system
developers build device drivers and other system software
components used by application developers today. The mix of
product line and product developers will be much more evenly
balanced, however, than the mix of operating system and
application developers today.

1.5.5 Mass Customization
Some industries, such as the web based PC business, produce
product variants on demand cheaply and quickly for individual
customers today. While we will not see mass customization in
software products for some time, the broad adoption of software
factories will eventually make it possible. Where this occurs in
other industries today, business processes are highly automated
and highly integrated. A value chain that integrates processes
like customer relationship management, demand management,
product definition, product design, product assembly and supply
chain management is a fundamental prerequisite for mass
customization. When software suppliers achieve the level of
value chain integration found in other industries, mass
customization will dramatically change the economics of
software development. Picture a buyer ordering a customized
financial services application from a web site, the same way that
they order a customized desktop machine or server today, with
the same level of confidence, and similar delivery time.

1.5.6 Organizational Change
Clearly, everyone with a stake in application development will
be affected by the broad adoption of software factories. Software
developers of all kinds will change their focus and think more
about assembly than about writing new code. New development
methodologies will arise, more in tune with the principles of
manufacturing. Development organizations will develop the
skills, incentives and processes required to exploit these
changes. Packaged software vendors will restructure their
products into componentized product families developed and
maintained using software product lines. Business users will
exploit the higher levels of services offered by their IT
organizations.

1.6 Developing Software Factories
The current innovation curve could be described as the era of
object orientation. Many commentators have observed that it has
reached a plateau, and that new technologies are needed to
create the next quantum leap forward in application
development. According to Kuhn, new paradigms are catalyzed
by the exhaustion of their predecessors, correcting mistakes and
applying existing knowledge in new ways [22]. Building on

domain engineering, software product line technology is
catalyzing new developments in two object oriented
technologies, model-driven development and component-based
development, providing a medium for correcting mistakes and
applying existing knowledge in new ways. These developments
represent critical innovations on three axes, along which we can
plot the transition to the next innovation curve, as illustrated in
Figure 1.

The figure sets the course for the remainder of this paper. In the
next three sections, we will look at each dimension in turn, and
call out the maturity of techniques that support each dimension.
In the last section, we’ll give a concrete example of software
factories in action.

2. ABSTRACTION
Abstraction hides characteristics of a subject that are not
relevant for some purposes, while emphasizing others, and
defines a contract that separates the concerns of various
stakeholders [7]. The abstraction axis ranges from abstract
models that specify product features, to source code and other
concrete artifacts used to produce executable implementations.
Like refactoring and adaptive design, raising the level of
abstraction reduces the complexity and brittleness of software
through encapsulation. By hiding implementations, it keeps
complexity from growing as features are composed, and
prevents changes from propagating to clients. The higher we
move along the axis, the more powerful the abstractions, but
also the narrower their scope of application. Powerful
abstractions that encapsulate large amounts of low level code
tend to address highly specialized domains.

Since the start of the current innovation curve, there has been a
trend toward increasing abstraction in platform technology, from
distributed computing to message oriented middleware, to
distributed object and component middleware, and recently to
asynchronous, loosely coupled web services. A similar trend in
application development technology is reflected by component
architectures, which encapsulate deployment concerns, and by
patterns, which describe configurations of existing technologies
that represent known solutions to recurring problems in specific
domains. While these innovations have advanced the state of the
art by giving developers new vocabularies for solving problems

[17], they have stopped short of giving them formal languages to
express those vocabularies. We are now seeing the extension of
the trend in this direction, with the advent of byte code based
languages and specialized languages based on XML, such as
languages for process specification and execution. In fact, this
kind of progression has characterized the evolution of the
industry, as noted by Smith and Stotts.

The history of programming is an exercise in
hierarchical abstraction. In each generation,
language designers produce explicit constructs for
conceptual lessons learned in the previous
generation, and then architects use [the new
constructs] to build more complex and powerful
abstractions. [25]

2.1 Model-Driven Development
One of the key themes of object orientation was Object Oriented
Analysis and Design (OOA&D) [3]. OOA&D proposed a way to
decompose functional requirements and map them onto object
oriented implementation technologies. One problem with this
approach was that it incorrectly assumed that the structure of the
solution would match the structure of the problem [11]. Another
problem with OOA&D, was that it promoted a methodical, top
down approach to development. These problems have been
addressed through a series of adaptations, however, and the
basic principles of OOA&D remain the foundation of modern
application development practices.

Since it combined contributions from several OOA&D methods,
the Unified Modeling Language (UML) became a rallying point
for a model-based approach to application development. But
despite a large number of books about the UML and a large
number of tools claiming to support the UML, the language has
had little real impact on application development. Its primary
use has been to produce visual representations of classes and the
relationships between them. Constrained by weak extensibility
mechanisms, the UML is tightly bound to the programming
language concepts in vogue at the time of its creation. Its
semantic ambiguity and poor organization have prompted a
redesign, with contenders for a major revision vying to define
what appears to be an even larger and more complex language
that is just as ambiguous and as poorly organized as its
predecessor. Even with the proposed revisions, the UML falls
far short of providing the highly focused, domain-specific
modeling capabilities required by the next wave of application
development technology. Its primary contribution was the idea
of an extensible modeling language with an underlying
metamodel.

