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ABSTRACT 
The confluence of component based development, model driven 
development and software product lines forms an approach to 
application development based on the concept of software 
factories. This approach promises greater gains in productivity 
and predictability than those produced by incremental 
improvements to the current paradigm of object orientation, 
which have not kept pace with innovation in platform 
technology. Software factories promise to make application 
assembly more cost effective through systematic reuse, enabling 
the formation of supply chains and opening the door to mass 
customization. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques],  D.2.11 [Software 
Architectures]: languages, patterns, domain-specific 
architectures, D.2.13 [Reusable Software] domain engineering. 

General Terms 
Design, Languages. 

Keywords 
Design Patterns, Domain-Specific Languages, Model-Driven 
Development, Software Product Lines, Software Factories. 

 

1. INTRODUCTION 
1.1 Industrializing Software Development 
The software industry remains reliant on the craftsmanship of 
skilled individuals engaged in labor intensive manual tasks. 
However, growing pressure to reduce cost and time to market, 
and to improve software quality, may catalyze a transition to 
more automated methods. We look at how the software industry 
might be industrialized, and we describe technologies that might 
be used to support this vision. We suggest that the current 
software development paradigm, based on object orientation, 
may have reached the point of exhaustion, and we propose a 
model for its successor. 

Some have suggested that software development cannot be 
industrialized because of its creative character. Others have 

suggested that significant progress can still be made on the 
foundation of object orientation, especially in light of the 
growing agility of development methods. We are quite 
sympathetic with these points of view, and have seen that small 
teams of skilled developers can develop complex applications on 
time and on budget, with high levels of quality and customer 
satisfaction. However, we have also seen that such results are 
the exception, not the rule. Recognizing that software 
development is an inherently people-oriented discipline that 
cannot be reduced to purely mechanical and deterministic 
processes, however, we propose a people-oriented approach to 
industrialization, one that uses vocabularies that are closer to the 
problem domain, and that leaves more of the mechanical and 
deterministic aspects to development tools. 

1.2 Lessons from Other Industries 
Over the last ten years, the software industry has met the 
demands of an increasingly automated society by honing the 
skills of individual developers, just as artisans met the demands 
of an increasingly industrialized society in the early stages of the 
industrial revolution by honing the skills of individual 
craftsmen. Up to a point, this is an effective way to meet 
demand. Beyond that point, however, the means of production 
are quickly overwhelmed, since the capacity of an industry 
based on craftsmanship is limited by its methods and tools, and 
the by size of the skilled labor pool. A quick look at the state of 
software projects suggests that we are already struggling to meet 
demand using the current means of production. 

According to the Standish Group [26], businesses in the United 
States spend more than $250 billion annually on software 
development, with the cost of the average project ranging from 
$430,000 to $2,300,000, depending on the company size. Only 
16% of these projects are completed on schedule and on budget. 
Another 31% are canceled, primarily due to quality problems, 
creating losses of about $81 billion annually. Another 53% cost 
more than planned, exceeding their budgets by an average of 
189%, creating losses of about $59 billion annually. Projects 
that reach completion deliver an average of only 42% of the 
originally planned features. 

These results are likely to be exacerbated by continuing platform 
technology innovation, which has outstripped the methods and 
tools used to develop software over the last ten years. In the 
business application market, for example, we can now integrate 
heterogeneous systems in different businesses located anywhere 
on the planet, for example, but we hand-stitch the applications 
deployed on this platform technology one at a time, treating 
each one as an individual, implementing coarse grained, domain 
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specific concepts like stock trades and insurance claims using 
fine grained, generic concepts like loops, strings and integers. 
Similar observations can be made in markets for mobile devices, 
media, smart appliances, embedded systems and medical 
informatics. 

When faced with similar challenges many years ago, other 
industries moved from craftsmanship to industrialization by 
learning to customize and assemble standard components to 
produce similar but distinct products, by standardizing, 
integrating and automating their production processes, by 
developing extensible tools that could be configured to automate 
repetitive tasks, by developing product lines to realize 
economies of scale and scope, and by forming supply chains to 
distribute cost and risk across networks of highly specialized 
and interdependent suppliers. These changes enabled the cost 
effective production of a wider variety of products to satisfy a 
broader range of customer demands. 

What will industrialization mean in the software industry? No 
one will know until it happens, of course, but we can make 
educated guesses by looking at how the software industry has 
evolved. We can also gain insights by looking at what 
industrialization has meant in other industries, and by comparing 
them with ours to see how our experience might be similar or 
different. 

1.3 Economies of Scale and Scope 
Others have drawn and debated such analogies between the 
software industry and industries that produce physical goods [4, 
12, 13]. However, some of the discussion has involved an 
apples-to-oranges comparison between mass production in 
industries that produce physical goods, on the one hand, and the 
development of designs and one-off implementations in the 
software industry, on the other. There are two keys to clearing 
up the confusion. 

• The first is to distinguish between economies of scale and 
scope. While both refer to the realization of cost reductions 
by producing multiple products jointly, rather than 
independently, they arise in different situations. Economies 
of scale arise in the production of multiple implementations 
of a single design, while economies of scope arise in the 
production of multiple designs and their initial 
implementations.  Economies of scale arise in the 
production of software, as in the production of physical 
goods, when multiple copies of an initial implementation 
are produced mechanically from prototypes developed by 
engineers. Economies of scope arise when the same styles, 
patterns and processes are used to develop multiple related 
designs, and again when the same languages, libraries and 
tools are used to develop the initial implementations of 
those designs [14]. When used to drive mass production, 
these initial implementations are called prototypes. 
Accurate comparisons between the software industry and 
industries that produce physical goods should compare 
economies of scale in the mass production of copies in one 
industry with the same measure in the other, or they should 
compare economies of scope in the development of 
prototypes in one industry with the same measure in the 
other. They should not compare economies of scale in the 
mass production of copies in one industry with the 
development of prototypes in the other. 

