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Abstract 

MPI (Message Passing Interface) is a specification for a standard library for message passing 
that was defined by the MPI Forum, a broadly based group of parallel computer vendors, library 
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combining portability with high performance. We document its portability and performance and 
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set of tools that accompany the free distribution of MPICH, which constitute the beginnings of a 
portable parallel programming environment. A project of this scope inevitably imparts lessons 
about parallel computing, the specification being followed, the current hardware and software 
environment for parallel computing, and project management; we describe those we have learned. 
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extensions to the MPI Standard now being contemplated by the MPI Forum. 
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1. Introduction 

The message-passing model of parallel computation has emerged as an expressive, 
efficient, and well-understood paradigm for parallel programming. Until recently, the 
syntax and precise semantics of each message-passing library implementation were 
different from the others, although many of the general semantics were similar. The 
proliferation of message-passing library designs from both vendors and users was 
appropriate for a while, but eventually it was seen that enough consensus on require- 
ments and general semantics for message-passing had been reached that an attempt at 
standardization might usefully be undertaken. 

The process of creating a standard to enable portability of message-passing applica- 
tions codes began at a workshop on Message Passing Standardization in April 1992, and 
the Message Passing Interface (MPI) Forum organized itself at the Supercomputing ‘92 
Conference. During the next eighteen months the MPI Forum met regularly, and Version 
1.0 of the MPI Standard was completed in May 1994 [ 16,361. Some clarifications and 
refinements were made in the spring of 1995, and Version 1.1 of the MPI Standard is 
now available [17]. For a detailed presentation of the Standard itself, see [42]; for a 
tutorial approach to MPI, see [29]. In this paper we assume that the reader is relatively 
familiar with the MPI specification, but we provide a brief overview in Section 2.2. 

The project to provide a portable implementation of MPI began at the same time as 
the MPI definition process itself. The idea was to provide early feedback on decisions 
being made by the MPI Forum and provide an early implementation to allow users to 
experiment with the definitions even as they were being developed. Targets for the 
implementation were to include all systems capable of supporting the message-passing 
model. MPICH is a freely available, complete implementation of the MPI specification, 
designed to be both portable and efficient. The “CH” in MPICH stands for 
“Chameleon”, symbol of adaptability to one’s environment and thus of portability. 
Chameleons are fast, and from the beginning a secondary goal was to give up as little 
efficiency as possible for the portability. 

MPICH is thus both a research project and a software development project. As a 
research project, its goal is to explore methods for narrowing the gap between the 
programmer of a parallel computer and the performance deliverable by its hardware. In 
MPICH, we adopt the constraint that the programming interface will be MPI, reject 
constraints on the architecture of the target machine, and retain high performance 
(measured in terms of bandwidth and latency for message-passing operations) as a goal. 
As a software project, MPICH’s goal is to promote the adoption of the MPI Standard by 
providing users with a free, high-performance implementation on a diversity of plat- 
forms, while aiding vendors in providing their own customized implementations. The 
extent to which these goals have been achieved is the main thrust of this paper. 

The rest of this paper is organized as follows. Section 2 gives a short overview of 
MPI and briefly describes the precursor systems that influenced MPICH and enabled it 
to come into existence so quickly. In Section 3 we document the extent of MPICH’s 
portability and present results of a number of performance measurements. In Section 4 
we describe in some detail the software architecture of MPICH, which comprises the 
results of our research in combining portability and performance. In Section 5 we 
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present several specific aspects of the implementation that merit more detailed analysis. 
Section 6 describes a family of supporting programs that surround the core MPI 
implementation and turn MPICH into a portable environment for developing parallel 
applications. In Section 7 we describe how we as a small, distributed group have 
combined a number of freely available tools in the Unix environment to enable us to 
develop, distribute, and maintain MPICH with a minimum of resources. In the course of 
developing MPICH, we have learned a number of lessons from the challenges posed 
(both accidentally and deliberately) for MPI implementors by the MPI specification; 
these lessons are discussed in Section 8. Finally, Section 9 describes the current status of 
MPICH (Version 1.0.12 as of February 1996) and outlines our plans for future 
development. 

2. Background 

In this section we give an overview of MPI itself, describe briefly the systems on 
which the first versions of MPICH were built, and review the history of the development 
of the project. 

2.1. Precursor systems 

MPICH came into being quickly because it could build on stable code from existing 
systems. These systems prefigured in various ways the portability, performance, and 
some of the other features of MPICH. Although most of that original code has been 
extensively reworked, MPICH still owes some of its design to those earlier systems, 
which we briefly describe here. 

P4 [8] is a third-generation parallel programming library, including both message- 
passing and shared-memory components, portable to a great many parallel computing 
environments, including heterogeneous networks. Although p4 contributed much of the 
code for TCP/IP networks and shared-memory multiprocessors for the early versions of 
MPICH, most of that has been rewritten. P4 remains one of the “devices” on which 
MPICH can be built (see Section 41, but in most cases more customized alternatives are 
available. 

Chameleon [31] is a high-performance portability package for message passing on 
parallel supercomputers. It is implemented as a thin layer (mostly C macros) over 
vendor message-passing systems (Intel’s NX, TMC’s CMMD, IBM’s MPL) for perfor- 
mance and over publicly available systems (~4 and PVM) for portability. A substantial 
amount of Chameleon technology is incorporated into MPICH (as detailed in Section 4). 

Zipcode 1411 is a portable system for writing scalable libraries. It contributed several 
concepts to the design of the MPI Standard - in particular contexts, groups, and mailers 
(the equivalent of MPI communicators). Zipcode also contains extensive collective 
operations with group scope as well as virtual topologies, and this code was heavily 
borrowed from in the first version of MPICH. 
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2.2. Brief overview of MPI 

MPI is a message-passing application programmer interface, together with protocol 
and semantic specifications for how its features must behave in any implementation 
(such as a message buffering and message delivery progress requirement). MPI includes 
point-to-point message passing and collective (global) operations, all scoped to a 
user-specified group of processes. Furthermore, MPI provides abstractions for processes 
at two levels. First, processes are named according to the rank of the group in which the 
communication is being performed. Second, virtual topologies allow for graph or 
Cartesian naming of processes that help relate the application semantics to the message 
passing semantics in a convenient, efficient way. Communicators, which house groups 
and communication context (scoping) information, provide an important measure of 
safety that is necessary and useful for building up library-oriented parallel code. 

MPI also provides three additional classes of services: environmental inquiry, basic 
timing information for application performance measurement, and a profiling interface 
for external performance monitoring. MPI makes heterogeneous data conversion a 
transparent part of its services by requiring datatype specification for all communication 
operations. Both built-in and user-defined datatypes are provided. 

MPI accomplishes its functionality with opaque objects, with well-defined construc- 
tors and destructors, giving MPI an object-based look and feel. Opaque objects include 
groups (the fundamental container for processes), communicators (which contain groups 
and are used as arguments to communication calls), and request objects for asyn- 
chronous operations. User-defined and predefined datatypes allow for heterogeneous 
communication and elegant description of gather/scatter semantics in send/receive 
operations as well as in collective operations. 

MPI provides support for both the SPMD and MPMD modes of parallel program- 
ming. Furthermore, MPI can support interapplication computations through intercommu- 
nicator operations, which support communication between groups rather than within a 
single group. Dataflow-style computations also can be constructed from intercommuni- 
caters. MPI provides a thread-safe application programming interface (API), which will 
be useful in multithreaded environments as implementations mature and support thread 
safety themselves. 

2.3. Development history of MPICH 

At the organizational meeting of the MPI Forum at the Supercomputing ‘92 confer- 
ence, Gropp and Lusk volunteered to develop an immediate implementation that would 
track the Standard definition as it evolved. The purpose was to quickly expose problems 
that the specification might pose for implementors and to provide early experimenters 
with an opportunity to try ideas being proposed for MPI before they became fixed. The 
first version of MPICH, in fact, implemented the prespecification described in [46] 
within a few days. The speed with which this version was completed was due to the 
existing portable systems p4 and Chameleon. This first MPICH, which offered quite 
reasonable performance and portability, is described in [30]. 
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Starting in spring 1993, this implementation was gradually modified to provide 
increased performance and portability. At the same time the system was greatly 
expanded to include all of the MPI specification. Algorithms for the collective opera- 
tions and topologies, together with code for attribute management, were borrowed from 
Zipcode and tuned as the months went by. 

what made this project unique was that we had committed to following the MPI 
specification as it developed - and it changed at every MPI Forum meeting. Most 
system implementors wait for a stable specification. The goals of this project dictated 
that, in the short term, we deliberately choose a constantly changing specification. The 
payoff came, of course, when the MPI Standard was released in May 1994: the MPICH 
implementation was complete, portable, fast, and available immediately. It is worthwhile 
to contrast this situation with what happened in the case of the High-Performance 
Fortran (HPF) Standard. The HPF Forum (which started and finished a year before the 
MPI Forum) produced their standard specification in much the same way that the MPI 
Forum did. However, since implementation was left entirely to the vendors, who 
naturally waited until the specification was complete before beginning to invest imple- 
mentation effort, HPF implementations are only now (February 1996) becoming avail- 
able, whereas a large community has been using MPI for over a year. 

For the past year, with the MPI Standard stable, MPICH has continued to evolve in 
several directions. First, the Abstract Device Interface (ADI) architecture, described in 
Section 4 and central to the performance, has developed and stabilized. Second, 
individual vendors and others have begun taking advantage of this interface to develop 
their own highly specialized implementations of it; as a result, extremely efficient 
implementations of MPI exist on a greater variety of machines than we would have been 
able to tune MPICH for ourselves. In particular, Convex, Intel, SGI, and Meiko have 
produced implementations of the AD1 that produce excellent performance on their own 
machines, while taking advantage of the portability of the great majority of the code in 
MPICH above the AD1 layer. Third, the set of tools that form part of the MPICH 
parallel programming environment has been extended; these are described in Section 6. 