While the documentation of abstract concepts has some value,
the real opportunity for innovation lies not in visualizing the
information captured by models, but in processing that
information to automate development tasks. This is the thrust of
model-driven development (MDD). Despite its ties to OOA&D,
MDD embodies ideas and technologies that predate object
orientation. It seeks to capture developer intent, usually
expressed informally, if at all, in prose or ad hoc diagrams, as
formal specifications that describe application features in
abstract terms using modeling languages, and to automate the
implementation of that intent, usually by compiling the
specifications to produce executables. This is valuable because
the features are difficult to see in low level implementation

Abstraction
From

executables to
requirements

AbstractionAbstraction
FromFrom

executables to executables to
requirements requirements

Granularity
From

lines of code to
web services

GranularityGranularity
From From

lines of code to lines of code to
web servicesweb services

Specificity
From

general purpose to
domain specific

SpecificitySpecificity
From From

general purpose to general purpose to
domain specificdomain specificrere--usableusablesingle usesingle use

concreteconcrete

abstractabstract

fine grainfine grain

coarse graincoarse grain

Abstraction
From

executables to
requirements

AbstractionAbstraction
FromFrom

executables to executables to
requirements requirements

Granularity
From

lines of code to
web services

GranularityGranularity
From From

lines of code to lines of code to
web servicesweb services

Specificity
From

general purpose to
domain specific

SpecificitySpecificity
From From

general purpose to general purpose to
domain specificdomain specificrere--usableusablesingle usesingle use

concreteconcrete

abstractabstract

fine grainfine grain

coarse graincoarse grain

Figure 1: Three Axes of Critical
Innovation

artifacts, such as source code, and difficult to develop, maintain
and enhance consistently, due to the number of independent
elements that must be synchronized. The promise of MDD is
that platform specific compilers will produce implementations
for multiple platforms from a single specification, letting users
retain investments in models describing application features as
the platform technology changes beneath them. Of course, this is
the same promise offered by byte code languages, such as C#
and Java, and by generations of earlier languages that raised the
level of abstraction above their predecessors.

With some notable exceptions, early attempts at MDD,
represented by the CASE tools of the eighties, failed miserably.
Most of these tools did not take advantage of platform-specific
features, and produced naïve, inefficient, least common
denominator code. The upfront costs of adopting the modeling
techniques they required were prohibitively large. Added to this
was the risk inherent in spending a substantial portion of the
project’s budget building models with the promise of code

appearing only in later stages. This required enormous
confidence in the tools and in the longevity of their vendors.
Also, concepts like round-trip engineering, where a model could
be synchronized with changes made independently to the code it
had generated from them, were overwhelmingly complex.
Another criticism was that many CASE tools imposed a
methodical top-down process. This was the ultimate kiss of
death, since rapid iteration of partial solutions has proven to be
critically important to the success of application development, as
so clearly demonstrated by agile development methods [2].
These problems can be overcome using language technologies
that allow higher fidelity in specifying application features, and
using more transformation techniques that give developers much
greater control over generated code.

2.2 Critical Innovations in Abstraction
We have seen that CASE tools began to exploit the benefits of
higher levels of abstraction, but were unable to manage the
inherent complexities. Typically they selected a useful set of
abstractions, but were naïve about the mapping to the executable
platform, and tended to fill the gap between abstractions and
executable platform by generating layers of application code.

Even good products that successfully managed to keep
generated code synchronized with the models, tended to
overwhelm the developer with the resulting complexity, and the
models fell into disuse. See Figure 2(a) A good example are the
generic class modeling tools that have their own vocabulary and
type system, and which require complex mapping and code
generation to the languages they attempt to model. Usually after
one trip through the generation process, the task of
synchronization and re-generation becomes too troublesome and
the model is abandoned.

Remember that the idea is to simplify the use of complex
concepts by hiding unnecessary details, while providing a
holistic view that exposes the relationships and dependencies
among those concepts, where otherwise such these might be
difficult to detect. The key idea is to keep the model – the set of
useful simplifying abstractions – as close as possible to the
underlying framework in which the concepts lie. For example,
consider a graphical class modeling. This tool surfaces these

class definition concepts with high fidelity to their original type
system and vocabulary, allowing the developer to manipulate
parts of his program visually as he would in a source code
editor, but the tool adds value to the developers job because it
surfaces relationships and dependencies between classes that are
not easy to see in the source code alone. See Figure 2(b).

2.3 Domain Specific Languages
If the set of simplifying abstractions requires too much of a
bridge to implementation, the answer is to raise the level of
abstraction of the underlying execution platform. There are two
ways this can be done. The first is by providing a software
framework that specifically addresses a well-defined, narrow
problem domain, and using the abstractions in a model to define
how the variability points in the framework must be filled as in
Figure 2(c). The model has become focused and specific to this
domain – it can be expressed in a domain specific language, or
DSL, which explicitly describes concepts the new framework
offers. In contrast, attempts to capture details of the specific
domain in a general purpose modeling language such as UML
yields a lower fidelity description. Of course, DSLs may have

Application
Code

Model

Platform
Frameworks

Generated
Code

Model

Platform

(a)

(b)

Model

Application Code

Platform
Frameworks

Model

Generated Code

Platform

(c)

Model

Application Code
Domain Specific

Framework
Platform

Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

(d)

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Application
Code

Model

Platform
Frameworks

Generated
Code

Model

Platform

(a)

Application
Code

Model

Platform
Frameworks

Generated
Code

Model

Platform

Application
Code

Model

Platform
Frameworks

Generated
Code

Model

Platform

(a)

(b)

Model

Application Code

Platform
Frameworks

Model

Generated Code

Platform

(b)

Model

Application Code

Platform
Frameworks

Model

Generated Code

Platform

Model

Application Code

Platform
Frameworks

Model

Generated Code

Platform

(c)

Model

Application Code
Domain Specific

Framework
Platform

Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

(c)

Model

Application Code
Domain Specific

Framework
Platform

Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework
Platform

Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

(d)

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

(d)

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Figure 2: Models and Application Code

either graphical or textual concrete syntaxes, whatever suits the
developer best.