• The second is to distinguish between mass markets and 
custom markets. In mass markets, where the same product 
can be sold many times, economies of scale can be realized 
in software production, as in the production of physical 
goods, by copying prototypes mechanically. In custom 
markets, each product is unique. Instead of being copied, 
the prototypes are delivered to customers. Here, software 
production is more like the construction of bridges and 
skyscrapers. In custom markets, economies of scope can be 
realized in software production, as in commercial 
construction, through systematic reuse, by using the same 
assets to develop multiple unique but similar products. 

Of course, while the realization of economies of scale in the 
mechanical replication of software is well understood, the 
realization of economies of scope in the development of 
multiple unique but similar software products is not well 
understood. We therefore focus on the latter as an avenue for 
further progress toward the industrialization of software 
development. 

1.4 Software Factories 
Economies of scope can be realized in the context of a product 
family, whose members vary, while sharing many common 
features. A product family may contain either end products, such 
as portfolio management applications, or components, such as 
account management frameworks used by portfolio management 
and customer relationship management applications. 

According to Parnas, a product family provides a context in 
which many problems common to family members can be 
solved collectively [23]. Building on software product line 
concepts, software factories exploit this context to provide 
family wide solutions, while managing variation among the 
family members [10]. Instead of waiting for serendipitous 
opportunities for ad hoc reuse to arise under arbitrary 
circumstances, a software factory systematically captures 
knowledge of how to produce the members of a specific product 
family, makes it available in the form of assets, like patterns, 
frameworks, models and tools, and then systematically applies 
those assets to automate the development of the family 
members, reducing cost and time to market, and improving 
product quality over one-off development. 

Of course, there is a cost to developing a software factory in 
order to realize these benefits. In other words, software factories 
exhibit the classical cost-benefit trade-off seen in product lines 
[28]. While the benefit side of the equation cannot be increased 
through the production of many copies in custom markets, it can 
be increased through the production of many related but unique 
products or product variants, as documented by many case 
studies [10]. In addition, the cost side of the equation can be 
reduced by making product lines less expensive to build. In our 
view, the key to industrialization is enabling the cost effective 
construction and operation of software factories. 

1.5 A Vision of Software Factories 
Before looking at how software factories work, we offer the 
following vision of the future, when software factories are 
widely used to produce applications. Of course, in order to paint 
this vision, we necessarily gloss over many issues. This does not 
mean that we have ignored those issues. Indeed, we have written 
a book identifying and examining as many as we can, and 



suggesting resolution strategies, where possible [24]. In other 
words, while this is a vision, and therefore necessarily 
incomplete, we think it is close enough to reality to start guiding 
the way we think now. It implies significant changes, not only in 
methods and tools, but also in the economics of software 
development, as expertise comes from field organizations with 
problem domain knowledge, instead of from platform vendors. 

1.5.1 Development by Assembly 
Application developers will build about 30% of each 
application. The remaining 70% will be supplied by ready-built 
vertical and horizontal components. Most development will be 
component assembly, involving customization, adaptation, and 
extension. Instead of residing in large amounts of new code 
written in house from scratch, new functionality will be 
distributed across many ready-built and built-to-order 
components provided under contract by many suppliers, each of 
whom will write small amounts of new code from scratch. 
Standard components will be commoditized, and custom 
component suppliers will become ubiquitous, specializing in a 
wide variety of domains. Software that would be prohibitively 
expensive to build by current methods will become readily 
available. 

1.5.2 Software Supply Chains 
To feed the demand for components created by software 
factories, supply chains will emerge, creating standard product 
types with standard specification formats that help consumers 
and suppliers negotiate requirements, standard architectures and 
implementation technologies that let third parties assemble 
independently developed components, standard packaging 
formats that make components easy to consume, standard tools 
that can be reconfigured for product specific feature variations, 
and standard development practices. One of the keys to making 
this work will be the use of standard architectures that reduce 
component mismatch and simplify the management of supplier 
relationships by describing the contexts in which components 
operate. Architectural alignment has been a challenge to supply 
chain pioneers in the automotive and telecommunications 
industries. 

1.5.3 Relationship Management 
Requirements capture, analysis and negotiation will become 
critical elements of customer relationship management. Service 
level agreements documenting the expectations of consumers 
and suppliers will be govern transactions. Following product 
delivery and acceptance, repairs and assistance will be provided 
on a warranty basis. In most cases, consumers will lease 
components from suppliers, allowing them to receive patches 
and upgrades systematically. Dynamic patch and upgrade 
mechanisms will become ubiquitous and much less intrusive. 
Tools that manage the configurations of deployed products will 
become critical parts of the platform. Data generated from 
customer and supplier interactions will be used to improve 
service levels, to optimize production and delivery, and to plan 
future product offerings. 

1.5.4 Domain Specific Assets 
At every step, including final assembly, developers will use 
tools configured for the purpose at hand. Tools for banking and 
health care application development, for example, will be 
readily available. These tools will use powerful abstractions and 

appropriate best practices encoded as languages, patterns and 
frameworks for specific domains. Application developers will 
no longer hand craft large amounts of code in general purpose 
languages. Instead, they will build variants of existing products, 
customized to satisfy unique requirements, writing small 
amounts of code in domain-specific languages to complete 
frameworks. Imagine tools that look like user interface builders 
for assembling web services and business logic. These 
languages, frameworks, patterns and tools will be inexpensive to 
build, enabling organizations with domain expertise to 
encapsulate their knowledge as reusable assets. Of course, we 
are not suggesting that no one will write code by hand any more. 
When this vision is realized, product line developers will build 
the languages, frameworks and tools used by application 
developers, in much the same way that operating system 
developers build device drivers and other system software 
components used by application developers today. The mix of 
product line and product developers will be much more evenly 
balanced, however, than the mix of operating system and 
application developers today. 