2.4. Related work 

The publication of the MPI Standard provided many implementation groups with a 
clear specification; and several freely available, partially portable implementations have 
appeared. Like MPICH, their initial versions were built on existing portable message- 
passing systems. They differ from MPICH in that they focus on the workstation 
environment, where software performance is necessarily limited by Unix socket func- 
tionality. Some of these systems are as follows: 

0 LAM [7] is available from the Ohio Supercomputer Center and runs on heteroge- 
neous networks of Sun, DEC, SGI, IBM, and HP workstations. 

0 CHIMP-MPI [5] is available from the Edinburgh Parallel Computing Center and 
runs on Sun, SGI, DEC, IBM, and HP workstations, the Meiko Computing 
Surface machines, and the Fujitsu AP-1000. It is based on CHIMP [9]. 

0 At the Technical University of Munich, research has been done on a system for 
check-pointing message-passing jobs, including MPI. See [43] and [44]. 
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0 Unify [45], available from Mississippi State University, layers MPI on a version of 
PVM [20] that has been modified to support contexts and static groups. Unify 
allows mixed MPI and PVM calls in the same program. 

Proprietary and platform-specific implementations provided by vendors are described 
in Section 9. 

3. Portability and performance 

The challenge of the MPICH project is to combine both portability and performance. 
In this section we first survey the range of environments in which MPICH can be used, 
and then present performance data for a representative sample of those environments. 

3.1. Portability of MPfcH 

The MPI standard itself addresses the message-passing model of parallel computa- 
tion. In this model, processes with separate address spaces (like Unix processes) 
communicate with one another by sending and receiving messages. A number of 
different hardware platforms support such a model. 

3.1 .l. Exploiting high-petiormance switches 
The most obvious hardware platform for MPI is a distributed-memory parallel 

supercomputer, in which each process can be run on a separate node of the machine, and 
communication occurs over a high-performance switch of some kind. In this category 
are the Intel Paragon, IBM SP2, Meiko CS-2, Thinking Machines CM-5, NCube-2, and 
Cray T3D. (Although the Cray T3D provides some hardware that allows one to treat it 
as a shared-memory machine, it falls primarily into this category; see [4].) Details of 
how MPICH is implemented on each of these machines are given in Section 4, and 
performance results for the Paragon and SP2 are given in Section 3.2. 

3.1.2. Exploiting shared-memory architectures 
A number of architectures support a shared-memory programming model, in which a 

memory location can be both read and written to by multiple processes. Although this is 
not part of MPI’s computational model, an MPI implementation may take advantage of 
capabilities in this area offered by the hardware/software combination to provide 
particularly efficient message-passing operations. Current machines offering this model 
include the SGI Onyx, Challenge, Power Challenge, and Power Challenge Array 
machines, IBM SMP’s (symmetric multiprocessors), the Convex Exemplar, and the 
Sequent Symmetry. MPICH is implemented using shared memory for efficiency on all 
of these machines (details in Section 4). Performance measurements for the SGI are 
given in Section 3.2.6. 

3.1.3. Exploiting networks of workstations 
One of the most common parallel computing environments is a network of worksta- 

tions. Many institutions use Ethernet-connected personal workstations as a “free” 
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computational resource, and at many universities laboratories equipped with Unix 
workstations provide both shared Unix services for students and an inexpensive parallel 
computing environment for instruction. In many cases, the workstation collection 
includes machines from multiple vendors. Interoperability is provided by the TCP/IP 
standard. MPICH runs on workstations from Sun (both SunOS and Solaris), DEC, 
Hewlett-Packard, SGI, and IBM. Recently, the Intel 486 and Pentium compatible 
machines have been able to join the Unix workstation family by running one of the 
common free implementations of Unix, such as FreeBSD, NetBSD, or Linux. MPICH 
runs on all of these workstations and on heterogeneous collections of them. Details of 
how heterogeneity is handled are presented in Section 4, and some performance figures 
for Ethernet-connected workstations are given in Section 3.2. 

An important family of non-Unix operating systems is supported by Microsoft. 
MPICH has been ported to Windows 3.1 (where it simulates multiprocessing on a single 
processor); the system is called WinMPI [37,38]. 

3.2. Performance of MPICH 

The MPI specification was designed to allow high performance in the sense that 
semantic restrictions on optimization were avoided wherever user convenience would 
not be severely impacted. Furthermore, a number of features were added to enable users 
to take advantage of optimizations that some systems offered, without affecting portabil- 
ity to other systems that did not have SUC’I optimizations available. In MPICH we have 
tried to take advantage of those features tin the Standard that allow for extra optimiza- 
tion, but we have not done so in every possible case. 

Performance on one’s own application is, of course, what counts most. Nonetheless, 
useful predictions of application performance can be made, based on the results of 
specially constructed benchmark programs. In this section, we first describe some of the 
difficulties that arise in benchmarking message-passing systems, then discuss the 
programs we have developed to address these difficulties and finally present results from 
running the benchmarks on a representative sample of the environments supported by 
MPICH. 

The MPICH implementation includes two MPI programs, mpptest and goptest, 
that provide reliable tests of the performance of an MPI implementation. The program 
mpptest provides testing of both point-to-point and collective operations on a speci- 
fied number of processors; the program goptest can be used to study the scalability of 
collective routines as a function of number of processors. 

3.2.1. Performance measurement problems and pit;falls 
One common problem with simple performance measurement programs is that the 

results are different each time the program is run, even on the same system. A number 
of factors are responsible, ranging from assuming that the clock calls have no cost and 
infinite resolution to the effects of other jobs running on the same machine. A good 
performance test will give the same (to the clock’s precision) answer each time. The 
mpptest and goptest programs distributed with MPICH compute the. average time 
for a number of iterations of an operation (thus handling the cost and granularity of the 
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clock) and then run the same test over several times and take the minimum of those 
times (thus reducing the effects of other jobs). The programs can also provide informa- 
tion about the mean and worst-case performance. 

More subtle are issues of which test to run. The simplest “pingpang” test, which 
sends the same data (using the same data buffer) between two processes, allows data to 
reside entirely in the memory cache. In many real applications, however, neither buffer 
will already be mapped into cache, and this situation can affect the performance of the 
operation. Similarly, data transfers that are not properly aligned on word boundaries can 
be more expensive than those that are. MPI also has noncontiguous datatypes; the 
performance of an implementation with these datatypes may be significantly slower than 
for contiguous data. Another parameter is the number of processors used, even if only 
two are communicating. Certain implementations will include a latency cost proportional 
to the number of processors. This gives the best performance on the two-processor 
ping-pong test at the cost of (possibly) lower performance on real applications. Mpptest 
and goptest include tests to measure these effects. 

3.2.2. Benchmarks for point-to-point operations 
In this section we present some of the simplest benchmarks for performance of 

MPICH on various platforms. The performance test programs mpptest and goptest 
can produce a wealth of information; the script basetest, provided with the MPICH 
implementation, can be used to get a more complete picture of the behavior of a 
particular system. Here, we present only the most basic data: short- and long-message 
performance. 

For the short-message graphs, the only options used with mpptest are -auto and 
-size 0 1000 40. The option -auto tells mpptest to choose the sizes of the 
messages so as to reveal the exact message size where there is any sudden change in 
behavior (for example, at an internal packet-size boundary). The -size option selects 
messages with sizes from 0 to 1000 bytes in increments of 40 bytes. The short-message 
graphs give a good picture of the latency of message passing. 

For the long-message graphs, a few more options are used. Some make the test runs 
more efficient. The size range of message is set with -size 1000 77000 4000, 
which selects messages of sizes between about 1 K and 80 K, sampled every 4000 bytes. 

These tests provide a picture of the best achievable bandwidth performance. More 
realistic tests can be performed by using - cachesize (to force the use of different 
data areas), -overlap (for communication and computation overlap), -async (for 
nonblocking communications), and -vector (for noncontiguous communication). Us- 
ing - givedy gives information on the range of performance, displaying both the mean 
and worst-case performance. 

3.2.3. Performance of MPICH compared with native vendor systems 
One question that can be asked about MPI is how its performance compares with 

proprietary vendor systems. Fortunately, the mpptest program was designed to work 
with many message-passing systems and can be built to call a vendor’s system directly. 
In Fig. 1, we compare MPI and Intel’s NX message-passing. The MPICH implementa- 
tion for the Intel Paragon, while implemented with a special ADI, still relies on 
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Comm Perf for MPI and Raw NX (Paragon) 
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Fig. 1. MPICH vs. NX on the Paragon. 

message-passing services provided by NX. Despite this fact, the MPI performance is 
quite good and can probably be improved with the second-generation ADI, planned for a 
later release of MPICH. We use this as a representative example to demonstrate that the 
apparently elaborate structure shown in Figs. 7 and 8 does not impose serious perfor- 

Fig. 2. Short and long messages on the Paragon. 
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Comm Pal for MPI (0.) Comm Pet-f for MPI (0.) 

2.5 
type = blocking 

I I 1 I 

Fig. 3. Short and long messages on the IBM SP2. 

mance overheads beyond those of the underlying, vendor-specific message-passing 
layer. 

3.2.4. Paragon measurements 
The Intel Paragon has a classic distributed-memory architecture with a (cut-through 

routed) 2-D mesh topology. Latency and bandwidth performance are shown in Fig. 2. 
The Paragon performance measurements shown in Fig. 2 were taken while other users 
were on the system. This explains why the right side of Fig. 2 is “rougher” than the 
curve in Fig. 1, although the peak bandwidth shown is similar. 

3.2.5. IBM SP2 measurements 
The IBM SP2 at Argonne National Laboratory has Power-l nodes (the same as in the 

IBM SPl) and the SP2 high-performance switch. Measurements on IBM SP2 with 

Comm Perf for UPI (femri.rgi.com) 

Fig. 4. Short and long messages on the SGI Power Challenge. 
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Comm Pd for MPPI (h4p) 

Fig. 5. Short and long messages on the Cray T3D. 