Let’s take the example of user interface form design in
Microsoft Windows. When Windows was first introduced, only
highly skilled programmers were capable of building working
Windows applications. When Microsoft Visual Basic was
introduced, the Form and Control abstractions allowed huge
numbers of less skilled developers to easily produce working
Windows applications. Forms and Controls were highly
effective abstractions for the domain of graphical user interface
manipulation. Today, in the Microsoft .Net world, these same
abstractions are implemented by the .Net framework that
underlies the Form designer. Few developers bother to look at
the small pieces of code generated to fill the variability points in
the framework. We call this approach, where we generate
minimal code to fill variability points in a domain specific
framework from a domain specific model, framework
completion, to contrast it with brute force code generation.

Alternatively, we can use a set of related patterns, called a
pattern language, to implement the abstractions, instead of a
framework. The pattern language for business application
development with J2EE published by Alur, Crupi and Malks [1],
for example, defines a collection of related patterns, and shows
how and when they can be combined to solve many different
kinds of problems. We can tool this kind of pattern language,
giving the developer a way to apply the patterns, and then
evaluating them automatically when applied. Of course, since
frameworks embody patterns [20], we may be able to use a

pattern language and a framework together, using the patterns to
guide the assembly of components supplied by the framework.
Note that we can now automate framework based development
using either DSLs or pattern languages. The difference is
essentially a trade-off between complexity and control. Since the
pattern language lets the implementations of the abstractions

show through, the developer has more control over their
implementation, but must also assume more responsibility. By
contrast, a DSL hides the implementations of the abstractions,
but gives the developer less control over their implementations.

If it’s not possible to build a software framework that can
provide a natural platform for implementing a useful DSL, it
may be possible to define another layer of simplifying
abstractions into which the first set may be mapped. This second
set of abstractions may prove easier to implement than the first,
leading to the notion of progressive transformations between
models. The abstractions are transformed into executables by a
series of steps as in Figure 2(d). When models stack one upon
another in this way, it becomes useful to categorize and
summarize the models in an orderly fashion, and to study
carefully the relationships between them.

2.4 Relationships Between Metamodels
One common way to do this is to use a grid as in Figure 3. The
columns of the grid represent concerns (data, activity, location,
people, etc.), while the rows represent levels of abstraction.
Each cell represents a viewpoint from which we can specify
software. Typically, for a given family of applications, a path
through the grid represents a sequence of modeling deliverables
and transformations to properly address functional and non-
functional requirements in the course of building and deploying
an application.

This modeling grid is not in itself an innovation. What is novel
is applying the grid to a product family, defining DSLs for each

cell, and mappings between and within the cells that support
fully or partially automatic transformations. As we have seen,
we must use DSLs, not general purpose modeling languages
designed for documentation, in order to provide this kind of
automation. A grid like the one in Figure 3 can be generalized as
a graph of viewpoints for a product family, and tools can be

Physical
Servers
Software

Installed
Network

layout

Detailed
design
Technology

dependent
design

DB schemas
Data access

strategy

Process
specification

Logical
Server types
Service

Mappings

Service
Interactions
Service

definitions
Object

models

Message
Schemas and
document
specifications

Workflow
models
Role

Definitions

Service
distribution
“Abilities”

strategy

Business
Processes
Service

factoring

Business
Entities and
Relationships

Use cases
and scenarios
Business

Goals and
Objectives

Physical
Servers
Software

Installed
Network

layout

Detailed
design
Technology

dependent
design

DB schemas
Data access

strategy

Process
specification

Logical
Server types
Service

Mappings

Service
Interactions
Service

definitions
Object

models

Message
Schemas and
document
specifications

Workflow
models
Role

Definitions

Service
distribution
“Abilities”

strategy

Business
Processes
Service

factoring

Business
Entities and
Relationships

Use cases
and scenarios
Business

Goals and
Objectives

ConceptualConceptualConceptualConceptual

LogicalLogicalLogicalLogical

BusinessBusinessBusinessBusiness InformationInformationInformationInformation ApplicationApplicationApplicationApplication TechnologyTechnologyTechnologyTechnology

Domain
Specific
Languages

ImplementationImplementationImplementationImplementation

Figure 3: A Layered Grid for Categorizing Models

developed inexpensively to support the editing and
transformation of the associated DSLs. We call this graph a
software schema, because it describes the set of specifications
that must be developed to produce a software product. A
software schema for a product family, the processes for
capturing and using the information it describes, and the tools
used to automate that process collectively form a software
template. A software template can be loaded into an extensible
tool, such as an Interactive Development Environment (IDE), to
produce a specific type of product, in much the same way as a
document template can be loaded into an extensible document
editor, such as Word or Excel, to produce a specific type of
document. An IDE configured with a software template for a
product family becomes a factory for producing members of the
family. This is what we call a software factory. Later, we will

see how software factories can be integrated to form automated
supply chains.

Given appropriate DSLs and transformations, we can drive from
requirements to executables using framework completion and
progressive refinement, keeping related models synchronized.
For example, we can produce a logical data model, and then an
optimized database schema from a business entity model and
usage statistics from a business process model. We can also
leverage constraints that relate neighboring cells. For example,
information known about the deployment environment (e.g., the
available protocols and system services) can be used to constrain
designs of service interactions (e.g., by limiting them to the
protocols and system services available within the deployment
environment). This helps to ensure that the implementations of
the service interactions will deploy correctly to the designated
deployment environment.

