
IEEE TRANSACTIONS ON RELIABILITY, VOL. R-28, NO. 3, AUGUST 1979 227

Fault-Tolerant Software

Herbert Hecht, Senior Member IEEE operating systems [6]. For the foreseeable future even the
SoHaR Inc., Los Angeles most carefully developed software will contain some faults,

probably of a subtle nature such thlat they were not apparent
Key Words-Software reliability, System reliability, Redundant during software and system testing. These faults will manifest

software ~~~~~~~~~~~themselvesduring some unusual data or machine state and wfll
ReaderAids- lead to a system failure unless fault-tolerance provisions are

Purpose: Widen state-of-the-art incorporated in the software. In the Bell Laboratories' Elec-
Special math needed: None tronic Switching Systems (which employ hardware redundancy
Results useful to: Software engineers and thoroughly tested software such) software faults accounted

Abstract-Limnitations in the current capabilities for verifying frapoiaey2%o l alrs[]
programs by formal proof or by exhaustive testing have led to the in- Fault-tolerance always involves some redundancy and there-
vestigation of fault-tolerance techniques for applications where the con- fore increases the resource expenditure for a given function.
sequence of failure is particularly severe. Two current approaches, Software fault-tolerance of the type described here is therefore
N-version programming and the recovery block, are described. A cri- primarily aimed at applications where the consequences of fail-
tical feature in the latter is the acceptance test, and a number of useful ure are particularly severe, e.g. advanced aircraft flight control
techniques for constructing these are presented. A system reliabiliy sytm 89]aitrfccorlpogm,annuerr-model for the recovery block is introduced, and conclusions derived

aco aeysystems[,9] i trfiSonetrosaltprogeram,ande nuclieartre-from this model that affect the design of fault-tolerant software are atrsft ytm.Smtmsfuttlrneapidt
discussed. small segment of a large software system can provide a hard-

ened kernel that can then be used to organize the recovery
1. INTRODUCTION from failures in other segments [10] . Such applications are

today under study or in early development. Experience with
The fault-tolerance features for software described here are these techniques in an operational environment has not yet

primarily aimed at overcoming the effects of errors in software been reported.
design and coding. In fortuitous circumstances they may also A survey of current approaches to software fault-tolerance
circumvent failures due to hardware design deficiencies or mal- is presented in the next section. This is followed by a discus-
functions in input channels. Fault-tolerance for random com- sion of a particularly critical component, the acceptance test
puter failures is outside the scope of the present discussion. In that determines when the primary software routine has failed.
practice, the user wants computer system fault-tolerance, i.e. In the final section a system reliability model for fault-tolerant
toleration of failures due to all causes, and this can be provided software is described.
by a combination of established hardware fault-tolerance tech-
niques [1]I and the fault-tolerant software described here. 2. CURRENT APPROACHES

It is generally recognized that even very carefully designed
and manufactured computer components may fail, and hard- Two different techniques for achieving fault-tolerance in
ware redundancy is therefore provided in applications where software have been discussed in the recent literature: the re-
.interruptions of service can not be tolerated. That software covery block and N-version programming. In the latter a num-
may fail is also widely recognized; yet this seems to have been ber (N> 2) of independently coded programs for-.a given func-
perceived as a temporary shortcoming: today's software con- tion are run simultaneously (or nearly so) on loosely coupled
tains design and coding errors but it is expected that these computers, the results are compared, and in case of disagree-
will be eliminated once improved development and test meth- ment a preferred result is identified by majority vote (forN
odologies or efforts at formal verification become fully effec- > 2) or a predetermined strategy. This approach had been
tie+ eibrt;seoueunatsftaet toleate oft- suggstedin genralwa by Eled rf [1 andi has more



228 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-28, NO. 3, AUGUST 1979

structures so that the requirements document rather than the , TIMRCALL
specification (which usually defines data structures quite rig-

PRIMARY CALL ~~~~~~ALTERNATE CALL ERRORorously) becomes the common starting point for the N versions. M PRIMARY CALL SET FLAG A RETURN