Power-2 nodes (thin or wide) will be different. The latencies shown in Fig. 3 reflect the 
slower speed of the Power-l nodes. Note the obvious packet boundaries in the 
short-message plot. 

3.2.6. SGI power challenge measurements 
The SGI Power Challenge is a symmetric multiprocessor. The latency and bandwidth 

performance as shown in Fig. 4 indicate the performance for the ch_shmem device, a 
generic shared-memory device supplied with the MPICH implementation. 

3.2.7. Cray T3D measurements 
The Cray T3D supports a shared memory interface (the shmem library). For MPICH, 

this library is used to support MPI message-passing semantics. The latency and 
bandwidth performance are shown in Fig. 5. 

Fig. 6. Short and long messages on a workstation network. 



800 W. Gropp et al./Parallel Computing 22 (1996) 789-828 

3.2.8. Workstation network measurements 
Workstation networks connected by simple Ethernet are common. The performance 

of MPICH for two Sun SPARCStations, on a shared Ethernet, are shown in Fig. 6. 

4. Architecture of MPICH 

In this section we describe in detail how the software architecture of MPICH supports 
the conflicting goals of portability and high performance. The design was guided by two 
principles. First, we wished to’maximize the amount of code that can be shared without 
compromising performance. A large amount of the code in any implementation is 
system independent. Implementation of most of the MPI opaque objects, including 
datatypes, groups, attributes, and even communicators, is platform-independent. Many 
of the complex communication operations can be expressed portably in terms of 
lower-level ones. Second, we wished to provide a structure whereby MPICH could be 
ported to a new platform quickly, and then gradually tuned for that platform by 
replacing parts of the shared code by platform-specific code. As an example, we present 
in Section 4.3 a case study showing how MPICH was quickly ported and then 
incrementally tuned for peak performance on SGI shared-memory systems. 

The central mechanism for achieving the goals of portability and performance is a 
specification we call the abstract device interface (ADI) [24]. All MPI functions are 
implemented in terms of the macros and functions that make up the ADI. All such code 
is portable. Hence, MPICH contains many implementations of the ADI, which provide 
portability, ease of implementation, and an incremental approach to trading portability 
for performance. One implementation of the AD1 is in terms of a lower level (yet still 
portable) interface we call the channel interface [28]. The channel interface can be 
extremely small (five functions at minimum) and provides the quickest way to port 
MPICH to a new environment. Such a port can then be expanded gradually to include 
specialized implementation of more of the AD1 functionality. The architectural decisions 
in MPICH are those that relegate the implementation of various functions to the channel 
interface, the ADI, or the application programmer interface (API), which in our case is 
MPI. 

4.1. The abstract device interface 

The design of the AD1 is complex because we ,wish to allow for, but not require, a 
range of possible functions of the device. For example, the device may implement its 
own message-queuing and data-transfer functions. In addition, the specific environment 
in which the device operates can strongly affect the choice of implementation, particu- 
larly with regard to how data is transferred to and from the user’s memory space. For 
example, if the device code runs in the user’s address space, then it can easily copy data 
to and from the user’s space. If it runs as part of the user’s process (for example, as 
library routines on top of a simple hardware device), then the “device” and the API can 
easily communicate, calling each other to perform services. If, on the other hand, the 
device is operating as a separate process and requires a context switch to exchange data 
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or requests, then switching between processes can be very expensive, and it becomes 
important to minimize the number of such exchanges by providing all information 
needed with a single call. 

Although MPI is a relatively large specification, the device-dependent parts are small. 
By implementing MPI using the ADI, we were able to provide code that can be shared 
among many implementations. Efficiency could be obtained by vendor-specific propri- 
etary implementations of the abstract device. For this approach to be successful, the 
semantics of the AD1 must not preclude maximally efficient instantiations using modem 
message-passing hardware. While the AD1 has been designed to provide a portable MPI 
implementation, nothing about this part of the design is specific to the MPI library; our 
definition of an abstract device can be used to implement any high-level message-pass- 
ing library. 

To help in understanding the design, it is useful to look at some abstract devices for 
other operations, for example, for graphical display or for printing. Most graphical 
displays provide for drawing a single pixel at an arbitrary location; any other graphical 
function can be built by using this single, elegant primitive. However, high-performance 
graphical displays offer a wide variety of additional functions, ranging from block copy 
and line drawing to 3-D surface shading. One approach for allowing an API (application 
programmer interface) to access the full power of the most sophisticated graphics 

MPI_Redum 

MPl_lsend MPI 
point-t-point 

MPID_Post_Send The Abstract 
Device Interface 

MPID_SendControl The Channel 
Interface 

(implementations of the channel interface) 

Fig. 7. Upper layers of MPICH. 
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devices, without sacrificing portability to less capable devices, is to define an abstract 
device with a rich set of functions, and then provide software emulations of any 
functions not implemented by the graphics device. We use the same approach in 
defining our message-passing ADI. 

A message-passing AD1 must provide four sets of functions: specifying a message to 
be sent or received, moving data between the API and the message-passing hardware, 
managing lists of pending messages (both sent and received), and providing basic 
information about the execution environment (e.g., how many tasks are there). The 
MPICH AD1 provides all of these functions; however, many message-passing hardware 
systems may not provide list management or elaborate data-transfer abilities. These 
functions are emulated through the use of auxiliary routines, described in [24]. 

The abstract device interface is a set of function definitions (which may be realized as 
either C functions or macro definitions) in terms of which the user-callable standard 
MPI functions may be expressed. As such, it provides the message-passing protocols 
that distinguish MPICH from other implementations of MPI. In particular, the AD1 layer 
contains the code for packetizing messages and attaching header information, managing 
multiple buffering policies, matching posted receives with incoming messages or 
queuing them if necessary, and handling heterogeneous communications. For details of 
the exact interface and the algorithms used, see [24]. 

A diagram of the upper layers of MPICH, showing the ADI, is shown in Fig. 7. 
Sample functions at each layer are shown on the left. Without going into details on the 
algorithms present in the ADI, one can expect the existence of a routine like 
~~ID_SendControl, which communicates control information. The implementation 
of such a routine can be in terms of a vendor’s own existing message-passing system or 
new code for the purpose or can be expressed in terms of a further portable layer, the 
channel intedace. 

4.2. The channel inte$ace 

At the lowest level, what is really needed is just a way to transfer data, possibly in 
small amounts, from one process’s address space to another’s. Although many imple- 
mentations are possible, the specification can be done with a small number of defini- 
tions. The channel interface, described in more detail in [28], consists of only five 
required functions. Three routines send and receive envelope (or control) information: 
MPID_SendControl 3, MPID_RecvAnyControl, and MPID_Con- 
trolMsgAvai1; two routines send and receive data: MPID_SendChannel and 
MPID_RecvFromChannel. Others, which might be available in specially optimized 
implementations, are defined and used when certain macros are defined that signal that 
they are available. These include various forms of blocking and nonblocking operations 
for both envelopes and data. 

3 one can use MPID_SendControlBlock instead of or along with MPID_SendControl. It can be 

more efficient to use the blocking version for implementing blocking calls. 
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These operations are based on a simple capability to send data from one process to 
another process. No more functionality is required than what is provided by Unix in the 
select, read, and write operations. The AD1 code uses these simple operations to 
provide the operations, such as MPID_Post_recv, that are used by the MI’1 imple- 
mentation. 

The issue of buffering is a difficult one. We could have defined an interface that 
assumed no buffering, requiring the AD1 that calls this interface to perform the 
necessary buffer management and flow control. The rationale for not making this choice 
is that many of the systems used for implementing the interface defined here do 
maintain their own internal buffers and flow controls, and implementing another layer of 
buffer management would impose an unnecessary performance penalty. 

The channel interface implements three different data exchange mechanisms. 

Eager In the eager protocol, data is sent to the destination immediately. If the 
destination is not expecting the data (e.g., no MPI_Recv has yet been issued for it>, the 
receiver must allocate some space to store the data locally. 

This choice often offers the highest performance, particularly when the underlying 
implementation provides suitable buffering and handshakes. However, it can cause 
problems when large amounts of data are sent before their matching receives are posted, 
causing memory to be exhausted on the receiving processors. 

This is the default choice in MF’ICH. 

Rendezvous In the rendezvous protocol, data is sent to the destination only when 
requested (the control information describing the message is always sent). When a 
receive is posted that matches the message, the destination sends the source a request for 
the data. In addition, it provides a way for the sender to return the data. 

This choice is the most robust but, depending on the underlying system software, may 
be less efficient than the eager protocol. Some legacy programs may fail when run using 
a rendezvous protocol if an algorithm is unsafely expressed in terms of MPI_Send. 
Such a program can be safely expressed in terms of MPI_Bsend, but at a possible cost 
in efficiency. That is, the user may desire the semantics of an eager protocol (messages 
are buffered on the receiver) with the performance of the rendezvous protocol (no 
copying) but since buffer space is exhaustible and MPI_Bsend may have to copy, the 
user may not always be satisfied. 

MPICH can be configured to use this protocol by specifying -use_rndv during 
configuration. 

Get In the get protocol, data is read directly by the receiver. This choice requires a 
method to directly transfer data from one process’s memory to another. A typical 
implementation might use memcpy. 

This choice offers the highest performance but requires special hardware support such 
as shared memory or remote memory operations. In many ways, it functions like the 
rendezvous protocol, but uses a different set of routines to transfer the data. 

To implement this protocol, special routines must be. provided to prepare the address 
for remote access and to perform the transfer. The implementation of this protocol 
allows data to be transferred in several pieces, for example, allowing arbitrarily sized 
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messages to be transferred using a limited amount of shared memory. The routine 
MPID_SetupGetAddress is called by the sender to determine the address to send 
to the destination. In shared-memory systems, this may simply be the address of the data 
(if all memory is visible to all processes) or the address in shared-memory where all (or 
some) of the data has been copied. In systems with special hardware for moving data 
between processors, it may be the appropriate handle or object. 