2.5 Transformations
Transformations can be characterized as either horizontal,
vertical or oblique [14]. Vertical transformations are mostly
refinement transformations that map models based on a more
abstract DSL to models based on a more concrete one, or to
code based on a general purpose programming language. For
example, a transformation from a model that describes a

business process to models that describe the collaborating web
services that implement the business process is a vertical
transformation.

Horizontal transformations may be either refactoring [16] or
delocalizing transformations [14]. Refactoring transformations
reorganize a specification to improve its design without
changing its meaning. Refactoring can be applied to both tree
and graph based languages.

Delocalizing transformations can be used to optimize an
implementation, or to compose parts of an implementation that
are specified independently. Often, the implementation of an
operational requirement, such as security or logging, must be
distributed across many functional modules, making
maintenance difficult. The implementation of the operational

requirement is therefore tangled with the implementations of the
functional requirements. Delocalizing transformations allow the
operational requirement to be defined once and automatically
woven into the functional modules during compilation. The
operational requirement is called an aspect, and the process of
weaving it into the functional modules is called aspect weaving
[21]. Like refactoring, aspect weaving can be applied to both
tree and graph based languages. At any layer of the grid, aspects
can be modeled separately, and woven into the functional
modules automatically when mapping to lower level models, by
an aspect weaver. Separating aspect models from the functional
modules makes maintenance easier, since it lets the developer
focus on one problem at a time.

2.6 Using Patterns in Transformations
Transformations are inherently parameterized, and operate by
binding objects in source models as parameter values, and
creating or modifying objects in target models. We can think of
a transformation as mapping a pattern of objects in a source
model to a pattern of objects in a target model. It encodes best
practices for improving or implementing models. Using patterns
to describe mappings has led to new approaches to model
representation, transformation and constraint. Of course, not all
patterns can be applied automatically, because in many cases,
the mapping between the models cannot be fully defined in

Policy Policy
ManagementManagement

Customer Customer
ManagementManagement

Customer Customer
SelfSelf-- ServiceService

Business Entity PatternBusiness Entity Pattern

Type Model

Operations

Customer
Type
Model

Customer
Operations

Project Structure
Default XSD schemas
Class and Method Headers
OR Mapping File
Database Tables
Default CRUD Sprocs

Software
Components

Implementation
Artifacts

Policy Policy
ManagementManagement

Customer Customer
ManagementManagement

Customer Customer
SelfSelf-- ServiceService

Business Entity PatternBusiness Entity Pattern

Type Model

Operations

Customer
Type
Model

Customer
Operations

Project Structure
Default XSD schemas
Class and Method Headers
OR Mapping File
Database Tables
Default CRUD Sprocs

Software
Components

Implementation
Artifacts

Projects
Inserted into

Parameter
bindings

generates

Figure 4: Applying a Business Entity Pattern

advance. In these cases, the patterns must be applied manually
by a developer, often with support from a development tool.
Once they have been applied, however, they can generally be
evaluated automatically, as described earlier.

Figure 4 shows a Business Entity pattern, a template for an
abstraction that lets an application designer think in terms of
data bearing persistent objects. This is a common abstraction for
components used in business applications. It can be
implemented by writing a large amount of data access code, a
moderate amount of object-relational mapping code, or a small
amount of component persistence code, using a data access
framework like Java Database Connectivity (JDBC), an object-
relational mapping framework like TopLink, or a component
persistence framework like Enterprise JavaBeans, respectively.

The pattern has been applied to the Customer Type Model in the
Customer Management component. Its parameters are bound at
the time of application. Its Type Model parameter is bound to
the Customer Type Model, and its Operations parameter is
bound to operations on the Customer Management component.
After its parameters have been bound, the pattern can be
evaluated to generate implementation artifacts that manage the
persistence of Customer entities.

2.7 Some Examples of DSLs
If we revisit the grid from Figure 3, and zoom in to the bottom
right hand corner, as in Figure 5, we can now look at the
viewpoints and the relationships between them in more detail. In
the figure, rectangles represent viewpoints, dashed lines
represent refinement transformations and solid lines represent
constraints. We now know that each viewpoint contains more

than just DSLs. It also contains:

• refactoring patterns that can improve models based on the
viewpoint,

• aspect definitions that are applicable to models based on
the viewpoint,

• development processes used to produce models based on
the viewpoint,

• definitions of constraints supplied by models based on
neighboring viewpoint,

• frameworks that support the implementation of models
based on the viewpoint,

• mappings that support transformations within and between
models based on the viewpoint or neighboring viewpoint.

The figure illustrates the following:

• The Business Entity DSL defines the business entity
abstraction, which describes efficient, message driven,
loosely coupled data services that map onto an object-
relational framework. Examples of business entities
include Customer and Order.

• The Business Process DSL defines the business activity,
role and dependency abstractions, and a taxonomy of
process patterns that can be used to compose them,
forming business process specifications. An example of
a business process is Enter Negotiated Order, which
might use three process patterns: one for a User
Interface Process to build a shopping cart, one for a
sequential process to submit the order and perform
credit checks, and one for a rule-driven process to
calculate the discount.

• These two DSLs map onto a Web Service DSL that
describes collaborating web services in a service-
oriented application architecture. The Web Service DSL
is used to describe how the business entities and

processes are implemented as web services, how the
messages they exchange are defined and what protocols
are used to support their interactions, using abstractions
that hide the underlying details of the web service
implementations.

