
EISEVIER Parallel Computing 22 (1996) 789-828

PARALLEL
COMPUTING

Practical aspects & experiences

A high-performance, portable implementation
of the MPI message passing interface standard

William Gropp a31, Ewing Lusk a9 * T’, Nathan Doss bq2,
Anthony Skjellum b*2

a Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
b Department of Computer Science & NSF Engineering Research Center for CFS, Mississippi State University,

MS 39762, USA

Received 15 February 1996; revised 15 April 1996

Abstract

MPI (Message Passing Interface) is a specification for a standard library for message passing
that was defined by the MPI Forum, a broadly based group of parallel computer vendors, library
writers, and applications specialists. Multiple implementations of MPI have been developed. In
this paper, we describe MPICH, unique among existing implementations in its design goal of
combining portability with high performance. We document its portability and performance and
describe the architecture by which these features are simultaneously achieved. We also discuss the
set of tools that accompany the free distribution of MPICH, which constitute the beginnings of a
portable parallel programming environment. A project of this scope inevitably imparts lessons
about parallel computing, the specification being followed, the current hardware and software
environment for parallel computing, and project management; we describe those we have learned.
Finally, we discuss future developments for MPICH, including those necessary to accommodate
extensions to the MPI Standard now being contemplated by the MPI Forum.

Keywords: Message passing interface; Parallel programming environment; Benchmark, Performance; Portabil-
ity; MPI-2

* Corresponding author. Email: lusk@mcs.anl.gov
’ This work was supported by the Mathematical, Information and Computational Sciences Division

subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Co;tract W-3 I - 109-Eng-38.

This work was supported in part by the NSF Engineering Research Center for Computational Field
Simulation, Mississippi State University. Additional support came from the NSF Career Program under grant
ASC-95-01917, and from ARPA under Order D350.

0167-8191/%/$15.00 0 1996 Published by Elsevier Science B.V. All rights reserved
PI1 SO167-8191(96)00024-5

790 W. Gropp et al./Parallel Computing 22 (1996) 785-828

1. Introduction

The message-passing model of parallel computation has emerged as an expressive,
efficient, and well-understood paradigm for parallel programming. Until recently, the
syntax and precise semantics of each message-passing library implementation were
different from the others, although many of the general semantics were similar. The
proliferation of message-passing library designs from both vendors and users was
appropriate for a while, but eventually it was seen that enough consensus on require-
ments and general semantics for message-passing had been reached that an attempt at
standardization might usefully be undertaken.

The process of creating a standard to enable portability of message-passing applica-
tions codes began at a workshop on Message Passing Standardization in April 1992, and
the Message Passing Interface (MPI) Forum organized itself at the Supercomputing ‘92
Conference. During the next eighteen months the MPI Forum met regularly, and Version
1.0 of the MPI Standard was completed in May 1994 [16,361. Some clarifications and
refinements were made in the spring of 1995, and Version 1.1 of the MPI Standard is
now available [17]. For a detailed presentation of the Standard itself, see [42]; for a
tutorial approach to MPI, see [29]. In this paper we assume that the reader is relatively
familiar with the MPI specification, but we provide a brief overview in Section 2.2.

The project to provide a portable implementation of MPI began at the same time as
the MPI definition process itself. The idea was to provide early feedback on decisions
being made by the MPI Forum and provide an early implementation to allow users to
experiment with the definitions even as they were being developed. Targets for the
implementation were to include all systems capable of supporting the message-passing
model. MPICH is a freely available, complete implementation of the MPI specification,
designed to be both portable and efficient. The “CH” in MPICH stands for
“Chameleon”, symbol of adaptability to one’s environment and thus of portability.
Chameleons are fast, and from the beginning a secondary goal was to give up as little
efficiency as possible for the portability.

MPICH is thus both a research project and a software development project. As a
research project, its goal is to explore methods for narrowing the gap between the
programmer of a parallel computer and the performance deliverable by its hardware. In
MPICH, we adopt the constraint that the programming interface will be MPI, reject
constraints on the architecture of the target machine, and retain high performance
(measured in terms of bandwidth and latency for message-passing operations) as a goal.
As a software project, MPICH’s goal is to promote the adoption of the MPI Standard by
providing users with a free, high-performance implementation on a diversity of plat-
forms, while aiding vendors in providing their own customized implementations. The
extent to which these goals have been achieved is the main thrust of this paper.

The rest of this paper is organized as follows. Section 2 gives a short overview of
MPI and briefly describes the precursor systems that influenced MPICH and enabled it
to come into existence so quickly. In Section 3 we document the extent of MPICH’s
portability and present results of a number of performance measurements. In Section 4
we describe in some detail the software architecture of MPICH, which comprises the
results of our research in combining portability and performance. In Section 5 we

W. Gropp et al./Parallel Computing 22 (1996) 789-828 791

present several specific aspects of the implementation that merit more detailed analysis.
Section 6 describes a family of supporting programs that surround the core MPI
implementation and turn MPICH into a portable environment for developing parallel
applications. In Section 7 we describe how we as a small, distributed group have
combined a number of freely available tools in the Unix environment to enable us to
develop, distribute, and maintain MPICH with a minimum of resources. In the course of
developing MPICH, we have learned a number of lessons from the challenges posed
(both accidentally and deliberately) for MPI implementors by the MPI specification;
these lessons are discussed in Section 8. Finally, Section 9 describes the current status of
MPICH (Version 1.0.12 as of February 1996) and outlines our plans for future
development.

2. Background

In this section we give an overview of MPI itself, describe briefly the systems on
which the first versions of MPICH were built, and review the history of the development
of the project.

2.1. Precursor systems

MPICH came into being quickly because it could build on stable code from existing
systems. These systems prefigured in various ways the portability, performance, and
some of the other features of MPICH. Although most of that original code has been
extensively reworked, MPICH still owes some of its design to those earlier systems,
which we briefly describe here.

P4 [8] is a third-generation parallel programming library, including both message-
passing and shared-memory components, portable to a great many parallel computing
environments, including heterogeneous networks. Although p4 contributed much of the
code for TCP/IP networks and shared-memory multiprocessors for the early versions of
MPICH, most of that has been rewritten. P4 remains one of the “devices” on which
MPICH can be built (see Section 41, but in most cases more customized alternatives are
available.

Chameleon [31] is a high-performance portability package for message passing on
parallel supercomputers. It is implemented as a thin layer (mostly C macros) over
vendor message-passing systems (Intel’s NX, TMC’s CMMD, IBM’s MPL) for perfor-
mance and over publicly available systems (~4 and PVM) for portability. A substantial
amount of Chameleon technology is incorporated into MPICH (as detailed in Section 4).

Zipcode 1411 is a portable system for writing scalable libraries. It contributed several
concepts to the design of the MPI Standard - in particular contexts, groups, and mailers
(the equivalent of MPI communicators). Zipcode also contains extensive collective
operations with group scope as well as virtual topologies, and this code was heavily
borrowed from in the first version of MPICH.

792 W. Gropp et al./Parallel Computing 22 (1996) 789-828

2.2. Brief overview of MPI

MPI is a message-passing application programmer interface, together with protocol
and semantic specifications for how its features must behave in any implementation
(such as a message buffering and message delivery progress requirement). MPI includes
point-to-point message passing and collective (global) operations, all scoped to a
user-specified group of processes. Furthermore, MPI provides abstractions for processes
at two levels. First, processes are named according to the rank of the group in which the
communication is being performed. Second, virtual topologies allow for graph or
Cartesian naming of processes that help relate the application semantics to the message
passing semantics in a convenient, efficient way. Communicators, which house groups
and communication context (scoping) information, provide an important measure of
safety that is necessary and useful for building up library-oriented parallel code.

MPI also provides three additional classes of services: environmental inquiry, basic
timing information for application performance measurement, and a profiling interface
for external performance monitoring. MPI makes heterogeneous data conversion a
transparent part of its services by requiring datatype specification for all communication
operations. Both built-in and user-defined datatypes are provided.

MPI accomplishes its functionality with opaque objects, with well-defined construc-
tors and destructors, giving MPI an object-based look and feel. Opaque objects include
groups (the fundamental container for processes), communicators (which contain groups
and are used as arguments to communication calls), and request objects for asyn-
chronous operations. User-defined and predefined datatypes allow for heterogeneous
communication and elegant description of gather/scatter semantics in send/receive
operations as well as in collective operations.

MPI provides support for both the SPMD and MPMD modes of parallel program-
ming. Furthermore, MPI can support interapplication computations through intercommu-
nicator operations, which support communication between groups rather than within a
single group. Dataflow-style computations also can be constructed from intercommuni-
caters. MPI provides a thread-safe application programming interface (API), which will
be useful in multithreaded environments as implementations mature and support thread
safety themselves.

2.3. Development history of MPICH

At the organizational meeting of the MPI Forum at the Supercomputing ‘92 confer-
ence, Gropp and Lusk volunteered to develop an immediate implementation that would
track the Standard definition as it evolved. The purpose was to quickly expose problems
that the specification might pose for implementors and to provide early experimenters
with an opportunity to try ideas being proposed for MPI before they became fixed. The
first version of MPICH, in fact, implemented the prespecification described in [46]
within a few days. The speed with which this version was completed was due to the
existing portable systems p4 and Chameleon. This first MPICH, which offered quite
reasonable performance and portability, is described in [30].

W. Gropp et al./Parallel Computing 22 (1996) 789-828 793

Starting in spring 1993, this implementation was gradually modified to provide
increased performance and portability. At the same time the system was greatly
expanded to include all of the MPI specification. Algorithms for the collective opera-
tions and topologies, together with code for attribute management, were borrowed from
Zipcode and tuned as the months went by.

what made this project unique was that we had committed to following the MPI
specification as it developed - and it changed at every MPI Forum meeting. Most
system implementors wait for a stable specification. The goals of this project dictated
that, in the short term, we deliberately choose a constantly changing specification. The
payoff came, of course, when the MPI Standard was released in May 1994: the MPICH
implementation was complete, portable, fast, and available immediately. It is worthwhile
to contrast this situation with what happened in the case of the High-Performance
Fortran (HPF) Standard. The HPF Forum (which started and finished a year before the
MPI Forum) produced their standard specification in much the same way that the MPI
Forum did. However, since implementation was left entirely to the vendors, who
naturally waited until the specification was complete before beginning to invest imple-
mentation effort, HPF implementations are only now (February 1996) becoming avail-
able, whereas a large community has been using MPI for over a year.

For the past year, with the MPI Standard stable, MPICH has continued to evolve in
several directions. First, the Abstract Device Interface (ADI) architecture, described in
Section 4 and central to the performance, has developed and stabilized. Second,
individual vendors and others have begun taking advantage of this interface to develop
their own highly specialized implementations of it; as a result, extremely efficient
implementations of MPI exist on a greater variety of machines than we would have been
able to tune MPICH for ourselves. In particular, Convex, Intel, SGI, and Meiko have
produced implementations of the AD1 that produce excellent performance on their own
machines, while taking advantage of the portability of the great majority of the code in
MPICH above the AD1 layer. Third, the set of tools that form part of the MPICH
parallel programming environment has been extended; these are described in Section 6.