MPICH includes multiple implementations of the channel interface (see Fig. 8). 

Chameleon Perhaps the most significant implementation is the Chameleon version, 
which was particularly important during the initial phase of MPICH implementation. By 
implementing the channel interface in terms of Chameleon [31] macros, we provide 
portability to a number of systems at one stroke, with no additional overhead, since 
Chameleon macros are resolved at compile time. Chameleon macros exist for most 
vendor message-passing systems, and also for p4, which in turn is portable to very many 
systems. A newer implementation of the channel interface is a direct TCP/IP interface, 
not involving p4. 

send_cntl-pkt 

Plsend 

Nexus tcP Convex SGI(l) Solaris 
\ 

Fig. 8. Lower layers of MPICH. 
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Shared memory A completely different implementation of the channel interface has 
been done (portably) for a shared-memory abstraction, in terms of a shared-memory 
malloc and locks. There are, in turn, multiple (macro) implementations of the shared- 
memory implementation of the channel interface. This is represented as the p2 box in 
Fig. 8. 

Specialized Some vendors (SGI and HP-Convex, at present) have implemented the 
channel interface directly, without going through the shared-memory portability layer. 
This approach takes advantage of particular memory models and operating system 
features that the shared-memory implementation of the channel interface does not 
assume are present. 

SC1 A specialized implementation of the channel interface has been developed for an 
implementation of the Scalable Coherent Interface [40] from Dolphin Interconnect 
Solutions, which provides portability to a number of systems that use it [39]. 

Contrary to some descriptions of MPICH that have appeared elsewhere, MPICH has 
never relied on the p4 version of the channel interface for portability to massively 
parallel processors. From the beginning, the MPP (IBM SP, Intel Paragon, TMC CM-5) 
versions used the macros provided by Chameleon. We rely on the p4 implementation 
only for the workstation networks, and a p4independent version for TCP/IP will be 
available soon. 

4.3. A case study 

One of the benefits of a system architecture like that shown in Figs. 7 and 8 is the 
flexibility provided in choosing where to insert vendor-specific optimizations. One 
illustration of how this flexibility was used is given by the evolution of the Silicon 
Graphics version of MPICH. 

Since Chameleon had been ported to p4 and p4 had been ported to SGI workstations 
long before the MPICH project began, MPICH ran on SGI machines from the very 
beginning. This is the box shown as SGI(0) in Fig. 8. This implementation used TCP/IP 
sockets between workstations and standard Unix System V shared memory operations 
for message passing within a multiprocessor like the SGI Onyx. 

The SGI(1) box in Fig. 8 illustrates an enhanced version achieved by using a simple, 
portable shared-memory interface we call p2 (half of ~4). In this version, shared 
memory operations use special SGI operations for shared-memory functions instead of 
the less robust System V operations. 

SGI(2) in Fig. 8 is a direct implementation of the channel interface that we did in 
collaboration with SGI. It uses SGI-specific mechanisms for memory sharing that allow 
single-copy data movement between processes (as opposed to copying into and out of an 
intermediate shared buffer), and it uses lock-free shared queue management routines that 
take advantage of special assembler language instructions of the MIPS microprocessor. 

SGI next developed a direct implementation of the AD1 that did not use the channel 
interface model (SGI(3) in Fig. 7), and then bypassed the AD1 altogether to produce a 
very high-performance MPI implementation for the Power Challenge Array product, 



806 W. Gropp et al./Parallel Computing 22 (1996) 789-828 

combining both shared-memory operations and message-passing over the HiPPI connec- 
tions between shared-memory clusters. Even at this specialized level, it retains much of 
the upper levels of MPICH that are implemented either independently of, or completely 
on top of, the message-passing layer, such as the collective operations and topology 
functions. 

At all times, SGI users had access to a complete MPI implementation, and their 
programs did not need to change in any way as the implementation improved. 

5. Selected subsystems 

A detailed description of all the design decisions that went into MPICH would be 
tedious. Here we focus on several of the salient features of this implementation that 
distinguish it from other implementations of MPI. 

5.1. Groups 

The basis of an MPICH process group is an ordered list of process identifiers, stored 
as an integer array. A process’s rank in a group refers to its index in this list. Stored in 
the list is an address in a format the underlying device can use and understand. This is 
often the rank in MPI_COMM_WORlD, but need not be. 

5.2. Communicators 

The Standard describes two types of communicators, intracommunicators and inter- 
communicators, which consist of two basic components, namely process groups and 
communication contexts. MPICH intracommunicators and intercommunicators use this 
same structure. 

The Standard describes how intracommunicators and intercommunicators are related 
(see Section 5.6 of the Standard). We take advantage of this similarity to reduce the 
complexity of functions that operate on both intracommunicators and intercommunica- 
tors (e.g., communicator accessors, point-to-point operations). Most functions in the 
portable layer of MPICH do not need to distinguish between an intracommunicator and 
an intercommunicator. For example, each communicator has a local group 
(local_group) and a remote group (group) as described in the definition of an 
intercommunicator. For intracommunicators, these two groups are identical (reference 
counting is used to reduce the amount of overhead associated with keeping two copies 
of a group; see Section 5.1); however, for intercommunicators, these two groups are 
disjoint. 

Another similarity between intracommunicators and intercommunicators is the use of 
contexts. Each communicator has a send context (send_context) and a receive 
context (recv_context). For intracommunicators, these two contexts are equal; for 
intercommunicators, these contexts may be different. Regardless of the type of commu- 
nicator, MPI point-to-point operations attach the send-context to all outgoing 
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messages and use the recv_context when matching contexts upon receipt of a 
message. 

For most MPICH devices, contexts are integers. Contexts for new communicators are 
allocated through a collective operation over the group of processes involved in the 
communicator construction. Through this collective operation, all processes involved 
agree on a context that is currently not in use by any of the processes. One of the 
algorithms used to allocate contexts involves passing the highest context currently used 
by a process to an MPI_Allreduce with the MPI_MAX operation to find the smallest 
context (an integer) unused by any of the participants. 

In order to provide safe point-to-point communications within a collective operation, 
an additional “collective” context is allocated for each communicator. This collective 
context is used during communicator construction to create a “hidden” communicator 
(comm_coll) that cannot be accessed directly by the user. This is necessary so that 
point-to-point operations used to implement a collective operation do not interfere with 
user-initiated point-to-point operations. 

Other important elements of the communicator data structure include the following: 

np, local-rank, lrank_to_grank Used to provide more convenient access to 
local group information. 

collops Array of pointers to functions implementing the collective operations for the 
communicator (see Section 5.3). 

5.3. Collective operations 

As noted in the preceding section, MPICH collective operations are implemented on 
top of MPICH point-to-point operations. MPICH collective operations retrieve the 
hidden communicator from the communicator passed in the argument list and then use 
standard MPI point-to-point calls with this hidden communicator. We use straightfor- 
ward “power-of-two”-based algorithms to provide scalability; however, considerable 
opportunities for further optimization remain. 

Although the basic implementation of MPICH collective operations uses point-to-point 
operations, special versions of MPICH collective operations exist. These special ver- 
sions include both vendor-supplied and shared-memory versions. In order to allow the 
use of these special versions on a communicator-by-communicator basis, each communi- 
cator contains a list of function pointers that point to the functions that implement the 
collectives for that particular communicator. Each communicator structure contains a 
reference count so that communicators can share the same list of pointers. 

typedef struct MPIR_COLLOPS { 
int (*Barrier) (MPI_Comn corn ); 
int (*BCaSt) (void* buffer, int count, MPI_Datatype 

datatype, 

int root, MPI_Com corm ); 
. . . other function pointers . . . 
int ref_count; /* So we can share it */ 

) MPIR_COLLOPS; 
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Each MPI collective operation checks the validity of the input arguments, then 
forwards the function arguments to the dereferenced function for the particular commu- 
nicator. This approach allows vendors to substitute system-specific implementations for 
all or some of the collective routines. Currently, Meiko, Intel, and Convex have 
provided vendor-specific collective implementations. These implementations follow 
system-specific strategies; for example, the Convex SPP collective routines make use 
both of shared memory and of the memory hierarchies in the SPP. 

5.4. Attributes 

Attribute caching on communicators is implemented by using a height-balanced tree 
(HBT or AVL tree) [351. Each communicator has an HBT associated with it, although 
initially the HBT may be an empty or null tree. Caching an attribute on a communicator 
is simply an insertion into the HBT, retrieving an attribute is simply searching the tree 
and returning the cached attribute. 

MPI keyvals are created by passing the attribute’s copy function and destructor as 
well as any extra-state needed to the keyval constructor. Pointers to these are 
kept in the keyval structure that is passed to attribute functions. 

Additional elements of a keyval include a flag denoting whether C or Fortran 
calling conventions are to be used for the copy function (the attribute input argument to 
the copy function is passed by value in C and passed by reference in Fortran). 

Caching on other types of MPI handles is being considered for inclusion in the MPI-2 
standard. The MPICH HBT implementation of caching can be used almost exactly as is 
for implementing caching on other types of MPI handles by simply adding an HBT to 
the other types of handles. 

5.5. Topologies 

Support for topologies is layered on the communicator attribute mechanism. Because 
of this configuration, the code implementing topologies is almost entirely portable even 
to other MPI implementations. For communicators with associated topology informa- 
tion, the communicator’s cache contains a structure describing the topology (either a 
Cartesian topology or a graph topology). The MPI topology functions access the cached 
topology information as needed (using standard MPI calls), then use this information to 
perform the requested operation. 