Programming Language

Web Service

Business
Process

Business
Entity

Platform

ConceptualConceptualConceptualConceptual

LogicalLogicalLogicalLogical

ImplementationImplementationImplementationImplementation

InformationInformationInformationInformation ApplicationApplicationApplicationApplication TechnologyTechnologyTechnologyTechnology

Logical
Server

Network
Topology

Programming Language

Web Service

Business
Process

Business
Entity

Platform

ConceptualConceptualConceptualConceptual

LogicalLogicalLogicalLogical

ImplementationImplementationImplementationImplementation

InformationInformationInformationInformation ApplicationApplicationApplicationApplication TechnologyTechnologyTechnologyTechnology

Logical
Server

Network
Topology

Figure 5: A Simple Software Schema

• A DSL for describing virtual datacenter configurations in
terms of logical servers that will be deployment targets
for the web services described using the Web Service
DSL, along with the software they have installed, and
their configuration settings.

• Information from one model can be used to develop
another. Examples are the interactions between business
entities and processes, and between web services and
logical servers. This last one is particularly interesting
because it can be used to design for deployment.
Feeding knowledge of the deployment infrastructure
into web service designs constrains those designs to
prevent deployment problems. Similarly, working this in
reverse, if a design is to be deployed on a given logical
server type, then we can validate that the server on
which it will be deployed is of the correct type, that it
has the right software installed, and that it is configured
correctly.

• Mappings drive transformations between models at design
time. For example, we use a transformation to map the
model of web services to an implementation on the target
platform, probably in the form of classes that complete a
framework, such as ASP.NET.

3. GRANULARITY
Granularity is a measure of the size of the software constructs
used as the vehicles of abstraction. Since the beginning of the
era of object orientation, granularity has slowly increased, from
fine grained language classes that represented abstractions like
hash tables and exceptions, to medium grained components that
represented user interface controls, to coarse grained
components that represented business entities and activity, and
now to even more coarse grained services that typically
represent large subsystems, such as billing or credit
authorization. Increasing granularity can improve the reusability
of abstractions because a coarser grained construct encapsulates
more functionality than a finer grained one, has fewer external
dependencies, and forms a more independent unit of
specification, design, implementation, deployment, testing,
execution, management, maintenance and enhancement.
However, standardized mechanisms for describing component
behavior beyond simple interface descriptors, such as WSDL for
web services, have been slow to materialize. These mechanisms
are necessary to realize the reuse potential of coarse grained pre-
built components or built-to-order components and services for
application assembly, because the services required and offered
by these large constructs, and their valid sequences of
interaction, are often too complex to understand by
experimentation.

3.1 Component Based Development
Component-based development (CBD) arose in the late nineties
[15, 6]. CBD is an attempt to facilitate the independent
deployment of coarse grained constructs using encapsulation to
minimize the dependencies exposed by the objects they
contained. Although they appeared at the height of interest in the
UML, the principles of CBD are weakly supported by the UML.
Perhaps the most serious problem is that the UML defines too
many different and incompatible ways to describe abstractions,
without defining enough semantics to make any of them usable
for actual development. While it does a passable job of

supporting language class specification, it does even worse in its
attempts at describing the packaging of those classes into
components. Its handling of component composition is also
weak.

Designers want to express relationships between larger units of
design (such as business components [HS00], web services,
subsystems, etc.), since this can lead to greater reuse of pre-built
and commercial off-the-shelf components, and to greater
component outsourcing by formalizing contracts that describe
component behavior. Larger units of design must compose
smaller units without loss of rigor, and interactions between
them must allow the same level of analysis as interactions
between smaller units. For these reasons, CBD techniques focus
on component composition and decomposition, and the
challenges of partitioning functionality among interacting
components. CBD surfaces two important ideas.

First, building on the established concept of an interface, CBD
asserted that there should be a hard distinction between the
specification of a component and its implementation. There are
several mechanisms in the UML that attempt to address this
issue. In addition to creating confusion by offering multiple
ways to solve the same problem, these mechanisms are not used
consistently within the UML. A component specification should
be the subject of a model that describes the behavior of the
component, including its operations, parameters, and pre- and
post-conditions, in terms of a model of relationships between
specification types. No hint of any underlying implementation
should surface through this abstract specification, and yet the
specification should be rigorous enough to permit tool based
composition, analysis and meaningful search. Such a
specification serves as a contract to consumers of the component
[18, 6]. With this discipline in place, the stage is set for a proper
treatment of reuse, and for contracted-out component
provisioning in software supply chains.

Second, CBD asserted that the structure and behavior of an
application could be formalized and analyzed in terms of
collaborations among components using only the component
specifications, independent of any potential implementation. A
collaboration describes roles played by component
specifications in a sequence of interactions. By grouping
collaborations, a complete picture of the design of a set of
interacting components can be produced without requiring any
information about their underlying component implementations.
Collaborations provide a way to discover how functionality
should be assigned to a specification, and thereby prescribe the
behavior required of the implementation. Moreover,
collaborations can be parameterized with variability points and
systematically reused as design templates. Implementations of
component-based designs can be generated in part and
sometimes in whole by progressively refining compositions of
collaborations using model-driven development techniques.

3.2 Critical Innovations in Granularity
In many ways the CBD development techniques from the mid-
nineties were ahead of their time. While most of the techniques
for component specification and composition were mature, the
underlying execution platform technology was not mature
enough to support applications based on large-scale built-to-
order or ready-built components. In 1997, competing platform

technologies included the OMG’s CORBA, J2EE and COM
technology from Microsoft.

Although each of these platform technologies succeeded in other
ways, neither was able to support a component marketplace, or
architectures where distributed, large granularity components
could interact in a secure, efficient manner at scales necessary to
support the new application types demanded by business.