2.4. Related work

The publication of the MPI Standard provided many implementation groups with a
clear specification; and several freely available, partially portable implementations have
appeared. Like MPICH, their initial versions were built on existing portable message-
passing systems. They differ from MPICH in that they focus on the workstation
environment, where software performance is necessarily limited by Unix socket func-
tionality. Some of these systems are as follows:

0 LAM [7] is available from the Ohio Supercomputer Center and runs on heteroge-
neous networks of Sun, DEC, SGI, IBM, and HP workstations.

0 CHIMP-MPI [5] is available from the Edinburgh Parallel Computing Center and
runs on Sun, SGI, DEC, IBM, and HP workstations, the Meiko Computing
Surface machines, and the Fujitsu AP-1000. It is based on CHIMP [9].

0 At the Technical University of Munich, research has been done on a system for
check-pointing message-passing jobs, including MPI. See [43] and [44].

194 W. Gropp et al./Parallel Compuiing 22 (1996) 789-828

0 Unify [45], available from Mississippi State University, layers MPI on a version of
PVM [20] that has been modified to support contexts and static groups. Unify
allows mixed MPI and PVM calls in the same program.

Proprietary and platform-specific implementations provided by vendors are described
in Section 9.

3. Portability and performance

The challenge of the MPICH project is to combine both portability and performance.
In this section we first survey the range of environments in which MPICH can be used,
and then present performance data for a representative sample of those environments.

3.1. Portability of MPfcH

The MPI standard itself addresses the message-passing model of parallel computa-
tion. In this model, processes with separate address spaces (like Unix processes)
communicate with one another by sending and receiving messages. A number of
different hardware platforms support such a model.

3.1 .l. Exploiting high-petiormance switches
The most obvious hardware platform for MPI is a distributed-memory parallel

supercomputer, in which each process can be run on a separate node of the machine, and
communication occurs over a high-performance switch of some kind. In this category
are the Intel Paragon, IBM SP2, Meiko CS-2, Thinking Machines CM-5, NCube-2, and
Cray T3D. (Although the Cray T3D provides some hardware that allows one to treat it
as a shared-memory machine, it falls primarily into this category; see [4].) Details of
how MPICH is implemented on each of these machines are given in Section 4, and
performance results for the Paragon and SP2 are given in Section 3.2.

3.1.2. Exploiting shared-memory architectures
A number of architectures support a shared-memory programming model, in which a

memory location can be both read and written to by multiple processes. Although this is
not part of MPI’s computational model, an MPI implementation may take advantage of
capabilities in this area offered by the hardware/software combination to provide
particularly efficient message-passing operations. Current machines offering this model
include the SGI Onyx, Challenge, Power Challenge, and Power Challenge Array
machines, IBM SMP’s (symmetric multiprocessors), the Convex Exemplar, and the
Sequent Symmetry. MPICH is implemented using shared memory for efficiency on all
of these machines (details in Section 4). Performance measurements for the SGI are
given in Section 3.2.6.

3.1.3. Exploiting networks of workstations
One of the most common parallel computing environments is a network of worksta-

tions. Many institutions use Ethernet-connected personal workstations as a “free”

W. Gropp er al./Parallel Computing 22 (1996) 789-828 795

computational resource, and at many universities laboratories equipped with Unix
workstations provide both shared Unix services for students and an inexpensive parallel
computing environment for instruction. In many cases, the workstation collection
includes machines from multiple vendors. Interoperability is provided by the TCP/IP
standard. MPICH runs on workstations from Sun (both SunOS and Solaris), DEC,
Hewlett-Packard, SGI, and IBM. Recently, the Intel 486 and Pentium compatible
machines have been able to join the Unix workstation family by running one of the
common free implementations of Unix, such as FreeBSD, NetBSD, or Linux. MPICH
runs on all of these workstations and on heterogeneous collections of them. Details of
how heterogeneity is handled are presented in Section 4, and some performance figures
for Ethernet-connected workstations are given in Section 3.2.

An important family of non-Unix operating systems is supported by Microsoft.
MPICH has been ported to Windows 3.1 (where it simulates multiprocessing on a single
processor); the system is called WinMPI [37,38].

3.2. Performance of MPICH

The MPI specification was designed to allow high performance in the sense that
semantic restrictions on optimization were avoided wherever user convenience would
not be severely impacted. Furthermore, a number of features were added to enable users
to take advantage of optimizations that some systems offered, without affecting portabil-
ity to other systems that did not have SUC’I optimizations available. In MPICH we have
tried to take advantage of those features tin the Standard that allow for extra optimiza-
tion, but we have not done so in every possible case.

Performance on one’s own application is, of course, what counts most. Nonetheless,
useful predictions of application performance can be made, based on the results of
specially constructed benchmark programs. In this section, we first describe some of the
difficulties that arise in benchmarking message-passing systems, then discuss the
programs we have developed to address these difficulties and finally present results from
running the benchmarks on a representative sample of the environments supported by
MPICH.

The MPICH implementation includes two MPI programs, mpptest and goptest,
that provide reliable tests of the performance of an MPI implementation. The program
mpptest provides testing of both point-to-point and collective operations on a speci-
fied number of processors; the program goptest can be used to study the scalability of
collective routines as a function of number of processors.

3.2.1. Performance measurement problems and pit;falls
One common problem with simple performance measurement programs is that the

results are different each time the program is run, even on the same system. A number
of factors are responsible, ranging from assuming that the clock calls have no cost and
infinite resolution to the effects of other jobs running on the same machine. A good
performance test will give the same (to the clock’s precision) answer each time. The
mpptest and goptest programs distributed with MPICH compute the. average time
for a number of iterations of an operation (thus handling the cost and granularity of the

796 W. Gropp et ul./Parallel Computing 22 (19941789-828

clock) and then run the same test over several times and take the minimum of those
times (thus reducing the effects of other jobs). The programs can also provide informa-
tion about the mean and worst-case performance.

More subtle are issues of which test to run. The simplest “pingpang” test, which
sends the same data (using the same data buffer) between two processes, allows data to
reside entirely in the memory cache. In many real applications, however, neither buffer
will already be mapped into cache, and this situation can affect the performance of the
operation. Similarly, data transfers that are not properly aligned on word boundaries can
be more expensive than those that are. MPI also has noncontiguous datatypes; the
performance of an implementation with these datatypes may be significantly slower than
for contiguous data. Another parameter is the number of processors used, even if only
two are communicating. Certain implementations will include a latency cost proportional
to the number of processors. This gives the best performance on the two-processor
ping-pong test at the cost of (possibly) lower performance on real applications. Mpptest
and goptest include tests to measure these effects.

3.2.2. Benchmarks for point-to-point operations
In this section we present some of the simplest benchmarks for performance of

MPICH on various platforms. The performance test programs mpptest and goptest
can produce a wealth of information; the script basetest, provided with the MPICH
implementation, can be used to get a more complete picture of the behavior of a
particular system. Here, we present only the most basic data: short- and long-message
performance.

For the short-message graphs, the only options used with mpptest are -auto and
-size 0 1000 40. The option -auto tells mpptest to choose the sizes of the
messages so as to reveal the exact message size where there is any sudden change in
behavior (for example, at an internal packet-size boundary). The -size option selects
messages with sizes from 0 to 1000 bytes in increments of 40 bytes. The short-message
graphs give a good picture of the latency of message passing.

For the long-message graphs, a few more options are used. Some make the test runs
more efficient. The size range of message is set with -size 1000 77000 4000,
which selects messages of sizes between about 1 K and 80 K, sampled every 4000 bytes.

These tests provide a picture of the best achievable bandwidth performance. More
realistic tests can be performed by using - cachesize (to force the use of different
data areas), -overlap (for communication and computation overlap), -async (for
nonblocking communications), and -vector (for noncontiguous communication). Us-
ing - givedy gives information on the range of performance, displaying both the mean
and worst-case performance.

3.2.3. Performance of MPICH compared with native vendor systems
One question that can be asked about MPI is how its performance compares with

proprietary vendor systems. Fortunately, the mpptest program was designed to work
with many message-passing systems and can be built to call a vendor’s system directly.
In Fig. 1, we compare MPI and Intel’s NX message-passing. The MPICH implementa-
tion for the Intel Paragon, while implemented with a special ADI, still relies on

W. Gropp et al./ Parallel Computing 22 (19%) 789-828 797

Comm Perf for MPI and Raw NX (Paragon)
type = blocking

1
1

- MPICH

. . .._..._....... Intel m

I
lo0

1 I I I I I I 1

20000 40000 60000 a0000
Size (bytes)

Fig. 1. MPICH vs. NX on the Paragon.

message-passing services provided by NX. Despite this fact, the MPI performance is
quite good and can probably be improved with the second-generation ADI, planned for a
later release of MPICH. We use this as a representative example to demonstrate that the
apparently elaborate structure shown in Figs. 7 and 8 does not impose serious perfor-

Fig. 2. Short and long messages on the Paragon.

798 W. Gropp et d/Parallel Computing 22 (1996) 789-828

Comm Pal for MPI (0.) Comm Pet-f for MPI (0.)

2.5
type = blocking

I I 1 I

Fig. 3. Short and long messages on the IBM SP2.

mance overheads beyond those of the underlying, vendor-specific message-passing
layer.

3.2.4. Paragon measurements
The Intel Paragon has a classic distributed-memory architecture with a (cut-through

routed) 2-D mesh topology. Latency and bandwidth performance are shown in Fig. 2.
The Paragon performance measurements shown in Fig. 2 were taken while other users
were on the system. This explains why the right side of Fig. 2 is “rougher” than the
curve in Fig. 1, although the peak bandwidth shown is similar.

3.2.5. IBM SP2 measurements
The IBM SP2 at Argonne National Laboratory has Power-l nodes (the same as in the

IBM SPl) and the SP2 high-performance switch. Measurements on IBM SP2 with

Comm Perf for UPI (femri.rgi.com)

Fig. 4. Short and long messages on the SGI Power Challenge.

W. Gropp et al/Parallel Computing 22 (1996) 789-828

Comm Pd for MPPI (h4p)

Fig. 5. Short and long messages on the Cray T3D.

Power-2 nodes (thin or wide) will be different. The latencies shown in Fig. 3 reflect the
slower speed of the Power-l nodes. Note the obvious packet boundaries in the
short-message plot.

3.2.6. SGI power challenge measurements
The SGI Power Challenge is a symmetric multiprocessor. The latency and bandwidth

performance as shown in Fig. 4 indicate the performance for the ch_shmem device, a
generic shared-memory device supplied with the MPICH implementation.

3.2.7. Cray T3D measurements
The Cray T3D supports a shared memory interface (the shmem library). For MPICH,

this library is used to support MPI message-passing semantics. The latency and
bandwidth performance are shown in Fig. 5.

Fig. 6. Short and long messages on a workstation network.

800 W. Gropp et al./Parallel Computing 22 (1996) 789-828

3.2.8. Workstation network measurements
Workstation networks connected by simple Ethernet are common. The performance

of MPICH for two Sun SPARCStations, on a shared Ethernet, are shown in Fig. 6.