In addition, the voting algorithm and the housekeeping for AND TIMER
'results' prior to and after voting have been identified as critical PROCESS Q

items for this technique.
A specific constraint on N-version programming is the re- . ANCENOTE

quirement forN computers that are hardware independent yet \i
able to communicate very efficiently so that rapid comparisons YES ES

of results can be achieved. TheseN computers Imust all be op- RESET TIMER - RESET TIMERNORMAL RETURN 14NORMAL RETURN
erating at the same time, and a hardware failure in any one of ---TIMEOUT
them will at best force the system into a different operating
mode and may, in minimal configurations, cause loss of the A

fault-tolerance provisions. An example of a system that seems \
well suited to host N-version programming is SIFT [9]. N-ver- § YES
sion programming is capable of masking intermittent hardware Fig. 1. Recovery Block for Application Modules
faults, and this can be an advantage in some applications. It
also has the ability to aid in detection of permanent hardware
faults, although detail fault-tolerance provisions for these may is described in [16], and the interaction of fault-tolerant ap-
best be handled by dedicated hardware/software reconfigura- plication modules with the executive is also discussed there.
tion provisions. Principles of a fault-tolerant scheduler based on the recovery

The recovery block technique [14, 15] can be applied to a block technique have also been described [17]. The number
more general spectrum of computer configurations, including a of alternate routines is not restricted, and where it seems de-
single computer (which may also include hardware fault-toler- sirable any number of back-ups can be entered successively on
ance). The simplest structure of the recovery block is: failure of the acceptance test. Recovery blocks can also be

used in concurrent processes and multi-level structures [18,
Ensure T 19].

As in N-version programming, it is desirable that the redun-
By P dant routines in a recovery block be as independent of one

another as possible. A specific and critical feature of the re-
Else by Q covery block is the acceptance test. Alternate routines will

be useless if failure of the primary one is not promptly detec-
Else Error ted. Thus acceptance tests must be thorough. On the other

hand, the acceptance test is traversed on every program
where T is the acceptance test condition that is expected to be execution, and the amount of code required for it should
met by successful execution of either the primary routine P or therefore be minimized. Few formal guidelines exist for
the alternate routine Q. The internal control structure of the satisfying these partly contradictory requirements. The fol-
recovery block will transfer to Q when' the test conditions are lowing section attempts to classify techniques that have been
not met by executing P. Techniques have been described for used as a first step towards a systematic study of the design of
purging data altered during processing by P when Q is called acceptance tests.
[15].

For real-time applications it is necessary that the execution 3. ACCEPTANCE TESTS
of a program be both correct and on time. For this reason the
acceptance test is augmented by a watchdog timer that monitors Acct devised agai twoccriteria: tothat.an acetal reul is funse withi a spcfe perod detect deviations from expected program execution, or to pre-
theatiranacc ableimpulementeirneitherwithardwarspeioreds rof r vent unsafe output. The first is more restrictive, and will re-The timer can be implemented in either hardware or software

sutimoefqentrserothalraeruie.Hw
or a combination. The structure of a recovery block for real sult in more frequent transfer to the alternate routine. How

timeapplcatin moulesis sown n fi. 1 16].In nrma ever, the penalties for unnecessary transfer are usually small,time application modules is shown in fig. 1 [16] . InnormalXX ..X
operation only the left part of the figure is traversed. When whereas the penalties for failure to switch when necessary can

the aceptace tet fais, orif th timeexpirs, a ransfr to be much greater. For software that has been in use a long time,
the~~ ~alerat cal is intae,afa.sse,adpoesQi testing for unsafe output may be preferable because it can be

executed. If its result satisfies the acceptance test, the normal sipe an taod neesr rases oee,frpo
retun ext intherigh par of he igur is ake, an prces grams just emerging from development, testing for expected

ing COntinUeS. If the acceptance test fails again, or if a time- prga excto a eeis
out is encountered in the execution of Q (with the flag now 1) Unexpected behavior of the primary system will be noted
set), an error return results. even in cases where only a mild degradation is encountered.
A fault-tolerant navigation module using these techniques This aids in program evaluation.



HECHT: FAULT-TOLERANT SOFTWARE 229

2) Switching to the alternate program is exercised more 2. Accounting Checks
often under realistic (unplanned) conditions. Providing real- Commercial accounting had to struggle with the problem of
istic testing of the fault-tolerance mechanism is a difficult

maintaining accuracy in systems with many records and arith-undertaking. metic operations long before the advent of the digital computer.
3) As a program matures it is usually easier to relax accept- Most of the procedures that had evolved for checking manual

ance conditions than to make them more restrictive. operations were taken over when bookkeeping evolved into

The four types of acceptance test described below can data processing. These accounting checks can be very useful
usually be designed to test either for expected execution or for acceptance tests in software that serves transaction oriented
for unsafe output. applications. Airline reservation systems, library records, and

the dispensing of dangerous drugs all can be checked by these
procedures.