The emerging web service technology succeeds where they
failed. Protocols and platform extensions based on XML and
SOAP, are becoming available for sophisticated web-delivered
applications. They offer key infrastructure features, such as
transactions, security, asynchronous messaging, routing and
reliable, guaranteed-delivery messaging. With broad industry
agreement through bodies such as the W3C [27] and WS-I [29],
interoperability between proprietary component implementation
platforms is being designed in from the beginning.

Web service technology uses the Web Service Description
Language (WSDL) to define web services. A WSDL file is an
XML file that defines a web service by specifying how it is
invoked and what it returns, without describing its
implementation. It can be advertised in a catalog and used by
tools to generate adapters or client side code. As such, a WSDL
file is the web service equivalent of a component specification,
and can be generated by tools using CBD techniques for
component definition, composition and interaction.

However, the WSDL specification is missing one critical
concept that must be present to allow large scale composition of
applications from web services. It is not enough to understand
how to invoke a web service component. For realistic
applications, you also need to know how to perform a sequence
of interactions. A web service component specification must be
explicit about the expected message order, and what happens
when unexpected conditions arise. The protocol information that
governs its interaction must be made explicit in a contract that
should form part of the component specification.

Given an adequate definition of a contract, collaborations
between web service components can be specified and
composed. In many cases it will be possible to assemble
applications using a process engine, such as Microsoft’s BizTalk
Server to declaratively define and manage the sequence of
messages interchanged by the application components. This kind
of assembly is called orchestration.

4. SPECIFICITY
4.1 Specificity Concerns Scope of Reuse
The third dimension is specificity. Specificity defines the scope
of an abstraction. To paraphrase Jackson, the value of an
abstraction increases with its specificity to some problem
domain [19]. More specific abstractions can be used in fewer
products (i.e., by members of a smaller product family), but
contribute more to their development. More general abstractions
can be used in more products (i.e., by members of a larger
product family), but contribute less to their development. Higher
levels of specificity allow more systematic reuse.

Of the three dimensions, specificity is perhaps the most
important to software factories. Historically, the software
industry has stayed at relatively low levels of specificity,
compared with more mature industries, where specialized

products and services are ubiquitous. The economics of software
development reflect this tendency, rewarding generic products
that can be used in many applications, but which contribute little
to their development. The fact that applications are built
primarily by hand shows that reusable components are not
available for the vast majority of the features they require.
Achieving the levels of reuse required to create significant
economies of scope requires much higher levels of specificity,
and a migration from generic products, such as tools and
libraries for general purpose programming languages like Java
and C#, to specialized products, such as tools and frameworks
for vertical domains like Banking and Insurance. In order for
this migration to occur, companies with domain knowledge must
become producers of reusable components that support the
development of applications in those domains. This might mean
that barriers to component development will be lowered, so that
domain knowledge holders can develop components in house, or
it might mean that a component outsourcing industry will
implement components from specifications supplied by the
domain knowledge holders. Both solutions can be seen in other
industries.

For example, in the consumer electronics industry, there are
companies that build their own branded components, and there
are companies that build components branded by other
companies on a contract basis. Of course, this will require the
development of new composition mechanisms, since software
component assembly requires much higher levels of adaptation
than the assembly of physical components, the standardization
of specification formats, since software specification is currently
quite informal, and much better customer and supplier
relationship management, since software development involves
much higher levels of iteration.

4.2 Software Product Lines
While CBD focuses on the rigorous partitioning and
composition of components, and MDD provides a rigorous
framework for abstraction and transformation, both methods are
inherently focused on building one product at a time. What they
lack is the realization that most applications are members of
families [23, 14, 10]. Software product lines are the critical
innovation on the specificity axis that capitalizes on the
separation of commonality and variability in product families.
Figure 6 describes the main steps and deliverables in product
line development. Recall that a software product line produces a
family of software products that are deliberately designed to
take advantage of common features and known forms of
variation. Product line developers build production assets used
by the product developers to produce family members. These
include implementation assets, such as architecture and
components, used to implement the family members, and
process assets, such as a process, which describes the use of the
implementation assets, and tools, which automate parts of the
process. A key step in developing the production assets is to
produce one or more domain models that describe the common
features of problems in the domains addressed by the product
line, and the ways in which they can vary. These models become
detailed descriptions of the problem domains. They collectively
define the scope of the product line, and can be used to qualify
prospective family members.

5. AN EXAMPLE OF SOFTWARE
FACTORIES

5.1 Model-driven Product Lines
We can now define a software factory as a model-driven product
line – a product line automated by metadata captured by models
using domain specific modeling languages. We said earlier that
software factories generalize the modeling grid for a product
family, defining a graph of viewpoints called a software schema,
which describes the information required to produce a family
member. Since each viewpoint is supported by DSLs, we
develop DSL based tools for editing the models, and for
translating them either into executables, or into specifications at
lower levels of abstraction, such as general purpose
programming language source code files, or models based on
more concrete DSLs. We then define the process assets for the
software factory in terms of this process. Finally, we collect
these assets into a software template that loads into an
Interactive Development Environment (IDE), such as
Microsoft’s Visual Studio .NET. When configured in this way,
the IDE becomes a software factory for the product family, as
illustrated in Figure 7. In other words, for a software factory, the
product line developers build production assets for a specific
IDE, and deliver them as plug-ins to the IDE.