1.5.5 Mass Customization 
Some industries, such as the web based PC business, produce 
product variants on demand cheaply and quickly for individual 
customers today. While we will not see mass customization in 
software products for some time, the broad adoption of software 
factories will eventually make it possible. Where this occurs in 
other industries today, business processes are highly automated 
and highly integrated. A value chain that integrates processes 
like customer relationship management, demand management, 
product definition, product design, product assembly and supply 
chain management is a fundamental prerequisite for mass 
customization. When software suppliers achieve the level of 
value chain integration found in other industries, mass 
customization will dramatically change the economics of 
software development. Picture a buyer ordering a customized 
financial services application from a web site, the same way that 
they order a customized desktop machine or server today, with 
the same level of confidence, and similar delivery time. 

1.5.6 Organizational Change 
Clearly, everyone with a stake in application development will 
be affected by the broad adoption of software factories. Software 
developers of all kinds will change their focus and think more 
about assembly than about writing new code. New development 
methodologies will arise, more in tune with the principles of 
manufacturing. Development organizations will develop the 
skills, incentives and processes required to exploit these 
changes. Packaged software vendors will restructure their 
products into componentized product families developed and 
maintained using software product lines. Business users will 
exploit the higher levels of services offered by their IT 
organizations. 

1.6 Developing Software Factories 
The current innovation curve could be described as the era of 
object orientation. Many commentators have observed that it has 
reached a plateau, and that new technologies are needed to 
create the next quantum leap forward in application 
development. According to Kuhn, new paradigms are catalyzed 
by the exhaustion of their predecessors, correcting mistakes and 
applying existing knowledge in new ways [22]. Building on 



domain engineering, software product line technology is 
catalyzing new developments in two object oriented 
technologies, model-driven development and component-based 
development, providing a medium for correcting mistakes and 
applying existing knowledge in new ways. These developments 
represent critical innovations on three axes, along which we can 
plot the transition to the next innovation curve, as illustrated in 
Figure 1. 

 

The figure sets the course for the remainder of this paper. In the 
next three sections, we will look at each dimension in turn, and 
call out the maturity of techniques that support each dimension. 
In the last section, we’ll give a concrete example of software 
factories in action. 

2. ABSTRACTION 
Abstraction hides characteristics of a subject that are not 
relevant for some purposes, while emphasizing others, and 
defines a contract that separates the concerns of various 
stakeholders [7]. The abstraction axis ranges from abstract 
models that specify product features, to source code and other 
concrete artifacts used to produce executable implementations. 
Like refactoring and adaptive design, raising the level of 
abstraction reduces the complexity and brittleness of software 
through encapsulation. By hiding implementations, it keeps 
complexity from growing as features are composed, and 
prevents changes from propagating to clients. The higher we 
move along the axis, the more powerful the abstractions, but 
also the narrower their scope of application. Powerful 
abstractions that encapsulate large amounts of low level code 
tend to address highly specialized domains. 

Since the start of the current innovation curve, there has been a 
trend toward increasing abstraction in platform technology, from 
distributed computing to message oriented middleware, to 
distributed object and component middleware, and recently to 
asynchronous, loosely coupled web services. A similar trend in 
application development technology is reflected by component 
architectures, which encapsulate deployment concerns, and by 
patterns, which describe configurations of existing technologies 
that represent known solutions to recurring problems in specific 
domains. While these innovations have advanced the state of the 
art by giving developers new vocabularies for solving problems 

[17], they have stopped short of giving them formal languages to 
express those vocabularies. We are now seeing the extension of 
the trend in this direction, with the advent of byte code based 
languages and specialized languages based on XML, such as 
languages for process specification and execution. In fact, this 
kind of progression has characterized the evolution of the 
industry, as noted by Smith and Stotts. 

The history of programming is an exercise in 
hierarchical abstraction. In each generation, 
language designers produce explicit constructs for 
conceptual lessons learned in the previous 
generation, and then architects use [the new 
constructs] to build more complex and powerful 
abstractions. [25] 

2.1 Model-Driven Development 
One of the key themes of object orientation was Object Oriented 
Analysis and Design (OOA&D) [3]. OOA&D proposed a way to 
decompose functional requirements and map them onto object 
oriented implementation technologies. One problem with this 
approach was that it incorrectly assumed that the structure of the 
solution would match the structure of the problem [11]. Another 
problem with OOA&D, was that it promoted a methodical, top 
down approach to development. These problems have been 
addressed through a series of adaptations, however, and the 
basic principles of OOA&D remain the foundation of modern 
application development practices. 

Since it combined contributions from several OOA&D methods, 
the Unified Modeling Language (UML) became a rallying point 
for a model-based approach to application development. But 
despite a large number of books about the UML and a large 
number of tools claiming to support the UML, the language has 
had little real impact on application development. Its primary 
use has been to produce visual representations of classes and the 
relationships between them. Constrained by weak extensibility 
mechanisms, the UML is tightly bound to the programming 
language concepts in vogue at the time of its creation. Its 
semantic ambiguity and poor organization have prompted a 
redesign, with contenders for a major revision vying to define 
what appears to be an even larger and more complex language 
that is just as ambiguous and as poorly organized as its 
predecessor. Even with the proposed revisions, the UML falls 
far short of providing the highly focused, domain-specific 
modeling capabilities required by the next wave of application 
development technology. Its primary contribution was the idea 
of an extensible modeling language with an underlying 
metamodel. 