4. Architecture of MPICH

In this section we describe in detail how the software architecture of MPICH supports
the conflicting goals of portability and high performance. The design was guided by two
principles. First, we wished to’maximize the amount of code that can be shared without
compromising performance. A large amount of the code in any implementation is
system independent. Implementation of most of the MPI opaque objects, including
datatypes, groups, attributes, and even communicators, is platform-independent. Many
of the complex communication operations can be expressed portably in terms of
lower-level ones. Second, we wished to provide a structure whereby MPICH could be
ported to a new platform quickly, and then gradually tuned for that platform by
replacing parts of the shared code by platform-specific code. As an example, we present
in Section 4.3 a case study showing how MPICH was quickly ported and then
incrementally tuned for peak performance on SGI shared-memory systems.

The central mechanism for achieving the goals of portability and performance is a
specification we call the abstract device interface (ADI) [24]. All MPI functions are
implemented in terms of the macros and functions that make up the ADI. All such code
is portable. Hence, MPICH contains many implementations of the ADI, which provide
portability, ease of implementation, and an incremental approach to trading portability
for performance. One implementation of the AD1 is in terms of a lower level (yet still
portable) interface we call the channel interface [28]. The channel interface can be
extremely small (five functions at minimum) and provides the quickest way to port
MPICH to a new environment. Such a port can then be expanded gradually to include
specialized implementation of more of the AD1 functionality. The architectural decisions
in MPICH are those that relegate the implementation of various functions to the channel
interface, the ADI, or the application programmer interface (API), which in our case is
MPI.

4.1. The abstract device interface

The design of the AD1 is complex because we ,wish to allow for, but not require, a
range of possible functions of the device. For example, the device may implement its
own message-queuing and data-transfer functions. In addition, the specific environment
in which the device operates can strongly affect the choice of implementation, particu-
larly with regard to how data is transferred to and from the user’s memory space. For
example, if the device code runs in the user’s address space, then it can easily copy data
to and from the user’s space. If it runs as part of the user’s process (for example, as
library routines on top of a simple hardware device), then the “device” and the API can
easily communicate, calling each other to perform services. If, on the other hand, the
device is operating as a separate process and requires a context switch to exchange data

W. Gropp et al./ Parallel Computing 22 (1996) 789-828 801

or requests, then switching between processes can be very expensive, and it becomes
important to minimize the number of such exchanges by providing all information
needed with a single call.

Although MPI is a relatively large specification, the device-dependent parts are small.
By implementing MPI using the ADI, we were able to provide code that can be shared
among many implementations. Efficiency could be obtained by vendor-specific propri-
etary implementations of the abstract device. For this approach to be successful, the
semantics of the AD1 must not preclude maximally efficient instantiations using modem
message-passing hardware. While the AD1 has been designed to provide a portable MPI
implementation, nothing about this part of the design is specific to the MPI library; our
definition of an abstract device can be used to implement any high-level message-pass-
ing library.

To help in understanding the design, it is useful to look at some abstract devices for
other operations, for example, for graphical display or for printing. Most graphical
displays provide for drawing a single pixel at an arbitrary location; any other graphical
function can be built by using this single, elegant primitive. However, high-performance
graphical displays offer a wide variety of additional functions, ranging from block copy
and line drawing to 3-D surface shading. One approach for allowing an API (application
programmer interface) to access the full power of the most sophisticated graphics

MPI_Redum

MPl_lsend MPI
point-t-point

MPID_Post_Send The Abstract
Device Interface

MPID_SendControl The Channel
Interface

(implementations of the channel interface)

Fig. 7. Upper layers of MPICH.

802 W. Gropp et al./Parallel Computing 22 (1996) 789-828

devices, without sacrificing portability to less capable devices, is to define an abstract
device with a rich set of functions, and then provide software emulations of any
functions not implemented by the graphics device. We use the same approach in
defining our message-passing ADI.

A message-passing AD1 must provide four sets of functions: specifying a message to
be sent or received, moving data between the API and the message-passing hardware,
managing lists of pending messages (both sent and received), and providing basic
information about the execution environment (e.g., how many tasks are there). The
MPICH AD1 provides all of these functions; however, many message-passing hardware
systems may not provide list management or elaborate data-transfer abilities. These
functions are emulated through the use of auxiliary routines, described in [24].

The abstract device interface is a set of function definitions (which may be realized as
either C functions or macro definitions) in terms of which the user-callable standard
MPI functions may be expressed. As such, it provides the message-passing protocols
that distinguish MPICH from other implementations of MPI. In particular, the AD1 layer
contains the code for packetizing messages and attaching header information, managing
multiple buffering policies, matching posted receives with incoming messages or
queuing them if necessary, and handling heterogeneous communications. For details of
the exact interface and the algorithms used, see [24].

A diagram of the upper layers of MPICH, showing the ADI, is shown in Fig. 7.
Sample functions at each layer are shown on the left. Without going into details on the
algorithms present in the ADI, one can expect the existence of a routine like
~~ID_SendControl, which communicates control information. The implementation
of such a routine can be in terms of a vendor’s own existing message-passing system or
new code for the purpose or can be expressed in terms of a further portable layer, the
channel intedace.

4.2. The channel inte$ace

At the lowest level, what is really needed is just a way to transfer data, possibly in
small amounts, from one process’s address space to another’s. Although many imple-
mentations are possible, the specification can be done with a small number of defini-
tions. The channel interface, described in more detail in [28], consists of only five
required functions. Three routines send and receive envelope (or control) information:
MPID_SendControl 3, MPID_RecvAnyControl, and MPID_Con-
trolMsgAvai1; two routines send and receive data: MPID_SendChannel and
MPID_RecvFromChannel. Others, which might be available in specially optimized
implementations, are defined and used when certain macros are defined that signal that
they are available. These include various forms of blocking and nonblocking operations
for both envelopes and data.

3 one can use MPID_SendControlBlock instead of or along with MPID_SendControl. It can be

more efficient to use the blocking version for implementing blocking calls.

W. Gropp et al./Parallel Computing 22 (1996) 789-828 803

These operations are based on a simple capability to send data from one process to
another process. No more functionality is required than what is provided by Unix in the
select, read, and write operations. The AD1 code uses these simple operations to
provide the operations, such as MPID_Post_recv, that are used by the MI’1 imple-
mentation.

The issue of buffering is a difficult one. We could have defined an interface that
assumed no buffering, requiring the AD1 that calls this interface to perform the
necessary buffer management and flow control. The rationale for not making this choice
is that many of the systems used for implementing the interface defined here do
maintain their own internal buffers and flow controls, and implementing another layer of
buffer management would impose an unnecessary performance penalty.

The channel interface implements three different data exchange mechanisms.

Eager In the eager protocol, data is sent to the destination immediately. If the
destination is not expecting the data (e.g., no MPI_Recv has yet been issued for it>, the
receiver must allocate some space to store the data locally.

This choice often offers the highest performance, particularly when the underlying
implementation provides suitable buffering and handshakes. However, it can cause
problems when large amounts of data are sent before their matching receives are posted,
causing memory to be exhausted on the receiving processors.

This is the default choice in MF’ICH.

Rendezvous In the rendezvous protocol, data is sent to the destination only when
requested (the control information describing the message is always sent). When a
receive is posted that matches the message, the destination sends the source a request for
the data. In addition, it provides a way for the sender to return the data.

This choice is the most robust but, depending on the underlying system software, may
be less efficient than the eager protocol. Some legacy programs may fail when run using
a rendezvous protocol if an algorithm is unsafely expressed in terms of MPI_Send.
Such a program can be safely expressed in terms of MPI_Bsend, but at a possible cost
in efficiency. That is, the user may desire the semantics of an eager protocol (messages
are buffered on the receiver) with the performance of the rendezvous protocol (no
copying) but since buffer space is exhaustible and MPI_Bsend may have to copy, the
user may not always be satisfied.

MPICH can be configured to use this protocol by specifying -use_rndv during
configuration.

Get In the get protocol, data is read directly by the receiver. This choice requires a
method to directly transfer data from one process’s memory to another. A typical
implementation might use memcpy.

This choice offers the highest performance but requires special hardware support such
as shared memory or remote memory operations. In many ways, it functions like the
rendezvous protocol, but uses a different set of routines to transfer the data.

To implement this protocol, special routines must be. provided to prepare the address
for remote access and to perform the transfer. The implementation of this protocol
allows data to be transferred in several pieces, for example, allowing arbitrarily sized

804 W. Gropp et al./Parallel Computing 22 (1996) 789-828

messages to be transferred using a limited amount of shared memory. The routine
MPID_SetupGetAddress is called by the sender to determine the address to send
to the destination. In shared-memory systems, this may simply be the address of the data
(if all memory is visible to all processes) or the address in shared-memory where all (or
some) of the data has been copied. In systems with special hardware for moving data
between processors, it may be the appropriate handle or object.

MPICH includes multiple implementations of the channel interface (see Fig. 8).

Chameleon Perhaps the most significant implementation is the Chameleon version,
which was particularly important during the initial phase of MPICH implementation. By
implementing the channel interface in terms of Chameleon [31] macros, we provide
portability to a number of systems at one stroke, with no additional overhead, since
Chameleon macros are resolved at compile time. Chameleon macros exist for most
vendor message-passing systems, and also for p4, which in turn is portable to very many
systems. A newer implementation of the channel interface is a direct TCP/IP interface,
not involving p4.

send_cntl-pkt

Plsend

Nexus tcP Convex SGI(l) Solaris
\

Fig. 8. Lower layers of MPICH.

W. Gropp et al./ Parallel Computing 22 (1996) 789-828 805

Shared memory A completely different implementation of the channel interface has
been done (portably) for a shared-memory abstraction, in terms of a shared-memory
malloc and locks. There are, in turn, multiple (macro) implementations of the shared-
memory implementation of the channel interface. This is represented as the p2 box in
Fig. 8.

Specialized Some vendors (SGI and HP-Convex, at present) have implemented the
channel interface directly, without going through the shared-memory portability layer.
This approach takes advantage of particular memory models and operating system
features that the shared-memory implementation of the channel interface does not
assume are present.

SC1 A specialized implementation of the channel interface has been developed for an
implementation of the Scalable Coherent Interface [40] from Dolphin Interconnect
Solutions, which provides portability to a number of systems that use it [39].

Contrary to some descriptions of MPICH that have appeared elsewhere, MPICH has
never relied on the p4 version of the channel interface for portability to massively
parallel processors. From the beginning, the MPP (IBM SP, Intel Paragon, TMC CM-5)
versions used the macros provided by Chameleon. We rely on the p4 implementation
only for the workstation networks, and a p4independent version for TCP/IP will be
available soon.

4.3. A case study

One of the benefits of a system architecture like that shown in Figs. 7 and 8 is the
flexibility provided in choosing where to insert vendor-specific optimizations. One
illustration of how this flexibility was used is given by the evolution of the Silicon
Graphics version of MPICH.

Since Chameleon had been ported to p4 and p4 had been ported to SGI workstations
long before the MPICH project began, MPICH ran on SGI machines from the very
beginning. This is the box shown as SGI(0) in Fig. 8. This implementation used TCP/IP
sockets between workstations and standard Unix System V shared memory operations
for message passing within a multiprocessor like the SGI Onyx.