5.6. The profiling inter&ace 

The MPI Forum wished to promote the development of tools for understanding 
program behavior, but considered it premature to standardize any specific tool interface. 
The MPI specification provides instead a general mechanism for intercepting calls to 
MPI functions. Thus both end users and tool developers can develop portable perfor- 
mance analyzers and other tools without access to the MPI implementation source code. 
The only requirement is that every MPI function be callable (in both C and Fortran) by 
an alternate name (PMPI_Xxxx as well as the usual MPI_Xxxx.). In some environ- 
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ments (those supporting “weak symbols”) the additional entry points can be supplied in 
the source code. In MPICH we take the less elegant but more portable approach of 
building a duplicate MPI library in which all functions are known by their PMPI_nameS. 
Of course, only one copy of the source code is maintained. Users can interpose their 
own “profiling wrappers” for MPI functions by linking with their own wrappers, the 
standard version of the MPI library, and the profiling version of the MPI library in the 
proper order. MPICH also supplies a number of prebuilt profiling libraries; these are 
described in Section 6.3.1. 

5.7. The Fortran interface 

MPI is a language-independent specification with separate language bindings. The 
MPI-1 .l standard specifies a C and a Fortran 77 binding. Since these bindings are quite 
similar, we decided to implement MPI in C, with the Fortran implementation simply 
calling the C routines. This strategy requires some care, however, because some C 
routines take arguments by value while all Fortran routines take arguments by reference. 
In addition, the MPICH implementation uses pointers for the MPI opaque objects (such 
as MPI_Request and MPI_Comm); Fortran has no native pointer datatype, and the 
MPI standard uses the Fortran INTEGER type for these objects. Rather than manually 
create each interface routine, we used a program that had been developed at Argonne for 
just this purpose. 

The program, bfort [21], reads the C source file and uses structured comments to 
identify routines for which to generate interfaces. Special options allow it to handle 
opaque types, choose how to handle C pointers, and provide name mapping. In many 
cases, this was all that was necessary to create the Fortran interfaces. In cases where 
routine-specific code was needed (for example, in MPI_Waitsome where zero-origin 
indexing is used in C and one-origin is used in Fortran), the automatically generated 
code was a good base to use for the custom code. Using the automatic tool also 
simplifies updating all of the interfaces when a system with a previously unknown 
Fortran-C interface is encountered. This situation arose the first time we ported MPICH 
to a system that used the program f 2c 1141 as a way to provide a Fortran compiler; f 2c 
generates unusual external names for Fortran routine names. We needed only to rerun 
bfort to update the Fortran interfaces. This interface handles the issues of pointer 
conversions between C and Fortran (see Section 8.5) as well as the mapping of Fortran 
external names to C external names. The determination of the name format (e.g., 
whether Fortran externals are upper or lower case and whether they have underscore 
characters appended to them) is handled by our configure program, which compiles a 
test program with the user’s selected Fortran compiler and extracts the external name 
from the generated object file. This allows us to handle different Fortran compilers and 
options on the same platform. 

5.8. Job stamp 

The MPI Forum did not standardize the mechanism for starting jobs. This decision 
was entirely appropriate; by way of comparison, the Fortran standard does not specify 
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how to start Fortran programs. Nonetheless, the extreme diversity of the environments in 
which MPICH runs and the diversity of job-starting mechanisms in those environments 
(special commands like prun, poe, or mexec, settings of various environment 
variables, or special command-line arguments to the program being started) suggested to 
us that we should encapsulate the knowledge of how to run a job on various machines in 
a single command. We named it mpirun. In all environments, an MPI program, say 
myprog, can be run with, say, 12 processes by issuing the command 

mpirun -np 12 myprog 

Note that this might not be the only way to start a program, and additional arguments 
might usefully be passed to both mpirun and myprog (see Section 6.41, but the 
mpirun command will always work, even if the starting of a job requires complex 
interaction with a resource manager. For example, at Argonne we use a home-grown 
scheduler called EASY instead of IBM’s LoadLeveler to start jobs on our IBM SP; 
interaction with EASY is encapsulated in mpirun. 

A number of other MPI implementations and environments have also decided to use 
the name mpirun to start MPI jobs. The MPI Forum is discussing whether this 
command can be at least partially standardized for MPI-2 (see Section 9.4). 

5.9. Building MPKH 

An important component of MPICH’s portability is the ability to build it in the same 
way in many different environments. We rely on the existence of a Boume shell sh (or 
superset) and Unix-style make on the user’s machine. The sh script that the user runs is 
constructed by GNU’s autoconf, which we need in our development environment, but 
which the user does not need. At least a vanilla version of MPICH can be built in any of 
MPICH’s target environments by going to the top-level directory of the distribution and 
issuing the commands 

configure 

make 

The configure script will determine aspects of the environment (such as the location of 
certain include files), perform tests of the environment to ensure that all components 
required for the correct compilation and execution of MPICH programs are present, and 
construct the appropriate Makef iles in many directories, so that the make command 
will build MPICH. After being built and tested, MPICH can be installed in a publicly 
available location such as /usr/local with make install. Painless building and 
installation has become one of our pet goals for MPICH. 

5.10. Documentation 

MPICH comes with both an installation guide [25] and a user’s guide [27]. Although 
there is some overlap, and therefore some duplication, we consider separating them to be 
a better approach than combining them. Although many users obtain and use MPICH 
just for their own use, an increasing number of them are linking their own programs to a 
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system-wide copy of the libraries that have been installed in a publicly accessible place. 
For such users the information in the installation guide is a distraction. Conversely, the 
user’s guide contains a collection of helpful hints for users who may be experiencing 
difficulties getting applications to run. These difficulties might well never be encoun- 
tered by systems administrators who merely install MPICH. 

An important but frequently overlooked part of a software project (particular for 
research software) is the generation of documentation, particularly Unix-style man 
pages 4. We use a tool called doctext [22] that generates man pages (as well as 
WWW and LaTeX documentation) directly from simple, structured comments in the 
source code. Using this tool allowed us to deliver MPICH with complete documentation 
from the beginning. Examples of the documentation can be accessed on the WWW at 
http://www.mcs.anl.gov/mpi/www/index.html. 

6. Toward a portable parallel programming environment 

Although MPI specifies a standard library interface and therefore describes what a 
portable parallel program will look like, it says nothing about the environment in which 
the program will run. MPICH is a portable implementation of the MPI standard, but also 
attempts to provide more for programmers. We have already discussed mpirun, which 
provides a portable way to run programs. In this section we describe briefly some of the 
other tools provided in MPICH along with the basic MPI implementation. 

6.1. The MPE extension library 

MPE (Multi-Processing Environment) is a loosely structured library of routines 
designed to be “handy” for the parallel programmer in an MPI environment. That is, 
most of the MPE functions assume the presence of some implementation of MPI, but not 
necessarily of MPICH. MPE routines fall into several categories. 

Parallel X graphics There are routines to provide all processes with access to a shared 
X display. These routines are easier to use than the corresponding native Xlib routines 
and make it quite convenient to provide graphical output for parallel programs. Routines 
are provided to set up the display (probably the hardest part) and draw text, rectangles, 
circles, lines, etc. on it. It is not the case that the various processes communicate with 
one process that draws on the display; rather, the display is shared by all the processes. 
This library is described in [23]. 

Logging One of the most common tools for analyzing parallel program performance is a 
time-stamped event trace file. The MPE library provides simple calls to produce such a 
file. It uses MPI calls to obtain the time-stamps and to merge separate log files together 
at the end of a job. It also automatically handles the misalignment and drift of clocks on 

4 This is not to say that the format of man pages cannot be improved; rather, every Unix user knows how to 
get information this way and rightly expects man pages to be provided. 
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multiple processors, if the system does not provide a synchronized clock. The logfile 
format is that of upshot 1331. This is the library for a user who wishes to define his 
own events and program states. Automatic generation of events by MPI routines is 
described in Section 6.3.1. 

Sequential sections Sometimes, a section of code that is executed on a set of processes 
must be executed by only one process at a time, in rank order. The MPE library provides 
functions to ensure that this type of execution occurs. 

Error handling The MPI specification provides a mechanism whereby a user can 
control how the implementation responds to run-time errors, including the ability to 
install one’s own error handler. One error handler that we found convenient for 
developing MPICH starts the dbx debugger in a popup xterm when an error is 
encountered. Thus, the user can examine the stack trace and values of program variables 
at the time of the error. To obtain this behavior, the user must 

1. Compile and link with the -g option, as usual when using dbx. 
2. (a) Link with the MPE library. 

Call 
MPI_Errhandler_set( comm, MPE_Errors_call_dbx_in_ 

xterm ) 
early in the program, 
OR 

(b) Pass the -mpedbg argument to mpirun (if MPICH configured with 
-mpedbg). 

6.2. Command-line arguments and standard I/ 0 

The MPI standard says little about command-line arguments to programs, other than 
that in C they are to be passed to MPI_Init, which removes the command line 
arguments it recognizes. MF’ICH ensures that on each process, the command-line 
arguments returned from MPI_Init are the same on all processes, thus relieving the 
user of the necessity of broadcasting the command-line arguments to the rest of the 
processes from whichever process actually was passed them as arguments to main. 

The MPI Standard also says little about I/O, other than that if at least one process 
has access to stdin, stdout, and stderr, the user can find out which process this 
is by querying the attribute MPI_IO on MPI_COMM_WORLD. In MPICH, all processes 
have access to stdin , stdout, and stderr, and on networks these I/O streams are 
routed back to the process with rank 0 in MPI_COMM_WORLD. On most systems, these 
streams also can be redirected through mpirun, as follows. 

mpirun -np 64 myprog -myarg 13 ( data. in ) results .out 

Here we assume that “-myarg 13” are command-line arguments processed by the 
application myprog. After MPI_Init, each process will have these arguments in its 
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argv. (This is an MPICH feature, not an MPI requirement.) On batch systems where 
stdin may not be available, one can use an argument to mpirun, as follows. 

mpirun -np 64 -stdin data.in myproq -myarql3>results.out 

The latter form may always be used. 

6.3. Support for petionnance analysis and debugging 

The MPI profiling interface allows the convenient construction of portable tools that 
rely on intercepting calls to the MPI library. Such tools are “ultra portable” in the sense 
that they can be used with any MPI implementation, not just a specific portable MPI 
implementation. 