While the documentation of abstract concepts has some value, 
the real opportunity for innovation lies not in visualizing the 
information captured by models, but in processing that 
information to automate development tasks. This is the thrust of 
model-driven development (MDD). Despite its ties to OOA&D, 
MDD embodies ideas and technologies that predate object 
orientation. It seeks to capture developer intent, usually 
expressed informally, if at all, in prose or ad hoc diagrams, as 
formal specifications that describe application features in 
abstract terms using modeling languages, and to automate the 
implementation of that intent, usually by compiling the 
specifications to produce executables. This is valuable because 
the features are difficult to see in low level implementation 
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artifacts, such as source code, and difficult to develop, maintain 
and enhance consistently, due to the number of independent 
elements that must be synchronized. The promise of MDD is 
that platform specific compilers will produce implementations 
for multiple platforms from a single specification, letting users 
retain investments in models describing application features as 
the platform technology changes beneath them. Of course, this is 
the same promise offered by byte code languages, such as C# 
and Java, and by generations of earlier languages that raised the 
level of abstraction above their predecessors. 

With some notable exceptions, early attempts at MDD, 
represented by the CASE tools of the eighties, failed miserably. 
Most of these tools did not take advantage of platform-specific 
features, and produced naïve, inefficient, least common 
denominator code. The upfront costs of adopting the modeling 
techniques they required were prohibitively large. Added to this 
was the risk inherent in spending a substantial portion of the 
project’s budget building models with the promise of code 

appearing only in later stages. This required enormous 
confidence in the tools and in the longevity of their vendors. 
Also, concepts like round-trip engineering, where a model could 
be synchronized with changes made independently to the code it 
had generated from them, were overwhelmingly complex. 
Another criticism was that many CASE tools imposed a 
methodical top-down process. This was the ultimate kiss of 
death, since rapid iteration of partial solutions has proven to be 
critically important to the success of application development, as 
so clearly demonstrated by agile development methods [2]. 
These problems can be overcome using language technologies 
that allow higher fidelity in specifying application features, and 
using more transformation techniques that give developers much 
greater control over generated code. 

2.2 Critical Innovations in Abstraction 
We have seen that CASE tools began to exploit the benefits of 
higher levels of abstraction, but were unable to manage the 
inherent complexities. Typically they selected a useful set of 
abstractions, but were naïve about the mapping to the executable 
platform, and tended to fill the gap between abstractions and 
executable platform by generating layers of application code. 

Even good products that successfully managed to keep 
generated code synchronized with the models, tended to 
overwhelm the developer with the resulting complexity, and the 
models fell into disuse. See Figure 2(a)   A good example are the 
generic class modeling tools that have their own vocabulary and 
type system, and which require complex mapping and code 
generation to the languages they attempt to model. Usually after 
one trip through the generation process, the task of 
synchronization and re-generation becomes too troublesome and 
the model is abandoned. 

Remember that the idea is to simplify the use of complex 
concepts by hiding unnecessary details, while providing a 
holistic view that exposes the relationships and dependencies 
among those concepts, where otherwise such these might be 
difficult to detect. The key idea is to keep the model – the set of 
useful simplifying abstractions – as close as possible to the 
underlying framework in which the concepts lie. For example, 
consider a graphical class modeling. This tool surfaces these 

class definition concepts with high fidelity to their original type 
system and vocabulary, allowing the developer to manipulate 
parts of his program visually as he would in a source code 
editor, but the tool adds value to the developers job because it 
surfaces relationships and dependencies between classes that are 
not easy to see in the source code alone. See Figure 2(b). 

2.3 Domain Specific Languages 
If the set of simplifying abstractions requires too much of a 
bridge to implementation, the answer is to raise the level of 
abstraction of the underlying execution platform.  There are two 
ways this can be done. The first is by providing a software 
framework that specifically addresses a well-defined, narrow 
problem domain, and using the abstractions in a model to define 
how the variability points in the framework must be filled as in 
Figure 2(c). The model has become focused and specific to this 
domain – it can be expressed in a domain specific language, or 
DSL, which explicitly describes concepts the new framework 
offers. In contrast, attempts to capture details of the specific 
domain in a general purpose modeling language such as UML 
yields a lower fidelity description. Of course, DSLs may have 
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either graphical or textual concrete syntaxes, whatever suits the 
developer best. 

Let’s take the example of user interface form design in 
Microsoft Windows. When Windows was first introduced, only 
highly skilled programmers were capable of building working 
Windows applications. When Microsoft Visual Basic was 
introduced, the Form and Control abstractions allowed huge 
numbers of less skilled developers to easily produce working 
Windows applications. Forms and Controls were highly 
effective abstractions for the domain of graphical user interface 
manipulation. Today, in the Microsoft .Net world, these same 
abstractions are implemented by the .Net framework that 
underlies the Form designer. Few developers bother to look at 
the small pieces of code generated to fill the variability points in 
the framework. We call this approach, where we generate 
minimal code to fill variability points in a domain specific 
framework from a domain specific model, framework 
completion, to contrast it with brute force code generation. 

Alternatively, we can use a set of related patterns, called a 
pattern language, to implement the abstractions, instead of a 
framework. The pattern language for business application 
development with J2EE published by Alur, Crupi and Malks [1], 
for example, defines a collection of related patterns, and shows 
how and when they can be combined to solve many different 
kinds of problems. We can tool this kind of pattern language, 
giving the developer a way to apply the patterns, and then 
evaluating them automatically when applied. Of course, since 
frameworks embody patterns [20], we may be able to use a 

pattern language and a framework together, using the patterns to 
guide the assembly of components supplied by the framework. 
Note that we can now automate framework based development 
using either DSLs or pattern languages. The difference is 
essentially a trade-off between complexity and control. Since the 
pattern language lets the implementations of the abstractions 

show through, the developer has more control over their 
implementation, but must also assume more responsibility. By 
contrast, a DSL hides the implementations of the abstractions, 
but gives the developer less control over their implementations. 

If it’s not possible to build a software framework that can 
provide a natural platform for implementing a useful DSL, it 
may be possible to define another layer of simplifying 
abstractions into which the first set may be mapped. This second 
set of abstractions may prove easier to implement than the first, 
leading to the notion of progressive transformations between 
models. The abstractions are transformed into executables by a 
series of steps as in Figure 2(d). When models stack one upon 
another in this way, it becomes useful to categorize and 
summarize the models in an orderly fashion, and to study 
carefully the relationships between them.  