1. Satisfaction of requirement& The most rudimentary accounting check is the tally which
in computer usage has become the checksum. Whenever a vol-

In many cases the problem statement imposes conditions ume of financial records (checks, invoices, etc.) is transmitted
which must be met at the completion of program execution. among processing stations, it is customary to append a tally
These conditions can be used to construct the acceptance test. slip representing the total amount in the records. On receipt,

In the 'Eight Queens' problem it is required that eight a new total is computed and compared with the tally. The cor-
queens be located on a chessboard such that no two queens responding use of checksums is widespread in data processing.
threaten each other. A suitable acceptance test for a computer The digital presentation of information makes it possible to
program solving this problem is that the horizontal, vertical, apply the checksum to non-numerical information as well.
and the two diagonals identified with the location of a given When a large volume of records representing individual
queen do not contain the location of any other queen. If transactions is aggregated, it is almost impossible to avoid
testing for these conditions is already included in one or more errors due to incorrect transcriptions or due to lost or mis-
of the routines in a recovery block, then the acceptance test routed documents. In the commercial environment such
should use a different sequence and a different program struc- errors are not always of an innocent nature since an em-
ture. ployee may be able to pocket the amount corresponding to

The acceptance test for a sort problem described by Randell an improper entry. The double-entry bookkeeping system
is also a test for satisfaction of requirements [15]. The test evolved as an effective means of detecting such errors. In
involves checking at the completion of the execution that the this procedure the total credits for all accounts must equal
elements are in uniformly descending order, and that the num- the total debits for all accounts for any arbitrary time period,
ber of elements in the sorted set is equal to the number of provided only that corresponding transactions have been
elements of the original set. This test is not exhaustive: entered into all accounts. This equality can also be used as a
changes in an element during execution would not be detected. criterion in acceptance tests.
A stronger test, to determine that the elements of the sorted Another worthwhile accounting check is the reconciliation
set are a permutation of the original set, was rejected because of authorized transactions with changes in physical inventory
of excessive programming complexity and execution time. over a period of time. For example, in storage of nuclear ma-

An important subset in this class is the inversion of mathe- terial it is possible to determine the quantity in inventory by
matical operations, particularly those for which the inverse is means of radiation counters which can feed data directly into
simpler than the forward operation. A typical example is the a computer. At specified intervals the change in radiation
square root which is frequently handled as a subroutine call level can be compared to that independently calculated for
whereas squaring a number is a one-line statement. The ef- normal decay of the material and authorized inventory trans-
fectiveness of inversion for the construction of acceptance actions. This furnishes an overall check, including most com-
tests is limited by the fact that some logical and algebraic puter and software errors.
operations do not yield a unique inverse, e.g. OR, AND, Accounting checks are suitable only for transaction-oriented
absolute value and trigonometric operations. applications and they cover only elementary mathematical op-

Testing for satisfaction of requirements is usually most erations. Within this sphere, accounting checks provide a time-
effective when carried out on small segments of a computer tested and demonstrably complete means for assessing the cor-
program because at this level requirements can be stated rectness of computer operations. They can test recovery blocks
simply. On the other hand, for efficiency of the overall containing large software segments, and portions of the input
fault-tolerant software system, it is desirable to construct ac- operations and physical inventory can be checked in the same
ceptance tests that cover large program segments. The classes process.
of acceptance tests described in the following two sections
have better capabilities in this regard but are more limited in 3. Reasonableness Tests.
the types of programs which they can handle. For text editing
systems, compilers, and similar programs, tests for satisfaction This heading includes acceptance tests based on precomputed
of requirements constitute at present the most promising ap- ranges of variables, on expected sequences of program states, or
proach. on other relationships that are expected to prevail for the con-