The SGI(1) box in Fig. 8 illustrates an enhanced version achieved by using a simple,
portable shared-memory interface we call p2 (half of ~4). In this version, shared
memory operations use special SGI operations for shared-memory functions instead of
the less robust System V operations.

SGI(2) in Fig. 8 is a direct implementation of the channel interface that we did in
collaboration with SGI. It uses SGI-specific mechanisms for memory sharing that allow
single-copy data movement between processes (as opposed to copying into and out of an
intermediate shared buffer), and it uses lock-free shared queue management routines that
take advantage of special assembler language instructions of the MIPS microprocessor.

SGI next developed a direct implementation of the AD1 that did not use the channel
interface model (SGI(3) in Fig. 7), and then bypassed the AD1 altogether to produce a
very high-performance MPI implementation for the Power Challenge Array product,

806 W. Gropp et al./Parallel Computing 22 (1996) 789-828

combining both shared-memory operations and message-passing over the HiPPI connec-
tions between shared-memory clusters. Even at this specialized level, it retains much of
the upper levels of MPICH that are implemented either independently of, or completely
on top of, the message-passing layer, such as the collective operations and topology
functions.

At all times, SGI users had access to a complete MPI implementation, and their
programs did not need to change in any way as the implementation improved.

5. Selected subsystems

A detailed description of all the design decisions that went into MPICH would be
tedious. Here we focus on several of the salient features of this implementation that
distinguish it from other implementations of MPI.

5.1. Groups

The basis of an MPICH process group is an ordered list of process identifiers, stored
as an integer array. A process’s rank in a group refers to its index in this list. Stored in
the list is an address in a format the underlying device can use and understand. This is
often the rank in MPI_COMM_WORlD, but need not be.

5.2. Communicators

The Standard describes two types of communicators, intracommunicators and inter-
communicators, which consist of two basic components, namely process groups and
communication contexts. MPICH intracommunicators and intercommunicators use this
same structure.

The Standard describes how intracommunicators and intercommunicators are related
(see Section 5.6 of the Standard). We take advantage of this similarity to reduce the
complexity of functions that operate on both intracommunicators and intercommunica-
tors (e.g., communicator accessors, point-to-point operations). Most functions in the
portable layer of MPICH do not need to distinguish between an intracommunicator and
an intercommunicator. For example, each communicator has a local group
(local_group) and a remote group (group) as described in the definition of an
intercommunicator. For intracommunicators, these two groups are identical (reference
counting is used to reduce the amount of overhead associated with keeping two copies
of a group; see Section 5.1); however, for intercommunicators, these two groups are
disjoint.

Another similarity between intracommunicators and intercommunicators is the use of
contexts. Each communicator has a send context (send_context) and a receive
context (recv_context). For intracommunicators, these two contexts are equal; for
intercommunicators, these contexts may be different. Regardless of the type of commu-
nicator, MPI point-to-point operations attach the send-context to all outgoing

W. Gropp et al./Parallel Computing 22 (1996) 789-828 807

messages and use the recv_context when matching contexts upon receipt of a
message.

For most MPICH devices, contexts are integers. Contexts for new communicators are
allocated through a collective operation over the group of processes involved in the
communicator construction. Through this collective operation, all processes involved
agree on a context that is currently not in use by any of the processes. One of the
algorithms used to allocate contexts involves passing the highest context currently used
by a process to an MPI_Allreduce with the MPI_MAX operation to find the smallest
context (an integer) unused by any of the participants.

In order to provide safe point-to-point communications within a collective operation,
an additional “collective” context is allocated for each communicator. This collective
context is used during communicator construction to create a “hidden” communicator
(comm_coll) that cannot be accessed directly by the user. This is necessary so that
point-to-point operations used to implement a collective operation do not interfere with
user-initiated point-to-point operations.

Other important elements of the communicator data structure include the following:

np, local-rank, lrank_to_grank Used to provide more convenient access to
local group information.

collops Array of pointers to functions implementing the collective operations for the
communicator (see Section 5.3).

5.3. Collective operations

As noted in the preceding section, MPICH collective operations are implemented on
top of MPICH point-to-point operations. MPICH collective operations retrieve the
hidden communicator from the communicator passed in the argument list and then use
standard MPI point-to-point calls with this hidden communicator. We use straightfor-
ward “power-of-two”-based algorithms to provide scalability; however, considerable
opportunities for further optimization remain.

Although the basic implementation of MPICH collective operations uses point-to-point
operations, special versions of MPICH collective operations exist. These special ver-
sions include both vendor-supplied and shared-memory versions. In order to allow the
use of these special versions on a communicator-by-communicator basis, each communi-
cator contains a list of function pointers that point to the functions that implement the
collectives for that particular communicator. Each communicator structure contains a
reference count so that communicators can share the same list of pointers.

typedef struct MPIR_COLLOPS {
int (*Barrier) (MPI_Comn corn);
int (*BCaSt) (void* buffer, int count, MPI_Datatype

datatype,

int root, MPI_Com corm);
. . . other function pointers . . .
int ref_count; /* So we can share it */

) MPIR_COLLOPS;

808 W. Gropp et al./Parallel Computing 22 (1996) 789-828

Each MPI collective operation checks the validity of the input arguments, then
forwards the function arguments to the dereferenced function for the particular commu-
nicator. This approach allows vendors to substitute system-specific implementations for
all or some of the collective routines. Currently, Meiko, Intel, and Convex have
provided vendor-specific collective implementations. These implementations follow
system-specific strategies; for example, the Convex SPP collective routines make use
both of shared memory and of the memory hierarchies in the SPP.

5.4. Attributes

Attribute caching on communicators is implemented by using a height-balanced tree
(HBT or AVL tree) [351. Each communicator has an HBT associated with it, although
initially the HBT may be an empty or null tree. Caching an attribute on a communicator
is simply an insertion into the HBT, retrieving an attribute is simply searching the tree
and returning the cached attribute.

MPI keyvals are created by passing the attribute’s copy function and destructor as
well as any extra-state needed to the keyval constructor. Pointers to these are
kept in the keyval structure that is passed to attribute functions.

Additional elements of a keyval include a flag denoting whether C or Fortran
calling conventions are to be used for the copy function (the attribute input argument to
the copy function is passed by value in C and passed by reference in Fortran).

Caching on other types of MPI handles is being considered for inclusion in the MPI-2
standard. The MPICH HBT implementation of caching can be used almost exactly as is
for implementing caching on other types of MPI handles by simply adding an HBT to
the other types of handles.

5.5. Topologies

Support for topologies is layered on the communicator attribute mechanism. Because
of this configuration, the code implementing topologies is almost entirely portable even
to other MPI implementations. For communicators with associated topology informa-
tion, the communicator’s cache contains a structure describing the topology (either a
Cartesian topology or a graph topology). The MPI topology functions access the cached
topology information as needed (using standard MPI calls), then use this information to
perform the requested operation.

5.6. The profiling inter&ace

The MPI Forum wished to promote the development of tools for understanding
program behavior, but considered it premature to standardize any specific tool interface.
The MPI specification provides instead a general mechanism for intercepting calls to
MPI functions. Thus both end users and tool developers can develop portable perfor-
mance analyzers and other tools without access to the MPI implementation source code.
The only requirement is that every MPI function be callable (in both C and Fortran) by
an alternate name (PMPI_Xxxx as well as the usual MPI_Xxxx.). In some environ-

W. Gropp et al./Parallel Computing 22 (1996) 789-828 809

ments (those supporting “weak symbols”) the additional entry points can be supplied in
the source code. In MPICH we take the less elegant but more portable approach of
building a duplicate MPI library in which all functions are known by their PMPI_nameS.
Of course, only one copy of the source code is maintained. Users can interpose their
own “profiling wrappers” for MPI functions by linking with their own wrappers, the
standard version of the MPI library, and the profiling version of the MPI library in the
proper order. MPICH also supplies a number of prebuilt profiling libraries; these are
described in Section 6.3.1.

5.7. The Fortran interface

MPI is a language-independent specification with separate language bindings. The
MPI-1 .l standard specifies a C and a Fortran 77 binding. Since these bindings are quite
similar, we decided to implement MPI in C, with the Fortran implementation simply
calling the C routines. This strategy requires some care, however, because some C
routines take arguments by value while all Fortran routines take arguments by reference.
In addition, the MPICH implementation uses pointers for the MPI opaque objects (such
as MPI_Request and MPI_Comm); Fortran has no native pointer datatype, and the
MPI standard uses the Fortran INTEGER type for these objects. Rather than manually
create each interface routine, we used a program that had been developed at Argonne for
just this purpose.

The program, bfort [21], reads the C source file and uses structured comments to
identify routines for which to generate interfaces. Special options allow it to handle
opaque types, choose how to handle C pointers, and provide name mapping. In many
cases, this was all that was necessary to create the Fortran interfaces. In cases where
routine-specific code was needed (for example, in MPI_Waitsome where zero-origin
indexing is used in C and one-origin is used in Fortran), the automatically generated
code was a good base to use for the custom code. Using the automatic tool also
simplifies updating all of the interfaces when a system with a previously unknown
Fortran-C interface is encountered. This situation arose the first time we ported MPICH
to a system that used the program f 2c 1141 as a way to provide a Fortran compiler; f 2c
generates unusual external names for Fortran routine names. We needed only to rerun
bfort to update the Fortran interfaces. This interface handles the issues of pointer
conversions between C and Fortran (see Section 8.5) as well as the mapping of Fortran
external names to C external names. The determination of the name format (e.g.,
whether Fortran externals are upper or lower case and whether they have underscore
characters appended to them) is handled by our configure program, which compiles a
test program with the user’s selected Fortran compiler and extracts the external name
from the generated object file. This allows us to handle different Fortran compilers and
options on the same platform.

5.8. Job stamp

The MPI Forum did not standardize the mechanism for starting jobs. This decision
was entirely appropriate; by way of comparison, the Fortran standard does not specify

810 W. Gropp ei al./Parallel Computing 22 (1996) 789-828

how to start Fortran programs. Nonetheless, the extreme diversity of the environments in
which MPICH runs and the diversity of job-starting mechanisms in those environments
(special commands like prun, poe, or mexec, settings of various environment
variables, or special command-line arguments to the program being started) suggested to
us that we should encapsulate the knowledge of how to run a job on various machines in
a single command. We named it mpirun. In all environments, an MPI program, say
myprog, can be run with, say, 12 processes by issuing the command

mpirun -np 12 myprog

Note that this might not be the only way to start a program, and additional arguments
might usefully be passed to both mpirun and myprog (see Section 6.41, but the
mpirun command will always work, even if the starting of a job requires complex
interaction with a resource manager. For example, at Argonne we use a home-grown
scheduler called EASY instead of IBM’s LoadLeveler to start jobs on our IBM SP;
interaction with EASY is encapsulated in mpirun.

A number of other MPI implementations and environments have also decided to use
the name mpirun to start MPI jobs. The MPI Forum is discussing whether this
command can be at least partially standardized for MPI-2 (see Section 9.4).