2.4 Relationships Between Metamodels 
One common way to do this is to use a grid as in Figure 3. The 
columns of the grid represent concerns (data, activity, location, 
people, etc.), while the rows represent levels of abstraction. 
Each cell represents a viewpoint from which we can specify 
software. Typically, for a given family of applications, a path 
through the grid represents a sequence of modeling deliverables 
and transformations to properly address functional and non-
functional requirements in the course of building and deploying 
an application.  

This modeling grid is not in itself an innovation. What is novel 
is applying the grid to a product family, defining DSLs for each 

cell, and mappings between and within the cells that support 
fully or partially automatic transformations. As we have seen, 
we must use DSLs, not general purpose modeling languages 
designed for documentation, in order to provide this kind of 
automation. A grid like the one in Figure 3 can be generalized as 
a graph of viewpoints for a product family, and tools can be 
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developed inexpensively to support the editing and 
transformation of the associated DSLs. We call this graph a 
software schema, because it describes the set of specifications 
that must be developed to produce a software product. A 
software schema for a product family, the processes for 
capturing and using the information it describes, and the tools 
used to automate that process collectively form a software 
template. A software template can be loaded into an extensible 
tool, such as an Interactive Development Environment (IDE), to 
produce a specific type of product, in much the same way as a 
document template can be loaded into an extensible document 
editor, such as Word or Excel, to produce a specific type of 
document. An IDE configured with a software template for a 
product family becomes a factory for producing members of the 
family. This is what we call a software factory. Later, we will 

see how software factories can be integrated to form automated 
supply chains. 

Given appropriate DSLs and transformations, we can drive from 
requirements to executables using framework completion and 
progressive refinement, keeping related models synchronized. 
For example, we can produce a logical data model, and then an 
optimized database schema from a business entity model and 
usage statistics from a business process model. We can also 
leverage constraints that relate neighboring cells. For example, 
information known about the deployment environment (e.g., the 
available protocols and system services) can be used to constrain 
designs of service interactions (e.g., by limiting them to the 
protocols and system services available within the deployment 
environment). This helps to ensure that the implementations of 
the service interactions will deploy correctly to the designated 
deployment environment. 

2.5 Transformations 
Transformations can be characterized as either horizontal, 
vertical or oblique [14]. Vertical transformations are mostly 
refinement transformations that map models based on a more 
abstract DSL to models based on a more concrete one, or to 
code based on a general purpose programming language. For 
example, a transformation from a model that describes a 

business process to models that describe the collaborating web 
services that implement the business process is a vertical 
transformation. 

Horizontal transformations may be either refactoring [16] or 
delocalizing transformations [14]. Refactoring transformations 
reorganize a specification to improve its design without 
changing its meaning. Refactoring can be applied to both tree 
and graph based languages. 

Delocalizing transformations can be used to optimize an 
implementation, or to compose parts of an implementation that 
are specified independently. Often, the implementation of an 
operational requirement, such as security or logging, must be 
distributed across many functional modules, making 
maintenance difficult. The implementation of the operational 

requirement is therefore tangled with the implementations of the 
functional requirements. Delocalizing transformations allow the 
operational requirement to be defined once and automatically 
woven into the functional modules during compilation. The 
operational requirement is called an aspect, and the process of 
weaving it into the functional modules is called aspect weaving 
[21]. Like refactoring, aspect weaving can be applied to both 
tree and graph based languages. At any layer of the grid, aspects 
can be modeled separately, and woven into the functional 
modules automatically when mapping to lower level models, by 
an aspect weaver. Separating aspect models from the functional 
modules makes maintenance easier, since it lets the developer 
focus on one problem at a time. 

2.6 Using Patterns in Transformations 
Transformations are inherently parameterized, and operate by 
binding objects in source models as parameter values, and 
creating or modifying objects in target models. We can think of 
a transformation as mapping a pattern of objects in a source 
model to a pattern of objects in a target model. It encodes best 
practices for improving or implementing models. Using patterns 
to describe mappings has led to new approaches to model 
representation, transformation and constraint. Of course, not all 
patterns can be applied automatically, because in many cases, 
the mapping between the models cannot be fully defined in 
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advance. In these cases, the patterns must be applied manually 
by a developer, often with support from a development tool. 
Once they have been applied, however, they can generally be 
evaluated automatically, as described earlier. 

Figure 4 shows a Business Entity pattern, a template for an 
abstraction that lets an application designer think in terms of 
data bearing persistent objects. This is a common abstraction for 
components used in business applications. It can be 
implemented by writing a large amount of data access code, a 
moderate amount of object-relational mapping code, or a small 
amount of component persistence code, using a data access 
framework like Java Database Connectivity (JDBC), an object-
relational mapping framework like TopLink, or a component 
persistence framework like Enterprise JavaBeans, respectively. 

The pattern has been applied to the Customer Type Model in the 
Customer Management component. Its parameters are bound at 
the time of application. Its Type Model parameter is bound to 
the Customer Type Model, and its Operations parameter is 
bound to operations on the Customer Management component. 
After its parameters have been bound, the pattern can be 
evaluated to generate implementation artifacts that manage the 
persistence of Customer entities. 

2.7 Some Examples of DSLs 
If we revisit the grid from Figure 3, and zoom in to the bottom 
right hand corner, as in Figure 5, we can now look at the 
viewpoints and the relationships between them in more detail. In 
the figure, rectangles represent viewpoints, dashed lines 
represent refinement transformations and solid lines represent 
constraints. We now know that each viewpoint contains more 

than just DSLs. It also contains: 

• refactoring patterns that can improve models based on the 
viewpoint,  

• aspect definitions that are applicable to models based on 
the viewpoint,  

• development processes used to produce models based on 
the viewpoint,  

• definitions of constraints supplied by models based on 
neighboring viewpoint,  

• frameworks that support the implementation of models 
based on the viewpoint,  

• mappings that support transformations within and between 
models based on the viewpoint or neighboring viewpoint. 