Using the software factory, the product developers can rapidly
assemble family members. Recall that in a product line, the
requirements model is used to specify a family member by
identifying the feature variations that define it uniquely. In a
software factory, selecting feature variations automatically or
semi-automatically configures the production assets for the
selected family member, including the project structure,
imported subsystems and components, available viewpoints and
patterns, and constraints. For example, imagine that when we
select the content personalization feature for an online
commerce application, the following things happen:

• A folder for the personalization subsystem is added to the
project we’re using to build the application.

• The personalization subsystem is imported into the
project.

• The viewpoint used to configure personalization is added
to the schema for the application, causing the
personalization configuration tool to appear on the
menu.

• The Front Controller pattern is applied automatically in
the transformation between the user interaction model
and the web front end design model, and is made
available in the designer where we model the web front
end design, instead of the Page Controller pattern, so
that the application will vector to different pages for
different users, instead of showing the same content to
all users.

• We are not allowed to create a class that derives from
PageController in the folder for the personalization
subsystem

Having configured the software factory appropriately, the
product developers use it to build the family member. They
build models for the viewpoints defined by the software schema,
starting with models near the top of the graph, and then working
their way down, producing executables using framework
completion and progressive refinement. At times, they may
work bottom up, instead of top down, generating test harnesses
for various pieces of the product, and testing the pieces as they
work. When the software schema is completely populated, the
process is complete.

5.2 Software Factory Example
Figure 5 illustrates a software schema for a family of software
products, in this case business applications that can be specified
as interacting business processes and business entities, and
deployed as collaborating web services.

Imagine a bank that needs to build business applications for
rapidly changing financial instruments. In Step 3 of Figure 8, the
product line developers at the bank, armed with Software
Factory B, build production assets for the schema shown in
Figure 5. These assets comprise a software template that can be
loaded into another instance of the same IDE. Configured in this
way, the IDE is now Software Factory C. In Step 4 of Figure 8,
the product developers at the bank now use this software factory
to build business applications for rapidly changing financial
instruments.

Product Line
Developer

Product Line
Developer

Product
Developer
Product

Developer

Software
Template
Software
Template

Software
Schema

Software
Schema

Software
Factory

Software
Factory

Product
Family Members

Product
Family Members

builds & uses

builds

loaded into IDE

builds

uses

Product Line
Developer

Product Line
Developer

Product
Developer
Product

Developer

Software
Template
Software
Template

Software
Schema

Software
Schema

Software
Factory

Software
Factory

Product
Family Members

Product
Family Members

builds & uses

builds

loaded into IDE

builds

uses

Figure 7: Overview of a Software Factory

Figure 6: Overview of a Software Product Line
(adapted from [28])

Product Line
Developer

Product Line
Developer

Product
Developer
Product

Developer

Product Line
Scope

Product Line
Scope

Production
Assets

Production
Assets

Product
Family Members

Product
Family Members

builds & uses

builds

builds

uses

Product Line
Developer

Product Line
Developer

Product
Developer
Product

Developer

Product Line
Scope

Product Line
Scope

Production
Assets

Production
Assets

Product
Family Members

Product
Family Members

builds & uses

builds

builds

uses

Of course, instead of fairly generic production assets for
business applications, Software Factory B could have been used
to build more specialized production assets for financial services
applications, such as implementation assets like risk calculators
and forecasting engines, and process assets like special project
types and wizards for financial application development.
Configured with these assets, the IDE would become a software
factory for financial applications. It would be used again by the
product developers at the bank to build business applications for
rapidly changing financial instruments. This time, however, the
DSLs, tools and frameworks at their disposal would be much
more specific to the financial services domain. They would
therefore be more productive using this software factory than
they were using the previous one, since more of each application
would be supplied by the frameworks and generated from the
DSLs by the tools, leaving less work to be done by hand.

At this point, we should ask where the product line developers
got Software Factory B, and why the examples above started out
with Step 3. As it turns out, software factories can be used to
produce other software factories. In Step 1 of Figure 9, an IDE is
used to build a languages, frameworks and tools for building
software factories. These assets comprise a software template
that can be loaded into another instance of the same IDE.
Configured in this way, the IDE is now Software Factory A in
Step 2. This software factory can be used to build software
factories. We can think of the IDE as Software Factory A,
although in practice, it is just an extensible IDE. This process,
called bootstrapping, is standard practice in compiler
development.

How do supply chains fit into the picture? From what we have
said in the preceding paragraphs, we might conclude that
software factories do not allow multiple suppliers to collaborate
in the development of the product. On the contrary, they
promote the formation of supply chains in two ways:

At any level, the schema can be partitioned vertically among
multiple suppliers. The components provided by the suppliers
are then assembled at the level above. Imagine, for example, that
the risk calculators and forecasting engines used by the bank
come from different suppliers, and are assembled by the
developers at the bank.

Within any vertical partition, the schema can also be partitioned
horizontally among multiple suppliers. Imagine, for example,
that instead of working for the bank, the product line developers
who created Software Factory B work for an Independent
Software Vendor. Instead of building software factories for in
house developers, they build them for downstream consumers.
They might then, in turn, use less specialized software factories,
such as the original Software Factory B that produced
components for building business applications.

Of course, the two types of partition can appear anywhere in the
schema, and can be combined in arbitrary ways. They can also
disappear and then reappear, as dictated by prevailing business
conditions. In a mature industry, we would see many levels of
suppliers contributing to the completed application, and constant
churn in the supply chain, as suppliers enter the market,
consolidate or leave the market at various points.

6. CONCLUSION
Software Factories are the convergence of key ideas in software
product lines, component-based development and model-driven
development. The innovation lies in integrating these ideas into
a cohesive framework that supports new tools and new practices.
By combining model-driven and component-based techniques
with product line principles, Software Factories usher in a new
application development model, where highly extensible
development tools are quickly and cheaply configured to create
software factories for specific domains.