5.9. Building MPKH

An important component of MPICH’s portability is the ability to build it in the same
way in many different environments. We rely on the existence of a Boume shell sh (or
superset) and Unix-style make on the user’s machine. The sh script that the user runs is
constructed by GNU’s autoconf, which we need in our development environment, but
which the user does not need. At least a vanilla version of MPICH can be built in any of
MPICH’s target environments by going to the top-level directory of the distribution and
issuing the commands

configure

make

The configure script will determine aspects of the environment (such as the location of
certain include files), perform tests of the environment to ensure that all components
required for the correct compilation and execution of MPICH programs are present, and
construct the appropriate Makef iles in many directories, so that the make command
will build MPICH. After being built and tested, MPICH can be installed in a publicly
available location such as /usr/local with make install. Painless building and
installation has become one of our pet goals for MPICH.

5.10. Documentation

MPICH comes with both an installation guide [25] and a user’s guide [27]. Although
there is some overlap, and therefore some duplication, we consider separating them to be
a better approach than combining them. Although many users obtain and use MPICH
just for their own use, an increasing number of them are linking their own programs to a

W. Gropp et al./Parallel Computing 22 (1996) 789-828 811

system-wide copy of the libraries that have been installed in a publicly accessible place.
For such users the information in the installation guide is a distraction. Conversely, the
user’s guide contains a collection of helpful hints for users who may be experiencing
difficulties getting applications to run. These difficulties might well never be encoun-
tered by systems administrators who merely install MPICH.

An important but frequently overlooked part of a software project (particular for
research software) is the generation of documentation, particularly Unix-style man
pages 4. We use a tool called doctext [22] that generates man pages (as well as
WWW and LaTeX documentation) directly from simple, structured comments in the
source code. Using this tool allowed us to deliver MPICH with complete documentation
from the beginning. Examples of the documentation can be accessed on the WWW at
http://www.mcs.anl.gov/mpi/www/index.html.

6. Toward a portable parallel programming environment

Although MPI specifies a standard library interface and therefore describes what a
portable parallel program will look like, it says nothing about the environment in which
the program will run. MPICH is a portable implementation of the MPI standard, but also
attempts to provide more for programmers. We have already discussed mpirun, which
provides a portable way to run programs. In this section we describe briefly some of the
other tools provided in MPICH along with the basic MPI implementation.

6.1. The MPE extension library

MPE (Multi-Processing Environment) is a loosely structured library of routines
designed to be “handy” for the parallel programmer in an MPI environment. That is,
most of the MPE functions assume the presence of some implementation of MPI, but not
necessarily of MPICH. MPE routines fall into several categories.

Parallel X graphics There are routines to provide all processes with access to a shared
X display. These routines are easier to use than the corresponding native Xlib routines
and make it quite convenient to provide graphical output for parallel programs. Routines
are provided to set up the display (probably the hardest part) and draw text, rectangles,
circles, lines, etc. on it. It is not the case that the various processes communicate with
one process that draws on the display; rather, the display is shared by all the processes.
This library is described in [23].

Logging One of the most common tools for analyzing parallel program performance is a
time-stamped event trace file. The MPE library provides simple calls to produce such a
file. It uses MPI calls to obtain the time-stamps and to merge separate log files together
at the end of a job. It also automatically handles the misalignment and drift of clocks on

4 This is not to say that the format of man pages cannot be improved; rather, every Unix user knows how to
get information this way and rightly expects man pages to be provided.

812 W. Gropp et al./ Purallel Computing 22 (1996) 789428

multiple processors, if the system does not provide a synchronized clock. The logfile
format is that of upshot 1331. This is the library for a user who wishes to define his
own events and program states. Automatic generation of events by MPI routines is
described in Section 6.3.1.

Sequential sections Sometimes, a section of code that is executed on a set of processes
must be executed by only one process at a time, in rank order. The MPE library provides
functions to ensure that this type of execution occurs.

Error handling The MPI specification provides a mechanism whereby a user can
control how the implementation responds to run-time errors, including the ability to
install one’s own error handler. One error handler that we found convenient for
developing MPICH starts the dbx debugger in a popup xterm when an error is
encountered. Thus, the user can examine the stack trace and values of program variables
at the time of the error. To obtain this behavior, the user must

1. Compile and link with the -g option, as usual when using dbx.
2. (a) Link with the MPE library.

Call
MPI_Errhandler_set(comm, MPE_Errors_call_dbx_in_

xterm)
early in the program,
OR

(b) Pass the -mpedbg argument to mpirun (if MPICH configured with
-mpedbg).

6.2. Command-line arguments and standard I/ 0

The MPI standard says little about command-line arguments to programs, other than
that in C they are to be passed to MPI_Init, which removes the command line
arguments it recognizes. MF’ICH ensures that on each process, the command-line
arguments returned from MPI_Init are the same on all processes, thus relieving the
user of the necessity of broadcasting the command-line arguments to the rest of the
processes from whichever process actually was passed them as arguments to main.

The MPI Standard also says little about I/O, other than that if at least one process
has access to stdin, stdout, and stderr, the user can find out which process this
is by querying the attribute MPI_IO on MPI_COMM_WORLD. In MPICH, all processes
have access to stdin , stdout, and stderr, and on networks these I/O streams are
routed back to the process with rank 0 in MPI_COMM_WORLD. On most systems, these
streams also can be redirected through mpirun, as follows.

mpirun -np 64 myprog -myarg 13 (data. in) results .out

Here we assume that “-myarg 13” are command-line arguments processed by the
application myprog. After MPI_Init, each process will have these arguments in its

W. Gropp et al./Parallel Computing 22 (1996) 789-828 813

argv. (This is an MPICH feature, not an MPI requirement.) On batch systems where
stdin may not be available, one can use an argument to mpirun, as follows.

mpirun -np 64 -stdin data.in myproq -myarql3>results.out

The latter form may always be used.

6.3. Support for petionnance analysis and debugging

The MPI profiling interface allows the convenient construction of portable tools that
rely on intercepting calls to the MPI library. Such tools are “ultra portable” in the sense
that they can be used with any MPI implementation, not just a specific portable MPI
implementation.

6.3.1. Profiling libraries
The MPI specification makes it possible, but not particularly convenient, for users to

build their own “profiling libraries,” which intercept all MPI library calls. MPICH
comes with three profiling libraries already constructed; we have found them useful in
debugging and in performance analysis.

tracing The tracing library simply prints (on stdout) a trace of each MPI library call.
Each line is identified with its process number (rank in MPI_COMM_WORLD). Since
stdout from all processes is collected, even on a network of workstations, all output
comes out on the console. A sample is shown here.

. . .
[l] Starting ” “MPI_Bcast.. .

[0] Starting ’ “MPI_Bcast.. .

[0] Ending” “MPI_Bcast

[2] Starting” “MPI_Bcast.. .

[2] Ending” “MPI_Bcast

[l] Ending” “MPIBcast

. . .

logging The logging library uses the mpe logging routines described in Section 6.1 to
write a logfile with events for entry to and exit from each MPI function. Then upshot
(see Section 6.3.2) can be used to display the computation, and its colored bars will
show the frequency and duration of each MPI call. (See Fig. 9.)

Fig. 9. Upshot output.

814 W. Gropp et al./ParaNel Computing 22 (1996) 789-828

animation The animation library uses the mpe graphics routines to provide a simple
animation of the message passing that occurs in an application, via a shared X display.

Further description of these libraries can be found in [34].

6.3.2. Upshot
One of the most useful tools for understanding parallel program behavior is a

graphical display of parallel timelines with colored bars to indicate the state of each
process at any given time. A number of tools developed by various groups do this. One
of the earliest of these was upshot [33]. Since then upshot has been reimplemented
in Tcl/Tk, and this version [34] is distributed with MPICH. It can read log files
generated either by Paragraph [32] or by the mpe logging routines, which are in turn
used by the logging profiling library. A sample screen dump is shown in Fig. 9.

6.3.3. Support for adding new profiling libraries
The most obvious way to use the profiling library is to choose some family of calls to

intercept, and then treat each of them in a special way. Typically, one performs some
action (adds to a counter, prints a message, writes a log record), calls the “real” MPI
function using its alternate name PMPI_Xxxx, perhaps performs another action (e.g.,
writes another log record), and then returns to the application, propagating the return
code from the PMPI routine.

MPICH includes a utility called wrappergen that lets a user specify “templates”
for profiling routines and a list of routines to create, and then automatically creates the
profiling versions of the specified routines. Thus the work required by a user to add a
new profiling library is reduced to writing individual MPI_Init and MPI_Finalize
routines and one template routine. The libraries described above in Section 6.3.1 are all
produced in this way. Details of how to use wrappergen can be found in [27].

6.4. Useful commands

Aspects of the environment required for correct compilation and linking are encapsu-
lated in the Makef iles produced when the user runs configure. Users may set up a
Makef ile for their own applications by copying one from an MPI examples directory
and modifying it as needed. The resultant Makef ile may not be portable, but this may
not be a primary consideration.

An even easier and more portable way to build a simple application, and one that fits
within existing complex Makefiles, is to use .the commands mpicc or mpif77,
constructed in the MPICH ‘bin’ directory by configure. These scripts are used like
the usual commands to invoke the C and Fortran compilers and the linker. Extra
arguments to these commands link with the designated versions of profiling libraries.
For example,

mpicc -c myprog . c

compiles a C program, automatically finding the include libraries that were configured
when MPICH was installed. The command

mpif 77 -mpilog -0 myprog mypr0g.f

W. Gropp et d/Parallel Computing 22 (19%) 789-828 815

compiles and links a Fortran program that, when run, will produce a log file that can be
examined with upshot. The command

mpicc -mpitrace -0 myprog mypr0g.c

compiles and links a C program that displays a trace of its execution on stdout.
The mpirun command has already been mentioned. It has more flexibility than we

have described so far. In particular, in heterogeneous environments, the command

mpirun -arch sun4 -np 4 -arch rs6000 -np 3 myprog

starts myprog on four Sun4’s and three RS/600O’s, where the specific hosts have been
stored in MPICH’s “machines” file.

Special arguments for the application program can be used to make MPICH provide
helpful debugging information. For example,

mpirun -np 4 myprog -mpedbg -mpiiqueue

automatically installs the error handler described in Section 6.3.1 that starts dbx on
errors, and display all message queues when MPI_Finalize is called. This latter
option is useful in locating “lost” messages.

Details on all of these commands can be found in the user’s guide [27].

4.5. Network management tools

Although not strictly part of MPICH itself, the Scalable Unix Tools WJT) [26] are a
useful part of the MPICH programming environment on workstation clusters. Basically,
SUT implements parallel versions of common Unix commands such as Is, ps, cp,
or rm. Perhaps the most useful is a cross between find and ps that we call pfps
(parallel find in the process space). For example, one can find and send a KILL signal to
runaway jobs on a workstation network during a debugging session with

PfPS -all -tn myprog -kill KILL

or locate all of one’s own jobs on the network that have been running for more than an
hour with

PfPS -all -0 me -and -rtime 1:00 -print

Graphical displays also show the load on each workstation and can help one choose the
sub-collection of machines to run an MPICH job on. Details can be found in [26].