The figure illustrates the following: 

• The Business Entity DSL defines the business entity 
abstraction, which describes efficient, message driven, 
loosely coupled data services that map onto an object-
relational framework. Examples of business entities 
include Customer and Order.  

• The Business Process DSL defines the business activity, 
role and dependency abstractions, and a taxonomy of 
process patterns that can be used to compose them, 
forming business process specifications. An example of 
a business process is Enter Negotiated Order, which 
might use three process patterns: one for a User 
Interface Process to build a shopping cart, one for a 
sequential process to submit the order and perform 
credit checks, and one for a rule-driven process to 
calculate the discount.  

• These two DSLs map onto a Web Service DSL that 
describes collaborating web services in a service-
oriented application architecture. The Web Service DSL 
is used to describe how the business entities and 

processes are implemented as web services, how the 
messages they exchange are defined and what protocols 
are used to support their interactions, using abstractions 
that hide the underlying details of the web service 
implementations.  
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• A DSL for describing virtual datacenter configurations in 
terms of logical servers that will be deployment targets 
for the web services described using the Web Service 
DSL, along with the software they have installed, and 
their configuration settings. 

• Information from one model can be used to develop 
another. Examples are the interactions between business 
entities and processes, and between web services and 
logical servers. This last one is particularly interesting 
because it can be used to design for deployment. 
Feeding knowledge of the deployment infrastructure 
into web service designs constrains those designs to 
prevent deployment problems. Similarly, working this in 
reverse, if a design is to be deployed on a given logical 
server type, then we can validate that the server on 
which it will be deployed is of the correct type, that it 
has the right software installed, and that it is configured 
correctly. 

• Mappings drive transformations between models at design 
time. For example, we use a transformation to map the 
model of web services to an implementation on the target 
platform, probably in the form of classes that complete a 
framework, such as ASP.NET.  

3. GRANULARITY 
Granularity is a measure of the size of the software constructs 
used as the vehicles of abstraction. Since the beginning of the 
era of object orientation, granularity has slowly increased, from 
fine grained language classes that represented abstractions like 
hash tables and exceptions, to medium grained components that 
represented user interface controls, to coarse grained 
components that represented business entities and activity, and 
now to even more coarse grained services that typically 
represent large subsystems, such as billing or credit 
authorization. Increasing granularity can improve the reusability 
of abstractions because a coarser grained construct encapsulates 
more functionality than a finer grained one, has fewer external 
dependencies, and forms a more independent unit of 
specification, design, implementation, deployment, testing, 
execution, management, maintenance and enhancement. 
However, standardized mechanisms for describing component 
behavior beyond simple interface descriptors, such as WSDL for 
web services, have been slow to materialize. These mechanisms 
are necessary to realize the reuse potential of coarse grained pre-
built components or built-to-order components and services for 
application assembly, because the services required and offered 
by these large constructs, and their valid sequences of 
interaction, are often too complex to understand by 
experimentation. 

3.1 Component Based Development 
Component-based development (CBD) arose in the late nineties 
[15, 6]. CBD is an attempt to facilitate the independent 
deployment of coarse grained constructs using encapsulation to 
minimize the dependencies exposed by the objects they 
contained. Although they appeared at the height of interest in the 
UML, the principles of CBD are weakly supported by the UML. 
Perhaps the most serious problem is that the UML defines too 
many different and incompatible ways to describe abstractions, 
without defining enough semantics to make any of them usable 
for actual development. While it does a passable job of 

supporting language class specification, it does even worse in its 
attempts at describing the packaging of those classes into 
components. Its handling of component composition is also 
weak. 

Designers want to express relationships between larger units of 
design (such as business components [HS00], web services, 
subsystems, etc.), since this can lead to greater reuse of pre-built 
and commercial off-the-shelf components, and to greater 
component outsourcing by formalizing contracts that describe 
component behavior. Larger units of design must compose 
smaller units without loss of rigor, and interactions between 
them must allow the same level of analysis as interactions 
between smaller units. For these reasons, CBD techniques focus 
on component composition and decomposition, and the 
challenges of partitioning functionality among interacting 
components. CBD surfaces two important ideas. 

First, building on the established concept of an interface, CBD 
asserted that there should be a hard distinction between the 
specification of a component and its implementation. There are 
several mechanisms in the UML that attempt to address this 
issue. In addition to creating confusion by offering multiple 
ways to solve the same problem, these mechanisms are not used 
consistently within the UML. A component specification should 
be the subject of a model that describes the behavior of the 
component, including its operations, parameters, and pre- and 
post-conditions, in terms of a model of relationships between 
specification types. No hint of any underlying implementation 
should surface through this abstract specification, and yet the 
specification should be rigorous enough to permit tool based 
composition, analysis and meaningful search. Such a 
specification serves as a contract to consumers of the component 
[18, 6]. With this discipline in place, the stage is set for a proper 
treatment of reuse, and for contracted-out component 
provisioning in software supply chains. 

Second, CBD asserted that the structure and behavior of an 
application could be formalized and analyzed in terms of 
collaborations among components using only the component 
specifications, independent of any potential implementation. A 
collaboration describes roles played by component 
specifications in a sequence of interactions. By grouping 
collaborations, a complete picture of the design of a set of 
interacting components can be produced without requiring any 
information about their underlying component implementations. 
Collaborations provide a way to discover how functionality 
should be assigned to a specification, and thereby prescribe the 
behavior required of the implementation. Moreover, 
collaborations can be parameterized with variability points and 
systematically reused as design templates. Implementations of 
component-based designs can be generated in part and 
sometimes in whole by progressively refining compositions of 
collaborations using model-driven development techniques. 