6.3.1. Profiling libraries 
The MPI specification makes it possible, but not particularly convenient, for users to 

build their own “profiling libraries,” which intercept all MPI library calls. MPICH 
comes with three profiling libraries already constructed; we have found them useful in 
debugging and in performance analysis. 

tracing The tracing library simply prints (on stdout) a trace of each MPI library call. 
Each line is identified with its process number (rank in MPI_COMM_WORLD). Since 
stdout from all processes is collected, even on a network of workstations, all output 
comes out on the console. A sample is shown here. 

. . . 
[l] Starting ” “MPI_Bcast.. . 

[0] Starting ’ “MPI_Bcast.. . 

[0] Ending” “MPI_Bcast 

[2] Starting” “MPI_Bcast.. . 

[2] Ending” “MPI_Bcast 

[l] Ending” “MPIBcast 

. . . 

logging The logging library uses the mpe logging routines described in Section 6.1 to 
write a logfile with events for entry to and exit from each MPI function. Then upshot 
(see Section 6.3.2) can be used to display the computation, and its colored bars will 
show the frequency and duration of each MPI call. (See Fig. 9.) 

Fig. 9. Upshot output. 
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animation The animation library uses the mpe graphics routines to provide a simple 
animation of the message passing that occurs in an application, via a shared X display. 

Further description of these libraries can be found in [34]. 

6.3.2. Upshot 
One of the most useful tools for understanding parallel program behavior is a 

graphical display of parallel timelines with colored bars to indicate the state of each 
process at any given time. A number of tools developed by various groups do this. One 
of the earliest of these was upshot [33]. Since then upshot has been reimplemented 
in Tcl/Tk, and this version [34] is distributed with MPICH. It can read log files 
generated either by Paragraph [32] or by the mpe logging routines, which are in turn 
used by the logging profiling library. A sample screen dump is shown in Fig. 9. 

6.3.3. Support for adding new profiling libraries 
The most obvious way to use the profiling library is to choose some family of calls to 

intercept, and then treat each of them in a special way. Typically, one performs some 
action (adds to a counter, prints a message, writes a log record), calls the “real” MPI 
function using its alternate name PMPI_Xxxx, perhaps performs another action (e.g., 
writes another log record), and then returns to the application, propagating the return 
code from the PMPI routine. 

MPICH includes a utility called wrappergen that lets a user specify “templates” 
for profiling routines and a list of routines to create, and then automatically creates the 
profiling versions of the specified routines. Thus the work required by a user to add a 
new profiling library is reduced to writing individual MPI_Init and MPI_Finalize 
routines and one template routine. The libraries described above in Section 6.3.1 are all 
produced in this way. Details of how to use wrappergen can be found in [27]. 

6.4. Useful commands 

Aspects of the environment required for correct compilation and linking are encapsu- 
lated in the Makef iles produced when the user runs configure. Users may set up a 
Makef ile for their own applications by copying one from an MPI examples directory 
and modifying it as needed. The resultant Makef ile may not be portable, but this may 
not be a primary consideration. 

An even easier and more portable way to build a simple application, and one that fits 
within existing complex Makefiles, is to use .the commands mpicc or mpif77, 
constructed in the MPICH ‘bin’ directory by configure. These scripts are used like 
the usual commands to invoke the C and Fortran compilers and the linker. Extra 
arguments to these commands link with the designated versions of profiling libraries. 
For example, 

mpicc -c myprog . c 

compiles a C program, automatically finding the include libraries that were configured 
when MPICH was installed. The command 

mpif 77 -mpilog -0 myprog mypr0g.f 
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compiles and links a Fortran program that, when run, will produce a log file that can be 
examined with upshot. The command 

mpicc -mpitrace -0 myprog mypr0g.c 

compiles and links a C program that displays a trace of its execution on stdout. 
The mpirun command has already been mentioned. It has more flexibility than we 

have described so far. In particular, in heterogeneous environments, the command 

mpirun -arch sun4 -np 4 -arch rs6000 -np 3 myprog 

starts myprog on four Sun4’s and three RS/600O’s, where the specific hosts have been 
stored in MPICH’s “machines” file. 

Special arguments for the application program can be used to make MPICH provide 
helpful debugging information. For example, 

mpirun -np 4 myprog -mpedbg -mpiiqueue 

automatically installs the error handler described in Section 6.3.1 that starts dbx on 
errors, and display all message queues when MPI_Finalize is called. This latter 
option is useful in locating “lost” messages. 

Details on all of these commands can be found in the user’s guide [27]. 

4.5. Network management tools 

Although not strictly part of MPICH itself, the Scalable Unix Tools WJT) [26] are a 
useful part of the MPICH programming environment on workstation clusters. Basically, 
SUT implements parallel versions of common Unix commands such as Is, ps, cp, 
or rm. Perhaps the most useful is a cross between find and ps that we call pfps 
(parallel find in the process space). For example, one can find and send a KILL signal to 
runaway jobs on a workstation network during a debugging session with 

PfPS -all -tn myprog -kill KILL 

or locate all of one’s own jobs on the network that have been running for more than an 
hour with 

PfPS -all -0 me -and -rtime 1:00 -print 

Graphical displays also show the load on each workstation and can help one choose the 
sub-collection of machines to run an MPICH job on. Details can be found in [26]. 

6.6. Example programs 

MPICH comes with a fairly rich collection of example programs to illustrate its 
features. In addition to the extensive test suite and benchmark programs, there are 
example programs for Mandelbrot computations, solving the Mastermind puzzle, and the 
game of life that illustrate the use of the mpe library in an entertaining way. A number 
of simple examples illustrate specific features of the MPI Standard (topologies, for 
example) and have been developed for use in classes and tutorials. Many of the 
examples from [29] are included. For all of these examples, configure prepares the 
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appropriate Makef iles, but they have to be individually built as the user wishes. One 
example is a moderately large complete nuclear physics Monte Carlo integration 
application in Fortran. 

7. Software management techniques and tools 

MPICH was written by a small, distributed team sharing the workload. We had the 
expected problems of coordinating both development and maintenance of a moderately 
large (130,000 lines of C> and complex system. We have worked to distribute new 
releases in an orderly fashion, track and respond to bug reports, and maintain contact 
with a growing body of users. In doing so, we have used existing tools, engineered some 
of our own, and developed procedures that have served us well. In this section we report 
on our experiences, in the hope that some of our tools and methods will be useful to 
other system developers. All software described here is freely available, either from 
well-known sources or included in MPICH. 

7.1. Configuring for different systems 

We have tried, as a sort of pet goal, to make building MPICH completely painless, 
despite the variety of target environments. This is a challenge. In earlier systems, such as 
p4, Chameleon, and Zipcode, it was assumed that a particular vendor name or operating 
system version was enough to determine how to build the system. This is too simplistic 
a view: 

0 The same hardware may run multiple operating systems (Solaris or SunOS on 
suns, LINUX or FreeBSD on x86’s) 

0 Different versions of the same operating system may differ radically (SGI IRIX 5 
is 32 bit, whereas IRIX 6 is 64; the number of parameters to some system calls in 
Solaris depends on the minor version number). 

0 Different compilers may use different includes, datatype sizes, and libraries. 
In addition, it is rare that a system is completely free of bugs; in particular, since we 
distribute source code, it is imperative that the C compiler produce correct object code. 
In distributing MPICH, we found that many users did not have correctly functioning C 
compilers. It is best to determine this problem at configure time. 

We use the GNU autoconf system to build a shell script ( configure) , which in 
turn executes various commands (including building and running programs) to deter- 
mine the user’s environment. It then creates Makef iles from makefile templates, as 
well as creating some scripts that contain site-specific information (such as the location 
of the wish interpreter). 

The autoconf system as distributed provides commands for checking the part of a 
system that the GNU tools need; in MPICH, we have defined an additional set of 
operations that we found we needed in this and other projects. These include commands 
to test that the compiler produces correct code and to choose a vendor’s compiler (with 
the correct options; this is particularly important for the massively parallel systems). In 
short, the configure script distributed with MPICH has evolved into a knowledge 
base about a wide variety of vendor environments. 
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7.2. Source code management 

To allow us all to work on the code without interfering with one another, we used 
RCS via the Emacs VC interface. 

7.3. Testing 

Testing is often a lengthy and boring process. MPICH contains a test suite that 
attempts to test the implementation of each MPI routine. While not as systematic as 
some commercial testing systems, which can dwarf the size of the original package, our 
test suite has proven invaluable to us in identifying problems before new releases. Many 
of the test programs originated as bug-demonstration programs sent to us by our users. 
In MPICH, we automate the testing process through the use of scripts that build, test, 
and generate a document that summarizes the tests, including the configuration, correct- 
ness, and performance results. The testing system is provided as part of the distribution. 

7.4. Tracking and responding to problem reports 

We realized early on that simply leaving bug reports in our email list would not 
work. We needed a system that would allow all of the developers to keep track of 
reports, including what had been done (dialog with problem submitter, answers, etc.>. It 
also had to be simple for users to use and for us to install. We chose the req system 
[ 131. This system allows users to send mail (without any format restrictions) to 
mpi - bugs@mcs . an1 . gov; the bug report is kept in a separate system as well as 
being forwarded to a list of developers. Both GUI and command-line access to the bug 
reports are provided. 

Over time, it became clear that some problems were much more common than others. 
We developed a database of common problems, searchable by keyword, which is also 
integrated into the manual. When a user sends in a bug report, we can query the 
database for a standard response to the problem. For example, if a user complains about 
getting the message “Try Again”, the command 

> mpich/help/bin/fmsg ‘Try Again’ 

gives the information from the user’s guide on the message ’ ’ Try Again ’ ‘(which 
comes not from MPICH but from rshd). 

Announcements about new releases are sent to a mailing list (managed by major- 
dome) to which users are encouraged to subscribe when they first run the configure 
script. 