6.6. Example programs

MPICH comes with a fairly rich collection of example programs to illustrate its
features. In addition to the extensive test suite and benchmark programs, there are
example programs for Mandelbrot computations, solving the Mastermind puzzle, and the
game of life that illustrate the use of the mpe library in an entertaining way. A number
of simple examples illustrate specific features of the MPI Standard (topologies, for
example) and have been developed for use in classes and tutorials. Many of the
examples from [29] are included. For all of these examples, configure prepares the

816 W. Gropp et al./Parallel Computing 22 (1996) 789-828

appropriate Makef iles, but they have to be individually built as the user wishes. One
example is a moderately large complete nuclear physics Monte Carlo integration
application in Fortran.

7. Software management techniques and tools

MPICH was written by a small, distributed team sharing the workload. We had the
expected problems of coordinating both development and maintenance of a moderately
large (130,000 lines of C> and complex system. We have worked to distribute new
releases in an orderly fashion, track and respond to bug reports, and maintain contact
with a growing body of users. In doing so, we have used existing tools, engineered some
of our own, and developed procedures that have served us well. In this section we report
on our experiences, in the hope that some of our tools and methods will be useful to
other system developers. All software described here is freely available, either from
well-known sources or included in MPICH.

7.1. Configuring for different systems

We have tried, as a sort of pet goal, to make building MPICH completely painless,
despite the variety of target environments. This is a challenge. In earlier systems, such as
p4, Chameleon, and Zipcode, it was assumed that a particular vendor name or operating
system version was enough to determine how to build the system. This is too simplistic
a view:

0 The same hardware may run multiple operating systems (Solaris or SunOS on
suns, LINUX or FreeBSD on x86’s)

0 Different versions of the same operating system may differ radically (SGI IRIX 5
is 32 bit, whereas IRIX 6 is 64; the number of parameters to some system calls in
Solaris depends on the minor version number).

0 Different compilers may use different includes, datatype sizes, and libraries.
In addition, it is rare that a system is completely free of bugs; in particular, since we
distribute source code, it is imperative that the C compiler produce correct object code.
In distributing MPICH, we found that many users did not have correctly functioning C
compilers. It is best to determine this problem at configure time.

We use the GNU autoconf system to build a shell script (configure) , which in
turn executes various commands (including building and running programs) to deter-
mine the user’s environment. It then creates Makef iles from makefile templates, as
well as creating some scripts that contain site-specific information (such as the location
of the wish interpreter).

The autoconf system as distributed provides commands for checking the part of a
system that the GNU tools need; in MPICH, we have defined an additional set of
operations that we found we needed in this and other projects. These include commands
to test that the compiler produces correct code and to choose a vendor’s compiler (with
the correct options; this is particularly important for the massively parallel systems). In
short, the configure script distributed with MPICH has evolved into a knowledge
base about a wide variety of vendor environments.

W. Gropp et al./ Parallel Computing 22 (1996) 789-828 817

7.2. Source code management

To allow us all to work on the code without interfering with one another, we used
RCS via the Emacs VC interface.

7.3. Testing

Testing is often a lengthy and boring process. MPICH contains a test suite that
attempts to test the implementation of each MPI routine. While not as systematic as
some commercial testing systems, which can dwarf the size of the original package, our
test suite has proven invaluable to us in identifying problems before new releases. Many
of the test programs originated as bug-demonstration programs sent to us by our users.
In MPICH, we automate the testing process through the use of scripts that build, test,
and generate a document that summarizes the tests, including the configuration, correct-
ness, and performance results. The testing system is provided as part of the distribution.

7.4. Tracking and responding to problem reports

We realized early on that simply leaving bug reports in our email list would not
work. We needed a system that would allow all of the developers to keep track of
reports, including what had been done (dialog with problem submitter, answers, etc.>. It
also had to be simple for users to use and for us to install. We chose the req system
[131. This system allows users to send mail (without any format restrictions) to
mpi - bugs@mcs . an1 . gov; the bug report is kept in a separate system as well as
being forwarded to a list of developers. Both GUI and command-line access to the bug
reports are provided.

Over time, it became clear that some problems were much more common than others.
We developed a database of common problems, searchable by keyword, which is also
integrated into the manual. When a user sends in a bug report, we can query the
database for a standard response to the problem. For example, if a user complains about
getting the message “Try Again”, the command

> mpich/help/bin/fmsg ‘Try Again’

gives the information from the user’s guide on the message ’ ’ Try Again ’ ‘(which
comes not from MPICH but from rshd).

Announcements about new releases are sent to a mailing list (managed by major-
dome) to which users are encouraged to subscribe when they first run the configure
script.

7.5. Preparing a new release

Preparing a new release for a package as portable as MPICH requires testing on a
wide variety of platforms. To help test a new release of MPICH, we use several

818 W. Gropp et al./ParaNel Computing 22 (1996) 789-828

programs and scripts that build and test the release on a new platform. The dot/port
program included in the MPICH distribution performs a build, checking for errors from
the make, followed by both performance and correctness tests. The output from this
program is a postscript file that describes the results of the build and tests; this postscript
file is then made available on the WWW in a table at http : //www . mcs . an1 . gov/
mpi/mpich/porting/port version-number.html. Another program then is used
to do an installation and to check that both MPICH and the other tools (such as upshot
and mpicc) work correctly. For networks of workstations, additional tests (also
managed by a separate program) test heterogeneous collections of workstations. By
automating much of the testing, we ensure that the testing is reasonably complete and
that the most glaring oversights are caught before a release goes out. Unfortunately,
because the space of possible tests is so large, these programs and scripts have been built
primarily by testing for past mistakes.

8. Lessons learned

One of the purposes of doing an early implementation was to understand the
implications of decisions made during the development of the Standard. As expected,
the implementation process and early experiences of users shed light on the conse-
quences of choices made at MPI Forum meetings.

8.1. Lunguage bindings

One of the earliest lessons learned had to do with the language bindings and choices
of C datatypes for some items in the MPI Standard. For example, the 1 .O version passed
the MPI_Status structure itself, rather than a pointer to the structure, to the routines
MPI_Get_count, MPI_Get_elements, and MPI_Test_cancelled. The C
bindings used int in some places where an int might not be large enough to hold the
result; most of these (except for MPI_Type_size) were changed to MPI_Aint.

In the MPI_Keyval_create function, the predefined “null” functions
MPI_NULL_COPY_FN and MPI_NULL_DELETE_FN were originally both
MPI_NULL_FN; unfortunately, neither of these is exactly a null function (both have
mandatory return values and the copy function also sets a flag). Experience with the
implementation helped the MPI Forum to repair these problems in the 1.1 version of the
MPI Standard.

A related issue was the desire of the Forum to make the same attribute copy and
delete functions usable from both C and Fortran; for this reason, addresses were used in
the 1.0 standard for some items in C that were more naturally values. Unfortunately,
when the size of the C int datatype is different from that of the Fortran INTEGER
datatype, this approach does not work. In a surprise move, the MPI Forum exploited this
in the 1.1 Standard, changing the bindings of the functions in C to use values instead of
addresses.

W. Gropp et al./ Parallel Computing 22 (19%) 789-828 819

Another issue is the Fortran bindings of all of the routines that take buffers. These
buffers can be of any Fortran datatype (e.g., INTEGER, REAL, or CHARACTER). This

was common practice in most previous message-passing systems but is in violation of
the Fortran Standard [151. The MPI Forum voted to follow standard practice. In most
cases, Fortran compilers pass all items by reference, and few complain when a routine is
called with different datatypes. Unfortunately, several standard-conforming Fortran
implementations use a different representation for CHARACTER data than for numeric
data, and in these cases it is difficult to build an MPI implementation that works with
CHARACTER data in Fortran. The MPI Forum is attempting to address this problem in
the MPI-2 proposal.

The MPI Forum provided a way for users to interrogate the environment to find out,
for example, what was the largest valid message tag. This was done in an elegant
fashion by using “attributes,” a general mechanism for users to attach information to a
communicator. The system attributes are attached to the initial MPI_COMM_WORLD
communicator. The problem is that, in general, users need to set as well as get attributes.
Some users did in fact try to set MPI_TAG_UB. MPICH now detects this as an illegal
operation, and the MPI Forum clarified this in the 1.1 Standard.

8.2. Performance

One of the goals of MPI was to define the semantics of the message passing
operations so that no unnecessary data motion was required. The MPICH implementa-
tion has shown this goal to be achievable. On two different shared-memory systems,
MPICH achieves a single copy directly from user-buffer to user-buffer. In both cases,
the operating system had to be modified slightly to allow a process to directly access the
address space of another process. On distributed memory systems, two vendors were
able to achieve the same result by providing vendor-specific implementations of the
ADI.

In actual use, some users have noticed some performance irregularities; these indicate
areas where more work needs to be done in implementations. For example, the
implementation of MPI_Bsend in MPICH always copies data into the user-provided
buffer; for small messages, such copying is not always necessary (it may be possible to
deliver the message without blocking). This can have a significant effect on latency-sen-
sitive calculations. Different methods for handling short, intermediate, and long mes-
sages are also needed and are under development.

Another source of some performance difficulties is seemingly innocuous require-
ments that affect the lowest levels of the implementation. For example, the following is
legal in MPI:

MPI_Isend(..., &request);

MP_Request_free(&request);

The user need not (must not, actually) use a wait or test on the request. This
functionality can be complex to implement when well-separated software layers are used
in the MPI implementation. In particular, it requires that either the completion of the
operation started by the MPI_Isend change data maintained by the MPI implementa-

820 W. Gropp et d/Parallel Computing 22 (1996) 789-828

tion or that the MFI implementation periodically check to see whether some request has
completed. The problem with this functionality is that it may not match well with the
services that are implementing the actual data transport, and can be the source of
unanticipated latency.

Despite these problems, the MPICH implementation does achieve its goal of high
performance and portability. In particular, the use of a carefully layered design, where
the layers can be implemented as macros (or removed entirely, as one vendor has done),
was key in the success of MFICH.

8.3. Resource limits

The MPI specification is careful not to constrain implementations with specific
resource guarantees. For many uses, programmers can work within the limits of any
“reasonable” implementation. However, many existing message-passing systems pro-
vide some (usually unspecified) amount of buffering for messages sent but not yet
received. This allows a user to send messages without worrying about the process
blocking waiting for the destination to receive them or worrying about waiting on
nonblocking send operations. The problem with this approach is that if the system is
responsible for managing the buffer space, user programs can fail in mysterious ways. A
better approach is to allow the user to specify the amount of buffering desired. The MFI
Forum, recognizing this need, added routines with user-provided buffer space:
MPI_Bsend, MPI_Buf f er_attach, and MPI_Buf fer_detach (and nonblock-
ing versions). These routines specify that all of the space needed by the MFI implemen-
tation can be found in the user-provided buffer, including the space used to manage the
user’s messages. Unfortunately, this made it impossible for users to determine how big a
buffer they needed to provide, since there was no way to know how much space the MFI
implementation needed to manage each message. The MPI Forum added
MPI_BSEND_OVERHEAD to provide this information in the 1.1 version of the Standard.

One remaining problem that some users are now experiencing is the limit on the
number of outstanding MPI_Requests that are allowed. Currently, no a priori way
exists to determine or provide the number of allowed requests.

8.4. Heterogeneity and inter-operability

Packed data needs to be sent with a “packed data” bit; this means that datatypes
need to know whether any part of the datatype is MPI_PACKED. The only other option
is to always use the same format, for example, network byte order, at the cost of
maximum performance.