3.2 Critical Innovations in Granularity 
In many ways the CBD development techniques from the mid-
nineties were ahead of their time. While most of the techniques 
for component specification and composition were mature, the 
underlying execution platform technology was not mature 
enough to support applications based on large-scale built-to-
order or ready-built components. In 1997, competing platform 



technologies included the OMG’s CORBA, J2EE and COM 
technology from Microsoft. 

Although each of these platform technologies succeeded in other 
ways, neither was able to support a component marketplace, or 
architectures where distributed, large granularity components 
could interact in a secure, efficient manner at scales necessary to 
support the new application types demanded by business. 

The emerging web service technology succeeds where they 
failed. Protocols and platform extensions based on XML and 
SOAP, are becoming available for sophisticated web-delivered 
applications. They offer key infrastructure features, such as 
transactions, security, asynchronous messaging, routing and 
reliable, guaranteed-delivery messaging. With broad industry 
agreement through bodies such as the W3C [27] and WS-I [29], 
interoperability between proprietary component implementation 
platforms is being designed in from the beginning. 

Web service technology uses the Web Service Description 
Language (WSDL) to define web services. A WSDL file is an 
XML file that defines a web service by specifying how it is 
invoked and what it returns, without describing its 
implementation. It can be advertised in a catalog and used by 
tools to generate adapters or client side code. As such, a WSDL 
file is the web service equivalent of a component specification, 
and can be generated by tools using CBD techniques for 
component definition, composition and interaction. 

However, the WSDL specification is missing one critical 
concept that must be present to allow large scale composition of 
applications from web services. It is not enough to understand 
how to invoke a web service component. For realistic 
applications, you also need to know how to perform a sequence 
of interactions. A web service component specification must be 
explicit about the expected message order, and what happens 
when unexpected conditions arise. The protocol information that 
governs its interaction must be made explicit in a contract that 
should form part of the component specification. 

Given an adequate definition of a contract, collaborations 
between web service components can be specified and 
composed. In many cases it will be possible to assemble 
applications using a process engine, such as Microsoft’s BizTalk 
Server to declaratively define and manage the sequence of 
messages interchanged by the application components. This kind 
of assembly is called orchestration. 

4. SPECIFICITY 
4.1 Specificity Concerns Scope of Reuse 
The third dimension is specificity. Specificity defines the scope 
of an abstraction. To paraphrase Jackson, the value of an 
abstraction increases with its specificity to some problem 
domain [19]. More specific abstractions can be used in fewer 
products (i.e., by members of a smaller product family), but 
contribute more to their development. More general abstractions 
can be used in more products (i.e., by members of a larger 
product family), but contribute less to their development. Higher 
levels of specificity allow more systematic reuse. 

Of the three dimensions, specificity is perhaps the most 
important to software factories. Historically, the software 
industry has stayed at relatively low levels of specificity, 
compared with more mature industries, where specialized 

products and services are ubiquitous. The economics of software 
development reflect this tendency, rewarding generic products 
that can be used in many applications, but which contribute little 
to their development. The fact that applications are built 
primarily by hand shows that reusable components are not 
available for the vast majority of the features they require. 
Achieving the levels of reuse required to create significant 
economies of scope requires much higher levels of specificity, 
and a migration from generic products, such as tools and 
libraries for general purpose programming languages like Java 
and C#, to specialized products, such as tools and frameworks 
for vertical domains like Banking and Insurance. In order for 
this migration to occur, companies with domain knowledge must 
become producers of reusable components that support the 
development of applications in those domains. This might mean 
that barriers to component development will be lowered, so that 
domain knowledge holders can develop components in house, or 
it might mean that a component outsourcing industry will 
implement components from specifications supplied by the 
domain knowledge holders. Both solutions can be seen in other 
industries.  

For example, in the consumer electronics industry, there are 
companies that build their own branded components, and there 
are companies that build components branded by other 
companies on a contract basis. Of course, this will require the 
development of new composition mechanisms, since software 
component assembly requires much higher levels of adaptation 
than the assembly of physical components, the standardization 
of specification formats, since software specification is currently 
quite informal, and much better customer and supplier 
relationship management, since software development involves 
much higher levels of iteration. 

4.2 Software Product Lines 
While CBD focuses on the rigorous partitioning and 
composition of components, and MDD provides a rigorous 
framework for abstraction and transformation, both methods are 
inherently focused on building one product at a time. What they 
lack is the realization that most applications are members of 
families [23, 14, 10]. Software product lines are the critical 
innovation on the specificity axis that capitalizes on the 
separation of commonality and variability in product families. 
Figure 6 describes the main steps and deliverables in product 
line development. Recall that a software product line produces a 
family of software products that are deliberately designed to 
take advantage of common features and known forms of 
variation. Product line developers build production assets used 
by the product developers to produce family members. These 
include implementation assets, such as architecture and 
components, used to implement the family members, and 
process assets, such as a process, which describes the use of the 
implementation assets, and tools, which automate parts of the 
process. A key step in developing the production assets is to 
produce one or more domain models that describe the common 
features of problems in the domains addressed by the product 
line, and the ways in which they can vary. These models become 
detailed descriptions of the problem domains. They collectively 
define the scope of the product line, and can be used to qualify 
prospective family members.  



 

5. AN EXAMPLE OF SOFTWARE 
FACTORIES 

5.1 Model-driven Product Lines 
We can now define a software factory as a model-driven product 
line – a product line automated by metadata captured by models 
using domain specific modeling languages. We said earlier that 
software factories generalize the modeling grid for a product 
family, defining a graph of viewpoints called a software schema, 
which describes the information required to produce a family 
member. Since each viewpoint is supported by DSLs, we 
develop DSL based tools for editing the models, and for 
translating them either into executables, or into specifications at 
lower levels of abstraction, such as general purpose 
programming language source code files, or models based on 
more concrete DSLs. We then define the process assets for the 
software factory in terms of this process. Finally, we collect 
these assets into a software template that loads into an 
Interactive Development Environment (IDE), such as 
Microsoft’s Visual Studio .NET. When configured in this way, 
the IDE becomes a software factory for the product family, as 
illustrated in Figure 7. In other words, for a software factory, the 
product line developers build production assets for a specific 
IDE, and deliver them as plug-ins to the IDE. 