7.5. Preparing a new release 

Preparing a new release for a package as portable as MPICH requires testing on a 
wide variety of platforms. To help test a new release of MPICH, we use several 
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programs and scripts that build and test the release on a new platform. The dot/port 
program included in the MPICH distribution performs a build, checking for errors from 
the make, followed by both performance and correctness tests. The output from this 
program is a postscript file that describes the results of the build and tests; this postscript 
file is then made available on the WWW in a table at http : //www . mcs . an1 . gov/ 
mpi/mpich/porting/port version-number.html. Another program then is used 
to do an installation and to check that both MPICH and the other tools (such as upshot 
and mpicc) work correctly. For networks of workstations, additional tests (also 
managed by a separate program) test heterogeneous collections of workstations. By 
automating much of the testing, we ensure that the testing is reasonably complete and 
that the most glaring oversights are caught before a release goes out. Unfortunately, 
because the space of possible tests is so large, these programs and scripts have been built 
primarily by testing for past mistakes. 

8. Lessons learned 

One of the purposes of doing an early implementation was to understand the 
implications of decisions made during the development of the Standard. As expected, 
the implementation process and early experiences of users shed light on the conse- 
quences of choices made at MPI Forum meetings. 

8.1. Lunguage bindings 

One of the earliest lessons learned had to do with the language bindings and choices 
of C datatypes for some items in the MPI Standard. For example, the 1 .O version passed 
the MPI_Status structure itself, rather than a pointer to the structure, to the routines 
MPI_Get_count, MPI_Get_elements, and MPI_Test_cancelled. The C 
bindings used int in some places where an int might not be large enough to hold the 
result; most of these (except for MPI_Type_size) were changed to MPI_Aint. 

In the MPI_Keyval_create function, the predefined “null” functions 
MPI_NULL_COPY_FN and MPI_NULL_DELETE_FN were originally both 
MPI_NULL_FN; unfortunately, neither of these is exactly a null function (both have 
mandatory return values and the copy function also sets a flag). Experience with the 
implementation helped the MPI Forum to repair these problems in the 1.1 version of the 
MPI Standard. 

A related issue was the desire of the Forum to make the same attribute copy and 
delete functions usable from both C and Fortran; for this reason, addresses were used in 
the 1.0 standard for some items in C that were more naturally values. Unfortunately, 
when the size of the C int datatype is different from that of the Fortran INTEGER 
datatype, this approach does not work. In a surprise move, the MPI Forum exploited this 
in the 1.1 Standard, changing the bindings of the functions in C to use values instead of 
addresses. 
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Another issue is the Fortran bindings of all of the routines that take buffers. These 
buffers can be of any Fortran datatype (e.g., INTEGER, REAL, or CHARACTER). This 

was common practice in most previous message-passing systems but is in violation of 
the Fortran Standard [ 151. The MPI Forum voted to follow standard practice. In most 
cases, Fortran compilers pass all items by reference, and few complain when a routine is 
called with different datatypes. Unfortunately, several standard-conforming Fortran 
implementations use a different representation for CHARACTER data than for numeric 
data, and in these cases it is difficult to build an MPI implementation that works with 
CHARACTER data in Fortran. The MPI Forum is attempting to address this problem in 
the MPI-2 proposal. 

The MPI Forum provided a way for users to interrogate the environment to find out, 
for example, what was the largest valid message tag. This was done in an elegant 
fashion by using “attributes,” a general mechanism for users to attach information to a 
communicator. The system attributes are attached to the initial MPI_COMM_WORLD 
communicator. The problem is that, in general, users need to set as well as get attributes. 
Some users did in fact try to set MPI_TAG_UB. MPICH now detects this as an illegal 
operation, and the MPI Forum clarified this in the 1.1 Standard. 

8.2. Performance 

One of the goals of MPI was to define the semantics of the message passing 
operations so that no unnecessary data motion was required. The MPICH implementa- 
tion has shown this goal to be achievable. On two different shared-memory systems, 
MPICH achieves a single copy directly from user-buffer to user-buffer. In both cases, 
the operating system had to be modified slightly to allow a process to directly access the 
address space of another process. On distributed memory systems, two vendors were 
able to achieve the same result by providing vendor-specific implementations of the 
ADI. 

In actual use, some users have noticed some performance irregularities; these indicate 
areas where more work needs to be done in implementations. For example, the 
implementation of MPI_Bsend in MPICH always copies data into the user-provided 
buffer; for small messages, such copying is not always necessary (it may be possible to 
deliver the message without blocking). This can have a significant effect on latency-sen- 
sitive calculations. Different methods for handling short, intermediate, and long mes- 
sages are also needed and are under development. 

Another source of some performance difficulties is seemingly innocuous require- 
ments that affect the lowest levels of the implementation. For example, the following is 
legal in MPI: 

MPI_Isend(..., &request); 

MP_Request_free(&request); 

The user need not (must not, actually) use a wait or test on the request. This 
functionality can be complex to implement when well-separated software layers are used 
in the MPI implementation. In particular, it requires that either the completion of the 
operation started by the MPI_Isend change data maintained by the MPI implementa- 
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tion or that the MFI implementation periodically check to see whether some request has 
completed. The problem with this functionality is that it may not match well with the 
services that are implementing the actual data transport, and can be the source of 
unanticipated latency. 

Despite these problems, the MPICH implementation does achieve its goal of high 
performance and portability. In particular, the use of a carefully layered design, where 
the layers can be implemented as macros (or removed entirely, as one vendor has done), 
was key in the success of MFICH. 

8.3. Resource limits 

The MPI specification is careful not to constrain implementations with specific 
resource guarantees. For many uses, programmers can work within the limits of any 
“reasonable” implementation. However, many existing message-passing systems pro- 
vide some (usually unspecified) amount of buffering for messages sent but not yet 
received. This allows a user to send messages without worrying about the process 
blocking waiting for the destination to receive them or worrying about waiting on 
nonblocking send operations. The problem with this approach is that if the system is 
responsible for managing the buffer space, user programs can fail in mysterious ways. A 
better approach is to allow the user to specify the amount of buffering desired. The MFI 
Forum, recognizing this need, added routines with user-provided buffer space: 
MPI_Bsend, MPI_Buf f er_attach, and MPI_Buf fer_detach (and nonblock- 
ing versions). These routines specify that all of the space needed by the MFI implemen- 
tation can be found in the user-provided buffer, including the space used to manage the 
user’s messages. Unfortunately, this made it impossible for users to determine how big a 
buffer they needed to provide, since there was no way to know how much space the MFI 
implementation needed to manage each message. The MPI Forum added 
MPI_BSEND_OVERHEAD to provide this information in the 1.1 version of the Standard. 

One remaining problem that some users are now experiencing is the limit on the 
number of outstanding MPI_Requests that are allowed. Currently, no a priori way 
exists to determine or provide the number of allowed requests. 

8.4. Heterogeneity and inter-operability 

Packed data needs to be sent with a “packed data” bit; this means that datatypes 
need to know whether any part of the datatype is MPI_PACKED. The only other option 
is to always use the same format, for example, network byte order, at the cost of 
maximum performance. 

Many systems can be handled by using byte swapping; with data extension (e.g., 
32-bit to and from 64-bit integers), most systems can be handled. In some cases, only 
floating point requires special treatment; in these cases, XDR may be used where IEEE 
format is not guaranteed. 

The MPI specification provides MPI_PACK and MPI_UNPACK functions; unfortu- 
nately, these are not the functions that are needed to implement the point-to-point 
operations. The reason is that these functions produce data that can be sent to anyone in 
a communicator (including the sender), whereas when sending to a single, other process, 
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there is more freedom in choosing the data representation. 5 The MPICH implementa- 
tion uses internal versions of MPI_PACK and MPI_UNPACK that work with data 
intended either for a specific process or for all members of a communicator. 

8.5. 64-bit issues 

The development of MPICH coincided with the emergence of a number of “64-hit 
systems.” Many programmers, remembering the problems moving code from 16- to 
32-bit platforms, expressed concern over the problem of porting applications to the 
64-bit systems. Our experience with MPICH was that, with some care in using C 
properly (void * and not int for addresses, for example), there was little problem in 
porting MPICH from 32- to 64-bit systems. In fact, with the exception discussed below, 
MPICH has no special code for 32-or 64-bit systems. 

The exception is in the Fortran-C interface, and this requires an understanding of the 
rules of the Fortran 77 Standard. While C makes few statements about the length of 
datatypes (for example, sizeof (int) and sizeof (f loat) are unrelated), Fortran 
defines the ratios of the sizes of the numeric datatypes. Specifically, the sizes of 
INTEGER and REAL data are the same, and are half the size of DOUBLE PRECISION 
[15]. This is important in Fortran 77, where there is no memory allocation in the 
language and programmers often have to reuse data areas for different types of data. 
Further, using 64-bit IEEE floating point for DOUBLE PRECISION requires that 
INTEGER be 32 bits. This is true even if sizeof (int) (in C) is 64 bits. 

In the Fortran-C interface, this problem appears when we look at the representation of 
MPI opaque objects. In MPICH, they are pointers; if these are 64 bits in size, then they 
cannot be stored in a Fortran INTEGER. (If opaque objects were ints, it would not 
help much; we would still need to convert from a 64-bit to 32-bit integer.) Thus, on 
systems where addresses are 64 bits and Fortran INTEGERS are shorter, something must 
be done. The MPICH implementation handles this problem by translating the C pointers 
to and from small Fortran integers (which represent the index in a table that holds the 
pointer). This translation is inserted automatically into the Fortran interface code by the 
Fortran interface generator bfort (discussed in Section 5.7). 

Another problem involves the routine MPI_Address, which returns an “address” 
of an item. This “address” may be used in only two ways: relative to another 
“address” from MPI_Address or relative to the “constant” MPI_BOTTOM. In C, the 
obvious implementation is to set MPI_BOTTOM to zero and use something like 
( long) (char * ) ptr to get the address that ptr represents. But in Fortran, the 
value MPI_BOTTOM is a variable (at a known location). Since all arguments to routines 
in Fortran are passed by address, 6 the best approach is to have the Fortran version of 
MPI_Address return addresses relative to the address of MPI_BOTTOM. The advan- 
tage of this approach is that even when absolute addresses are too large to fit in an 

5 Strangely, the MPI FONm considered but did not accept the functions needed for packing and unpacking 
data sent between two specific processes; this decision may have been because there was less experience with 

heterogeneous environments. 