Many systems can be handled by using byte swapping; with data extension (e.g.,
32-bit to and from 64-bit integers), most systems can be handled. In some cases, only
floating point requires special treatment; in these cases, XDR may be used where IEEE
format is not guaranteed.

The MPI specification provides MPI_PACK and MPI_UNPACK functions; unfortu-
nately, these are not the functions that are needed to implement the point-to-point
operations. The reason is that these functions produce data that can be sent to anyone in
a communicator (including the sender), whereas when sending to a single, other process,

W. Gropp et al./Parallel Computing 22 (1996) 789-828 821

there is more freedom in choosing the data representation. 5 The MPICH implementa-
tion uses internal versions of MPI_PACK and MPI_UNPACK that work with data
intended either for a specific process or for all members of a communicator.

8.5. 64-bit issues

The development of MPICH coincided with the emergence of a number of “64-hit
systems.” Many programmers, remembering the problems moving code from 16- to
32-bit platforms, expressed concern over the problem of porting applications to the
64-bit systems. Our experience with MPICH was that, with some care in using C
properly (void * and not int for addresses, for example), there was little problem in
porting MPICH from 32- to 64-bit systems. In fact, with the exception discussed below,
MPICH has no special code for 32-or 64-bit systems.

The exception is in the Fortran-C interface, and this requires an understanding of the
rules of the Fortran 77 Standard. While C makes few statements about the length of
datatypes (for example, sizeof (int) and sizeof (f loat) are unrelated), Fortran
defines the ratios of the sizes of the numeric datatypes. Specifically, the sizes of
INTEGER and REAL data are the same, and are half the size of DOUBLE PRECISION
[15]. This is important in Fortran 77, where there is no memory allocation in the
language and programmers often have to reuse data areas for different types of data.
Further, using 64-bit IEEE floating point for DOUBLE PRECISION requires that
INTEGER be 32 bits. This is true even if sizeof (int) (in C) is 64 bits.

In the Fortran-C interface, this problem appears when we look at the representation of
MPI opaque objects. In MPICH, they are pointers; if these are 64 bits in size, then they
cannot be stored in a Fortran INTEGER. (If opaque objects were ints, it would not
help much; we would still need to convert from a 64-bit to 32-bit integer.) Thus, on
systems where addresses are 64 bits and Fortran INTEGERS are shorter, something must
be done. The MPICH implementation handles this problem by translating the C pointers
to and from small Fortran integers (which represent the index in a table that holds the
pointer). This translation is inserted automatically into the Fortran interface code by the
Fortran interface generator bfort (discussed in Section 5.7).

Another problem involves the routine MPI_Address, which returns an “address”
of an item. This “address” may be used in only two ways: relative to another
“address” from MPI_Address or relative to the “constant” MPI_BOTTOM. In C, the
obvious implementation is to set MPI_BOTTOM to zero and use something like
(long) (char *) ptr to get the address that ptr represents. But in Fortran, the
value MPI_BOTTOM is a variable (at a known location). Since all arguments to routines
in Fortran are passed by address, 6 the best approach is to have the Fortran version of
MPI_Address return addresses relative to the address of MPI_BOTTOM. The advan-
tage of this approach is that even when absolute addresses are too large to fit in an

5 Strangely, the MPI FONm considered but did not accept the functions needed for packing and unpacking
data sent between two specific processes; this decision may have been because there was less experience with

heterogeneous environments.

6 Value-result if one must be picky; in practice, the addresses are passed.

822 W. Gropp et al./ParaNel Computing 22 (1996) 789-828

INTEGER, in many cases the address relative to a location in the user’s program (i.e.,
MPI_BOTTOM) will fit in an INTEGER. This is the approach used in MPICH; if the
address does not fit, an error is returned (of class MPI_ERR_ARG, with an error code
indicating that the address won’t fit).

As a final step in ensuring portability to 64bit systems, our configure program
runs some programs to determine whether the system is 32 or 64 bits. This allows
MPICH to port to unknown systems or to systems like SGI’s IRIX that change from
32-bit (IRIX 5) to 64bit (IRIX 6) without any changes to the code.

8.6. Unresolved issues

The MPI Forum did not address any mixed-language programming issues. At least
for MPI- 1, Fortran programs must pass messages to Fortran programs, and the same for
C. Yet, it is clearly possible to support both C-to-C and Fortran-to-For&m message
passing in a single application. We call this a “horizontal mixed-language portability”.
As long as there is no interest in transferring anything other than user data between
Fortran and C strata of the parallel application, the horizontal model can be satisfied,
provided that MPI_Init provides a consistent single initialization of MPI for both
languages, regardless of which language is used actually to initialize MPI. Current
practice centers on this “horizontal” model, but it is clearly insufficient, as we have
observed from user feedback.

Two additional levels of support are possible, staying still with the restriction of C
and Fortran 77 as the mixed languages. The first is the ability to pass MPI opaque
objects locally within a process between C and Fortran. As noted earlier, C and Fortran
representations for MPI objects will often be arbitrarily different, as will addresses.
Although user-accessible interoperable functions already are required in MPICH (for the
benefit of its Fortran interface), the MPI Standard does not require them. Such
functionality is likely to appear in MPI-2 (as a result of our users’ experience) and with
other MPI systems as well. Such functionality has the added benefit of enhancing the
ability of third parties to provide add-on tools for both C and Fortran users, without
working with inside knowledge of the MPICH implementation (for instance, see [61).

The second level of “vertical” support is to allow a C routine to transmit data to a
Fortran routine. This requires some correspondence between C and Fortran datatypes, as
well as a common format for performing the MPI operations (e.g., the C and Fortran
implementations must agree on how to send control information and perform collective
operations). The MPI Forum is preparing a proposal that addresses the issues of
interlanguage use of MPI datatypes for MPI-2.

9. Status and plans

We begin this section by describing the current use of MPICH by vendors (as a
component of their own MPI implementations) and others. We then describe some of
our plans for improving MPICH both by optimizing some of its algorithms for better
performance and by extending its portability into other environments.

W. Gropp et ul./Purallel Computing 22 (1996) 789428 823

9.1. Vendor interactions

As described above, one of the motivations for MPICH’s architecture was to allow
vendors to use MPICH in developing their own proprietary MPI implementations.
MPICH is copyrighted, but freely given away and automatically licensed to anyone for
further development. It is not restricted to noncommercial use. This approach has
worked well, and vendor implementations are now appearing, many incorporating major
portions of MPICH code.

l IBM obtained an explicit license for MPICH and collaborated with us in testing
and debugging early versions. During this time, MPI-F [19] appeared. This IBM
implementation does not use the ADI, but maps MPI functions directly onto an
internal IBM abstract device interface. Our contact at IBM was Hubertus Franke.

0 SGI worked closely with us (see Section 4.3) to improve the implementation of
the AD1 for their Challenge and Power Challenge machines. Functions were added
to IRIX to enable single-copy interprocess data movement, and SGI gave us
lock-free queue-management routines in assembler language. Those involved at
SGI were Greg Chesson and Eric Salo.

l Convex worked closely with us to optimize an implementation of the channel
interface and then of the ADI. We worked with Pace Romero, Dan Golan, Gary
Applegate, and Raja Daoud.

0 Intel contributed a version of the AD1 written directly for NX, bypassing the
channel interface. The Intel person responsible was Joel Clarke.

0 Meiko also contributed to the publicly distributed version a Meiko device, thanks
to the efforts of Jim Cownie.

0 Laurie Costello helped us adapt MPICH for the Cray vector machines.
0 DEC has used MPICH as the foundation of a memory-channel-based MPI for

Alpha clusters.
We obviously do not claim credit for the vendor implementations, but it does appear that
we met our original goal of accelerating the adoption of MPI by vendors through
providing them a running start on their implementations. The architecture of MPICH,
which provided multiple layers without impact on performance, was the key.

9.2. Other users

Since we make MPICH publicly available by f tp, we do not have precise counts on
the number of users. It is downloaded about 300 times per month from our ftp site,
ftp . mcs . an1 . gov, which is also mirrored at Mississippi State, ftp . erc . ms-
state. edu. Judging from the bug reports and subscriptions to the mpi- users
mailing list, we estimate that between five hundred and one thousand people are
currently active in their use of MPICH.

9.3. Planned enhancements

We are pursuing several directions for future work based on MPICH.

New AD1 To further reduce latencies, particularly on systems where latency is already

824 W. Gropp et al./ParuNel Computing 22 (1996) X39-828

quite low, we plan an enhanced AD1 that will enable MPICH to take advantage of
low-level device capabilities.

Better collective algorithms As mentioned in Section 5.3, the current collective
operations are implemented in a straightforward way. We would like to incorporate
some of the ideas in [l] for improved performance.

Thread safety The MPI specification is thread-safe, and considerable effort has gone
into providing for thread safety in MPICH, but this has not been seriously tested. The
primary obstacle here is the availability of a test suite for thread safety of MPI
operations.

Dynamic, lighter-weight TCP/IP device We are nearing completion of a portable
device that will replace p4 as our primary device for TCP/IP networks. It will be lighter
weight than p4 and will support dynamic process management, which p4 does not.

RDP/UDP device We are working on a reliable data protocol device approach, built
on UDP/IP (User datagram protocol), which extends and leverages the initial work
done by Brightwell [3].

Multiprotocol support Currently MPICH can use only one of its “devices” at a time.
Although two of those devices, the one based on Nexus [18] and the one based on p4,
are to a certain extent multiprotocol devices, we need a general mechanism for allowing
multiple devices to be active at the same time. We are designing such a mechanism now.
This will allow, for example, two MPPs to be used at the same time, each using its own
switches for internal communication and TCP/IP for communication between the two
machines.

Ports to more machines We are working with several groups to port MPICH to
interesting new environments. These include

0 the Parsytec machine;
0 NEC SX-4 and Cenju-3;
0 Microsoft Windows NT, both for multiprocessor servers and across the many

different kinds of networks that NT will support; and
l Network protocols that are more efficient than TCP/IP, both standard (for

example, MessageWay [lo]) and proprietary (for example, Myrinet [2]).

Parallel I / 0 We have recently begun a project to determine whether the concepts of
the AD1 can be extended to include parallel I/O. If this proves successful, we will
include an experimental implementation of parts of MPI-IO [11 ,121 into MPICH.