Using the software factory, the product developers can rapidly 
assemble family members. Recall that in a product line, the 
requirements model is used to specify a family member by 
identifying the feature variations that define it uniquely. In a 
software factory, selecting feature variations automatically or 
semi-automatically configures the production assets for the 
selected family member, including the project structure, 
imported subsystems and components, available viewpoints and 
patterns, and constraints. For example, imagine that when we 
select the content personalization feature for an online 
commerce application, the following things happen: 

• A folder for the personalization subsystem is added to the 
project we’re using to build the application. 

• The personalization subsystem is imported into the 
project. 

• The viewpoint used to configure personalization is added 
to the schema for the application, causing the 
personalization configuration tool to appear on the 
menu. 

• The Front Controller pattern is applied automatically in 
the transformation between the user interaction model 
and the web front end design model, and is made 
available in the designer where we model the web front 
end design, instead of the Page Controller pattern, so 
that the application will vector to different pages for 
different users, instead of showing the same content to 
all users. 

• We are not allowed to create a class that derives from 
PageController in the folder for the personalization 
subsystem 

Having configured the software factory appropriately, the 
product developers use it to build the family member. They 
build models for the viewpoints defined by the software schema, 
starting with models near the top of the graph, and then working 
their way down, producing executables using framework 
completion and progressive refinement. At times, they may 
work bottom up, instead of top down, generating test harnesses 
for various pieces of the product, and testing the pieces as they 
work. When the software schema is completely populated, the 
process is complete.  

5.2 Software Factory Example 
Figure 5 illustrates a software schema for a family of software 
products, in this case business applications that can be specified 
as interacting business processes and business entities, and 
deployed as collaborating web services. 

Imagine a bank that needs to build business applications for 
rapidly changing financial instruments. In Step 3 of Figure 8, the 
product line developers at the bank, armed with Software 
Factory B, build production assets for the schema shown in 
Figure 5. These assets comprise a software template that can be 
loaded into another instance of the same IDE. Configured in this 
way, the IDE is now Software Factory C. In Step 4 of Figure 8, 
the product developers at the bank now use this software factory 
to build business applications for rapidly changing financial 
instruments. 
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Figure 6: Overview of a Software Product Line  
(adapted from [28]) 
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Of course, instead of fairly generic production assets for 
business applications, Software Factory B could have been used 
to build more specialized production assets for financial services 
applications, such as implementation assets like risk calculators 
and forecasting engines, and process assets like special project 
types and wizards for financial application development. 
Configured with these assets, the IDE would become a software 
factory for financial applications. It would be used again by the 
product developers at the bank to build business applications for 
rapidly changing financial instruments. This time, however, the 
DSLs, tools and frameworks at their disposal would be much 
more specific to the financial services domain. They would 
therefore be more productive using this software factory than 
they were using the previous one, since more of each application 
would be supplied by the frameworks and generated from the 
DSLs by the tools, leaving less work to be done by hand. 

At this point, we should ask where the product line developers 
got Software Factory B, and why the examples above started out 
with Step 3. As it turns out, software factories can be used to 
produce other software factories. In Step 1 of Figure 9, an IDE is 
used to build a languages, frameworks and tools for building 
software factories. These assets comprise a software template 
that can be loaded into another instance of the same IDE. 
Configured in this way, the IDE is now Software Factory A in 
Step 2. This software factory can be used to build software 
factories. We can think of the IDE as Software Factory A, 
although in practice, it is just an extensible IDE. This process, 
called bootstrapping, is standard practice in compiler 
development.  

How do supply chains fit into the picture? From what we have 
said in the preceding paragraphs, we might conclude that 
software factories do not allow multiple suppliers to collaborate 
in the development of the product. On the contrary, they 
promote the formation of supply chains in two ways: 

At any level, the schema can be partitioned vertically among 
multiple suppliers. The components provided by the suppliers 
are then assembled at the level above. Imagine, for example, that 
the risk calculators and forecasting engines used by the bank 
come from different suppliers, and are assembled by the 
developers at the bank. 

Within any vertical partition, the schema can also be partitioned 
horizontally among multiple suppliers. Imagine, for example, 
that instead of working for the bank, the product line developers 
who created Software Factory B work for an Independent 
Software Vendor. Instead of building software factories for in 
house developers, they build them for downstream consumers. 
They might then, in turn, use less specialized software factories, 
such as the original Software Factory B that produced 
components for building business applications. 

Of course, the two types of partition can appear anywhere in the 
schema, and can be combined in arbitrary ways. They can also 
disappear and then reappear, as dictated by prevailing business 
conditions. In a mature industry, we would see many levels of 
suppliers contributing to the completed application, and constant 
churn in the supply chain, as suppliers enter the market, 
consolidate or leave the market at various points. 

6. CONCLUSION 
Software Factories are the convergence of key ideas in software 
product lines, component-based development and model-driven 
development. The innovation lies in integrating these ideas into 
a cohesive framework that supports new tools and new practices. 
By combining model-driven and component-based techniques 
with product line principles, Software Factories usher in a new 
application development model, where highly extensible 
development tools are quickly and cheaply configured to create 
software factories for specific domains. 

Realization of this vision is the goal of software factories. It will 
require us to rethink tools and methods, languages and 
frameworks. Of course, some parts of this vision may never be 
realized. However, it is commonly said that we frequently over-
estimate what can be achieved in five years, and under-estimate 
what can be achieved in ten. That said, there is already 
substantial momentum toward the realization of the vision. It is 
our conviction that key elements will be realized. The evidence 
of their realization has already started to appear. 
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