6 Value-result if one must be picky; in practice, the addresses are passed. 
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INTEGER, in many cases the address relative to a location in the user’s program (i.e., 
MPI_BOTTOM) will fit in an INTEGER. This is the approach used in MPICH; if the 
address does not fit, an error is returned (of class MPI_ERR_ARG, with an error code 
indicating that the address won’t fit). 

As a final step in ensuring portability to 64bit systems, our configure program 
runs some programs to determine whether the system is 32 or 64 bits. This allows 
MPICH to port to unknown systems or to systems like SGI’s IRIX that change from 
32-bit (IRIX 5) to 64bit (IRIX 6) without any changes to the code. 

8.6. Unresolved issues 

The MPI Forum did not address any mixed-language programming issues. At least 
for MPI- 1, Fortran programs must pass messages to Fortran programs, and the same for 
C. Yet, it is clearly possible to support both C-to-C and Fortran-to-For&m message 
passing in a single application. We call this a “horizontal mixed-language portability”. 
As long as there is no interest in transferring anything other than user data between 
Fortran and C strata of the parallel application, the horizontal model can be satisfied, 
provided that MPI_Init provides a consistent single initialization of MPI for both 
languages, regardless of which language is used actually to initialize MPI. Current 
practice centers on this “horizontal” model, but it is clearly insufficient, as we have 
observed from user feedback. 

Two additional levels of support are possible, staying still with the restriction of C 
and Fortran 77 as the mixed languages. The first is the ability to pass MPI opaque 
objects locally within a process between C and Fortran. As noted earlier, C and Fortran 
representations for MPI objects will often be arbitrarily different, as will addresses. 
Although user-accessible interoperable functions already are required in MPICH (for the 
benefit of its Fortran interface), the MPI Standard does not require them. Such 
functionality is likely to appear in MPI-2 (as a result of our users’ experience) and with 
other MPI systems as well. Such functionality has the added benefit of enhancing the 
ability of third parties to provide add-on tools for both C and Fortran users, without 
working with inside knowledge of the MPICH implementation (for instance, see [61). 

The second level of “vertical” support is to allow a C routine to transmit data to a 
Fortran routine. This requires some correspondence between C and Fortran datatypes, as 
well as a common format for performing the MPI operations (e.g., the C and Fortran 
implementations must agree on how to send control information and perform collective 
operations). The MPI Forum is preparing a proposal that addresses the issues of 
interlanguage use of MPI datatypes for MPI-2. 

9. Status and plans 

We begin this section by describing the current use of MPICH by vendors (as a 
component of their own MPI implementations) and others. We then describe some of 
our plans for improving MPICH both by optimizing some of its algorithms for better 
performance and by extending its portability into other environments. 
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9.1. Vendor interactions 

As described above, one of the motivations for MPICH’s architecture was to allow 
vendors to use MPICH in developing their own proprietary MPI implementations. 
MPICH is copyrighted, but freely given away and automatically licensed to anyone for 
further development. It is not restricted to noncommercial use. This approach has 
worked well, and vendor implementations are now appearing, many incorporating major 
portions of MPICH code. 

l IBM obtained an explicit license for MPICH and collaborated with us in testing 
and debugging early versions. During this time, MPI-F [19] appeared. This IBM 
implementation does not use the ADI, but maps MPI functions directly onto an 
internal IBM abstract device interface. Our contact at IBM was Hubertus Franke. 

0 SGI worked closely with us (see Section 4.3) to improve the implementation of 
the AD1 for their Challenge and Power Challenge machines. Functions were added 
to IRIX to enable single-copy interprocess data movement, and SGI gave us 
lock-free queue-management routines in assembler language. Those involved at 
SGI were Greg Chesson and Eric Salo. 

l Convex worked closely with us to optimize an implementation of the channel 
interface and then of the ADI. We worked with Pace Romero, Dan Golan, Gary 
Applegate, and Raja Daoud. 

0 Intel contributed a version of the AD1 written directly for NX, bypassing the 
channel interface. The Intel person responsible was Joel Clarke. 

0 Meiko also contributed to the publicly distributed version a Meiko device, thanks 
to the efforts of Jim Cownie. 

0 Laurie Costello helped us adapt MPICH for the Cray vector machines. 
0 DEC has used MPICH as the foundation of a memory-channel-based MPI for 

Alpha clusters. 
We obviously do not claim credit for the vendor implementations, but it does appear that 
we met our original goal of accelerating the adoption of MPI by vendors through 
providing them a running start on their implementations. The architecture of MPICH, 
which provided multiple layers without impact on performance, was the key. 

9.2. Other users 

Since we make MPICH publicly available by f tp, we do not have precise counts on 
the number of users. It is downloaded about 300 times per month from our ftp site, 
ftp . mcs . an1 . gov, which is also mirrored at Mississippi State, ftp . erc . ms- 
state. edu. Judging from the bug reports and subscriptions to the mpi- users 
mailing list, we estimate that between five hundred and one thousand people are 
currently active in their use of MPICH. 

9.3. Planned enhancements 

We are pursuing several directions for future work based on MPICH. 

New AD1 To further reduce latencies, particularly on systems where latency is already 
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quite low, we plan an enhanced AD1 that will enable MPICH to take advantage of 
low-level device capabilities. 

Better collective algorithms As mentioned in Section 5.3, the current collective 
operations are implemented in a straightforward way. We would like to incorporate 
some of the ideas in [l] for improved performance. 

Thread safety The MPI specification is thread-safe, and considerable effort has gone 
into providing for thread safety in MPICH, but this has not been seriously tested. The 
primary obstacle here is the availability of a test suite for thread safety of MPI 
operations. 

Dynamic, lighter-weight TCP/IP device We are nearing completion of a portable 
device that will replace p4 as our primary device for TCP/IP networks. It will be lighter 
weight than p4 and will support dynamic process management, which p4 does not. 

RDP/UDP device We are working on a reliable data protocol device approach, built 
on UDP/IP (User datagram protocol), which extends and leverages the initial work 
done by Brightwell [3]. 

Multiprotocol support Currently MPICH can use only one of its “devices” at a time. 
Although two of those devices, the one based on Nexus [18] and the one based on p4, 
are to a certain extent multiprotocol devices, we need a general mechanism for allowing 
multiple devices to be active at the same time. We are designing such a mechanism now. 
This will allow, for example, two MPPs to be used at the same time, each using its own 
switches for internal communication and TCP/IP for communication between the two 
machines. 

Ports to more machines We are working with several groups to port MPICH to 
interesting new environments. These include 

0 the Parsytec machine; 
0 NEC SX-4 and Cenju-3; 
0 Microsoft Windows NT, both for multiprocessor servers and across the many 

different kinds of networks that NT will support; and 
l Network protocols that are more efficient than TCP/IP, both standard (for 

example, MessageWay [lo]) and proprietary (for example, Myrinet [2]). 

Parallel I / 0 We have recently begun a project to determine whether the concepts of 
the AD1 can be extended to include parallel I/O. If this proves successful, we will 
include an experimental implementation of parts of MPI-IO [ 11 ,121 into MPICH. 

9.4. MPI-2 

In March 1995, the MPI Forum resumed meeting, with many of its original 
participants, to consider extensions to the original MPI Standard. The extensions fall 
into several categories: 

0 Dynamic creation of processes (e.g., MPI_SPAWN). 
0 One-sided operations (e.g., MPI_PUT). 
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0 Extended collective operations, such as collective operations on intercommunica- 
tors. 

l External interfaces (portable access to fields in MPI opaque objects). 
0 C + + and Fortran- bindings. 
0 Extensions for real-time environments. 
0 Miscellaneous topics, such as the standardization of mpirun, new datatypes, and 

language interoperability. 
The MPICH project began as a commitment to implement the MPI-1 Standard, with 

the aim of assisting in the adoption of MPI by both vendors and users. In this goal it has 
been successful. The degree to which MPI-2 functionality will be incorporated into 
MPICH depends on several factors: 

l The actual content of MPI-2, which is far from settled at this time. 
0 The degree to which the MPI-2 specification mandates features whose implemen- 

tation would be feasible only with major changes to MPICH internals. 
0 The enthusiasm of MPICH users for the individual MPI-2 features. 
At this writing, it seems highly likely that we will extend MPICH to include dynamic 

process management as defined by the MPI-2 Forum, at least for the workstation 
environment. This extension will not be difficult to do with the new implementation of 
the channel interface for TCP/IP networks, and it is the feature most desired by those 
developing workstation-network applications. We expect also to aid tool builders 
(including ourselves) by providing access to MPICH internals specified in the MPI-2 
“external interfaces” specification. For the other parts of MPI-2, we will wait and see. 

10. Summary 

We have described MPICH, a portable implementation of the MPI Standard that 
offers performance close to what specialized vendor message-passing libraries have been 
able to deliver. We believe that MPICH has succeeded in popularizing the MPI Standard 
and encouraging vendors to provide MPI to their customers, first, by helping to create 
demand, and second, by offering them a convenient starting point for proprietary 
implementations. 

We have also described the programming environment that is distributed with 
MPICH. The simple commands 

configure 

make 
cd examples/basic 

mpicc -mpilog -0 cpi cpi.c 

mpirun -np 4 cpi 

upshot cpi . log 

provide a portable sequence of actions by which even the beginning user can install 

MPICH, run a program, and use a sophisticated tool to examine its behavior. These 
commands are the same, and the user’s program is the same, on MPPs, SMPs, and 
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workstation networks. MPICH demonstrates that such portability need not be achieved 
at the cost of performance. 
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