9.4. MPI-2

In March 1995, the MPI Forum resumed meeting, with many of its original
participants, to consider extensions to the original MPI Standard. The extensions fall
into several categories:

0 Dynamic creation of processes (e.g., MPI_SPAWN).
0 One-sided operations (e.g., MPI_PUT).

W. Gropp er al./Parallel Computing 22 (1996) 789-828 825

0 Extended collective operations, such as collective operations on intercommunica-
tors.

l External interfaces (portable access to fields in MPI opaque objects).
0 C + + and Fortran- bindings.
0 Extensions for real-time environments.
0 Miscellaneous topics, such as the standardization of mpirun, new datatypes, and

language interoperability.
The MPICH project began as a commitment to implement the MPI-1 Standard, with

the aim of assisting in the adoption of MPI by both vendors and users. In this goal it has
been successful. The degree to which MPI-2 functionality will be incorporated into
MPICH depends on several factors:

l The actual content of MPI-2, which is far from settled at this time.
0 The degree to which the MPI-2 specification mandates features whose implemen-

tation would be feasible only with major changes to MPICH internals.
0 The enthusiasm of MPICH users for the individual MPI-2 features.
At this writing, it seems highly likely that we will extend MPICH to include dynamic

process management as defined by the MPI-2 Forum, at least for the workstation
environment. This extension will not be difficult to do with the new implementation of
the channel interface for TCP/IP networks, and it is the feature most desired by those
developing workstation-network applications. We expect also to aid tool builders
(including ourselves) by providing access to MPICH internals specified in the MPI-2
“external interfaces” specification. For the other parts of MPI-2, we will wait and see.

10. Summary

We have described MPICH, a portable implementation of the MPI Standard that
offers performance close to what specialized vendor message-passing libraries have been
able to deliver. We believe that MPICH has succeeded in popularizing the MPI Standard
and encouraging vendors to provide MPI to their customers, first, by helping to create
demand, and second, by offering them a convenient starting point for proprietary
implementations.

We have also described the programming environment that is distributed with
MPICH. The simple commands

configure

make
cd examples/basic

mpicc -mpilog -0 cpi cpi.c

mpirun -np 4 cpi

upshot cpi . log

provide a portable sequence of actions by which even the beginning user can install

MPICH, run a program, and use a sophisticated tool to examine its behavior. These
commands are the same, and the user’s program is the same, on MPPs, SMPs, and

826 W. Gropp et al./Parallel Computing 22 (1996) 789-828

workstation networks. MPICH demonstrates that such portability need not be achieved
at the cost of performance.

Acknowledgments

We thank the entire MPICH user community for their patience, feedback, and support
of this project. Furthermore, we thank Gail Pieper for her help with proofreading and
suggesting improvements to the presentation of the material.

We thank Ralph Butler (University of North Florida) for his help in adapting parts of
p4 to support MPICH.

We acknowledge several students who contributed to this work: Thomas McMahon
and Ron Brightwell (Mississippi State), Patrick Bridges (University of Arizona), and Ed
Karrels (University of Wisconsin).

References

[l] M. Bamett, S. Gupta, D. Payne, L. Shuler, R. van de Geijn and J. Watts, Interprocessor collective
communications library (intercomm), in: Proc. the Scalable High Performance Computing Conf (IEEE
Computer Society Press, 1994) 356-364.

[2] N.J. Boden et al., Myrinet - A gigabit-per-second local-area network, IEEE-Micro 15 (1) (1995) 29-36.
[3] D. Brightwell, The design and implementation of a datagram protocol (UDP) device for MPICH,

Master’s Thesis, Dept. of Computer Science, December 1995.
[4] R. Brightwell and A. Skjellum, Design and implementation study of MPICH for the Cray T3D,

Manuscript, February 19%.
[5] R.A.A. Bruce, J.G. Mills and A.G. Smith. CHIMP/MPI user guide, Tech. Rept. EPCC-KTP-CHIMP-

VZUSER 1.2, Edinburgh Parallel Computing Centre, 1994.
[6] G. Bums and R. Daoud, MPI Cubix - Collective POSIX I/O operations for MPI, Tech. Rept.

OSC-TR- 1995- 10, Ohio Supercomputer Center, 1995.
[7] G. Bums, R. Daoud and J. Vaigl, LAM: An open cluster environment for MPI, in: J.W. Ross, ed., Proc.

Supercompuring Symp. ‘94. University of Toronto (1994) 379-386.
[8] R. Butler and E. Lusk, Monitors, messages and clusters: The p4 parallel programming system, Parallel

Computing 20 (1994) 547-564.
[9] L.J. Clarke, R.A. Fletcher, S.M. Trewin, R.A.A. Bruce, A.G. Smith and S.R. Chapple, Reuse, portability

and parallel libraries, in: Proc. IFIP WG10.3 - Programming Environments for Massively Parallel
Distributed Systems, 1994.

[lo] D. Cohen and C. Lund, Proposed standard for the MessageWay Inter-SAN Routing, IETF Working
Group Document, September 1995.

[l l] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg, B. Traversat and P.
Wong, MPI-IO: A parallel file I/O interface for MPI, version 0.3, Tech. Rept. NAS-95-002, NAS, 1995.

[121 P. Corbett, Y. Hsu, J.-P. Pros& M. Snir, S. Fineberg, B. Nitzberg, B. Traversat, P. Wong and D.
Feitelson, MPI-IO: A parallel file I/O interface for MPI, version 0.4, http://loveIace.nas.nasa.gov/
MPI-IO, 1995.

[13] R. Evard, Managing the ever-growing to do list, in: USENIX Proc. 8th Large Installation Systems
Administration ConJ: (1994) Ill- 116.

[14] S.I. Feldman and P.J. Weinberger, A portable Fortran 77 compiler, in: UNIX Time Sharing System
Programmer’s Manual, Vol. 2 (AT & T Bell Laboratories, 10th cd., 1990).

[15] American National Standard Programming Language Fortran, ANSI X3.9-1978.
[16] Message Passing Interface Forum, Document for a standard message-passing interface, Tech. Rept.

CS-93-214 (revised), University of Tennessee, 1994; available on nedib.

W. Gropp et al. / Parallel Computing 22 (1996) 789-828 827

[17] The MpI Forum, The MPI message-passing interface standard, http://www.mcs.anl.gov/mpi/
standard.html, 1995.

[18] I. Foster, C. Kesselman and S. Tuecke, The Nexus task-parallel runtime system, in: Proc. 1st hternnt.
Workshop on Parallel Processing, Tata (McGraw Hill, New York, 1994) 467-462.

[I91 H. Franke, P. Hochschild, P. Patmaik, J.-P. Prost and M. Snir, MPI on IBM SPI /SP2: Current status and
future directions, Tech. Rept., IBM T.J. Watson Research Center, 1995.

[20] A. Geist, A. Beguelin, J. Dongatra, W. Jiang, B. Manchek and V. Sunderam, PVM: Parallel Virtual
Machine - A User’s Guide and Tutorial for Network Parallel Computing (MIT Press, Cambridge, MA,
1994).

[21] W. Gropp, Users manual for bfort: Producing Fortran interfaces to C source code, Tech. Rept.
ANL/MCS-TM-208, Argonne National Laboratory, 1995.

[22] W. Gropp, Users manual for doctext: Producing documentation from C source code, Tech. Rept.
ANL/MCS-TM-206, Argonne National Laboratory, 1995.

[23] W. Gropp, E. Karrels and E. Lusk, MPE graphics - Scalable Xl 1 graphics in MPI, in: Proc. Scalable
Parallel Libraries Conf., Mississippi State University (IEEE Computer Society Press, Silver Spring, MD,
1994) 49-54.

[24] W. Gropp and E. Lusk, An abstract device definition to support the implementation of a high-level
point-to-point message-passing interface, Preprint MCS-P342- 1193, Argonne National Laboratory, 1994.

[25] W. Gropp and E. Lusk, Installation guide for mpich, a portable implementation of MPI, Tech. Rept.
ANL-96/5, Argonne National Laboratory, 1994.

[26] W. Gropp and E. Lusk, Scalable Unix tools on parallel processors, in: Proc. Scalable High-Performance
Computing Conf (IEEE Computer Society Press, Silver Spring, MD, 1994) 56-62.

[27] W. Gropp and E. Lusk, User’s guide for mpich, a portable implementation of MPI, Tech. Rept.
ANL-96/6, Argonne National Laboratory, 1994.

[28] W. Gropp and E. Lusk, MPICH working note: Creating a new MPICH device using the channel interface,
Tech. Rept. ANL/MCS-TM-213, Argonne r+ a’ional Laboratory, 1995.

[29] W. Gropp, E. Lusk and A. Skjellum, Using ! ’ I: Portable Parallel Programming with the Message-Pass-
ing Interface (MIT Press, Cambridge, MA, 1 194).

[30] W.D. Gropp and E. Lusk, A test implementalion of the MPI draft message-passing standard, Tech. Rept.
ANL-92/47, Argonne National Laboratory, December 1992.

[31] W.D. Gropp and B. Smith, Chameleon parallel programming to 01s users manual, Tech. Rept. ANL-93/23,
Argonne National Laboratory, 1993.

[32] M.T. Heath and J.A. Etheridge, Visualizing the performance of parallel programs, lEEE Software 8 (5)
(1991) 29-39.

[33] V. Hetrarte and E. Lusk, Studying parallel program behavior with upshot, Tech. Rept. ANL-91/15,
Argonne National Laboratory, 1991.

[34] E. Karrels and E. Lusk, Performance analysis of MPI programs, in: J.J. Dongarra and B. Tourancheau,
eds., Environments and Tools for Parallel Scientific Computing (SIAM, Philadelphia, PA, 1994)
195-200.

[35] D. Knuth, The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, MA, 1973).
[36] Message Passing Interface Forum, MPI: A message-passing interface standard, Internat. J. Supercom-

purer Appl. 8 (3/4) (1994).
[37] J. Meyer, Message passing interface for Microsoft Windows 3.1, Master’s Thesis, University of Nebraska

at Omaha, 1994.
[38] J. Meyer and H. El-Rewini, WmMPI: Message passing interface for Microsoft Windows 3.1, 1994;

ftp://csftp.unomaha.edu/pub/rewini/WinMPI/
[39] Para//ab, University of Bergen, Programmer’s Guide to MPI for Dolphin’s SBus-to-SC1 adapters,

version 1 .O, 1995; available at ftp://ftp.ii.uib.no/pub/incoming/progr-guide-vlO.ps
[40] IEEE standard for scalable coherent interface (SCI) (l-55937-222-2) [SH15255], IEEE 596-1992, 1993.
[41] A. Skjellum, S.G. Smith, N.E. Doss, A.P. Leung and M. Morari, The design and evolution of Zipcode,

Parallel Computing 20 (4) (1994) 565-596.
[42] M. Snir, SW. Otto, S. Huss-Lederman, D.W. Walker and J. Dongarra, MPI: The Complete Reference

(MIT Press, Cambridge, MA, 1995).

828 W. Gropp et al./Parallel Computing 22 (1996) 789-828

[43] G. Stellner, &check: Checkpointing and process migration for MPI, in: Proc. /PPS (IEEE Computer
Society Press, Silver Spring, MD, 19%).

[441 G. Stellner and J. Pruyne, Resource management and checkpointing for PVM, in: Proc. 2nd European
PVhf Users’ Group Meeting, Lyon (Editions Hermes, 1995) 13 1- 136.

[45] P.L. Vaughan, A. Skjellum, D.S. Reese and F.C. Cheng, Migrating from PVM to MPI, Part I: The Unify
System, in: Proc. 5th Symp. on the Frontiers of Massively Parallel Compufation, McLean, VA, IEEE
Computer Society Technical Committee on Computer Architecture (IEEE Computer Society Press, Silver
Spring, MD, 1995) 488-495.

[46] D. Walker, Standards for message passing in a distributed memory environment, Tech. Rept., Oak Ridge
National Laboratory, 1992.