Realization of this vision is the goal of software factories. It will
require us to rethink tools and methods, languages and
frameworks. Of course, some parts of this vision may never be
realized. However, it is commonly said that we frequently over-
estimate what can be achieved in five years, and under-estimate
what can be achieved in ten. That said, there is already
substantial momentum toward the realization of the vision. It is
our conviction that key elements will be realized. The evidence
of their realization has already started to appear.

7. ACKNOWLEDGEMENTS
Special thanks to Krzysztof Czarnecki and Paul Clements, who
reviewed earlier versions of this material and provided valuable
comments.

Adapted from Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools, by Jack
Greenfield and Keith Short, Copyright © 2003 by Jack

AA

BB

Process
Assets

Libraries
FrameworksTools

Process
Assets

Libraries
FrameworksTools

Step 1. IDE
used to build
software
template A.

Software
template A.

Step 2.
Software factory
used by product
line developers
to build software
template B.

AA

BB

Process
Assets

Libraries
FrameworksTools

Process
Assets

Libraries
FrameworksTools

Step 1. IDE
used to build
software
template A.

Software
template A.

Step 2.
Software factory
used by product
line developers
to build software
template B.

Figure 9: Building a Software Factory
with a Software Factory

BB

CC

Process
Assets

Libraries
FrameworksTools

Process
Assets

Libraries
FrameworksTools

Process
Assets

Libraries
FrameworksTools

Step 3.
Software factory
used by product
line developers
to build software
template A.

Software
template B.

Step 4.
Software factory
used by product
developers to
build business
applications.

BB

CC

Process
Assets

Libraries
FrameworksTools

Process
Assets

Libraries
FrameworksTools

Process
Assets

Libraries
FrameworksTools

Step 3.
Software factory
used by product
line developers
to build software
template A.

Software
template B.

Step 4.
Software factory
used by product
developers to
build business
applications.

Figure 8: Building and Using a Software
Factory

Greenfield, Keith Short. All rights reserved. Reproduced here
by permission of Wiley Publishing, Inc.

8. REFERENCES
[1] D. Alur, J. Crupi and D. Malks. Core J2EE Patterns,

Best Practices and Design Strategies. Sun
Microsystems Press, 2001.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[3] G. Booch. Object Oriented Analysis and Design With
Applications. Second Edition. Addison-Wesley,
1994.

[4] F. Brooks. No Silver Bullet: Essence and Accidents
of Software Engineering. Computer Magazine, 1987.

[5] C. Christensen. The Innovator’s Dilemma, Harvard
Business School Press, 1997.

[6] J. Cheesman and J. Daniels. UML Components: A
Simple Process for Specifying Component-Based
Software. Addison-Wesley, 2000.

[7] J. Cleaveland. Program Generators with XML and
Java. Prentice Hall PTR, 2001.

[8] A. Cockburn. Writing Effective Use Cases, Addison
Wesley, 2000.

[9] S. Cook. The UML Family: Profiles, Prefaces and
Packages. Proceedings of UML2000, edited by A.
Evans, S. Kent and B. Selic. 2000, Springer-Verlag
LNCS.

[10] P. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.

[11] J. Coplien. Multi-paradigm design. In Proceedings of
the GCSE '99 (co-hosted with the STJA 99).

[12] B. Cox. Planning the Software Industrial Revolution.
IEEE Software Magazine, November 1990.

[13] B. Cox. No Silver Bullet Revisted. American
Programmer Journal, November 1995

[14] K. Czarnecki and U. Eisenecker, Genererative
Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[15] D. D’Souza and A. Wills. Objects, Components And
Frameworks With UML. Addison-Wesley, 1998.

[16] M. Fowler. Refactoring: Improving The Design Of
Existing Code. Addison-Wesley, 1999.

[17] E. Gamma, R. Helm, R. Johnson and J. Vlissides.
Design Patterns, Elements of Reusable Object-
Oriented Software. 1995, Addison-Wesley.

[18] P. Herzum and O. Sims. Business Component
Factory, A Comprehensive Overview of Component
Based Development for the Enterprise. March 2000,
John Wiley and Sons.

[19] M. Jackson. Problem Frames: Analyzing and
Structuring Software Development Problems.
Addison Wesley, 2000.

[20] R. Johnson. Documenting Frameworks Using
Patterns. ACM SIGPLAN Notices, volume 27,
number 10.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. Griswold. An overview of AspectJ. In
Proceedings of the European Conference on Object-
Oriented Programming, 2001.

[22] T. Kuhn. The Structure Of Scientific Revolutions.
The University Of Chicago Press, 1970.

[23] D. Parnas. On the Design and Development of
Program Families. IEEE Transactions on Software
Engineering, March 1976.

[24] J. Greenfield and K. Short. Software Factories:
Assembling Applications with Patterns, Frameworks,
Models and Tools. John Wiley and Sons. 2004.

[25] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, M. Stal. Pattern-Oriented Software
Architecture, Volume 1. A System Of Patterns. John
Wiley and Sons, 1996.

[26] J. Smith and D. Stotts. Elemental Design Patterns - A
Link Between Architecture and Object Semantics.
Proceedings of OOPSLA 2002.

[27] Standish Group, Chaos – A Recipe for Success, 1999,
available online at
http://www.standishgroup.com/sample_research/

[28] http://www.w3.org/.
[29] D.M. Weiss, C.T. Robert Lai. Software Product-Line

Engineering, Addison-Wesley , 1999.
[30] http://www.ws-i.org/.