230 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-28, NO. 3, AUGUST 1979

trolled system. The dividing line between reasonableness tests An example of a reasonableness test based on state transition
and testing for satisfaction of requirements can become blurred, is found in an electronic telephone switching system. Once a
but in general reasonableness tests are based on physical con- call has proceeded to the 'connected' state it is inadmissible
straints whereas testing for requirements uses primarily logical for it to subsequently go to 'ringing' or 'busy'. Inappropriate
or mathematical relationships. transitions of this type can therefore be used to signal the need

Reasonableness tests for numerical variables can examine for switching to an alternate routine.
the individual values (e.g. to be within range), increments in Tests for reasonableness of numerical or state variables are
individual values of the same variable (increments between suc- a very flexible and effective way of constructing acceptance
cessive values or deviations from a moving average), or the cor- tests for fault-tolerant software. They permit acceptance cri-
relation between values of different variables or of their incre- teria to be modified as a program matures. Reasonableness tests
ments. Examples of these different types are examined for an can be devised for most real-time programs that control phy-
airspeed calculation. The indicated airspeed (typically an sical variables, and they may monitor overall performance of
input quantity), and the true airspeed (a computed quantity) a computing system, e.g. by reasonableness tests on output
must each be within a range that is dictated by the aerodynamic variables.
and structural capabilities of the airframe, e.g. 140 to 1100
km/hr. Obviously only gross malfunctions of either the sensor 4. ComputerRun Time Checks
or of the computing process can be diagnosed by such a test.
The airspeed range is a function of aircraft configuration (flap Most current computers provide continuous hardware-im-
position, etc.) and an acceptance test with narrower limits can plemented testing for anomalous states such as divide by zero,
be constructed if adjustments for configuration are included. overflow and underflow, attempts to execute undefined opera-
A much more sensitive test for sudden malfunctions (and tion codes, or writing into write-protected memory areas. If

these are usually the most critical ones) can be devised by ex- such a condition is detected, a bit in a status register is set, and
amining the increments in each quantity. Changes in speed are subsequent action can then be defined by the user. When
equivalent to acceleration, and in the normal flight mode fault-tolerant software is being executed, encountering one of
changes in forward speed are well below the 1 g level. Even if these conditions can be equated with failure of the acceptance
the acceptance test is based on the maximum allowable accel- test and transfer to an alternate software routine is then ef-
eration for structural integrity (which may be 6 g), the corre- fected. The previously mentioned watchdog timer can be tied
sponding change in speed is limited to 213 km/hr/sec. Indi- into this status reporting scheme.
vidual speed calculations can be carried out ten times per Run-time checks can also incorporate data structure and
second, yielding an allowable speed increment between suc- procedure oriented tests that are embedded in special support
cessive values of 21.3 km/hr. To suppress noise in the sensor software or in the operating system. Checking that array sub-
output, the acceptance test may operate on averaged readings scripts are within range is already implemented in many cur-
so that the effective sampling interval is increased, but even rent computer systems. Array value checking (for being within
under these circumstances the acceptance test based on incre- a given range, being in ascending or descending order, etc.) has
ments will for sudden malfunctions be much more sensitive also been proposed [20]. Under the title "Self-checking Soft-
than one based on range. ware" and "Error-Resistant Software" a number of interesting

The correlation between increments of indicated and true run-time monitoring techniques have been described, many of
airspeed can be used for further refinement, but an even more which are akin to acceptance tests mentioned earlier in this
useful correlation can be obtained by comparing increments in section [21, 22]. A particularly appropriate concept for a
true airspeed with the acceleration measured by an appropriately run-time acceptance test is an Interaction Supervisor [22]. In
oriented accelerometer. In this case, limits of the acceptance its simplest form this requires declaration for each module of
test will depend on the noise characteristics of the instruments authorized callers and authorized calls. The Interaction Su-
used, elastic deformations of the aircraft, and other secondary pervisor will cause failure of the acceptance test if access to,
characteristics. For filtered observations the acceptance region or exit from, a module involves unauthorized locations.
can probably be reduced by an order of magnitude over that The value of run-time checks is not restricted to prevention
obtained in the test based on increments alone. of failures due to errors arising directly from the attribute that

The use of correlated measurements for acceptance tests is being monitored. They cover a much wider area, e.g. attempts
always raises the problem that errors might be introduced by to write into write-protected memory may have as their original
the variable added to provide the refinement (in this case the cause an improper indexing algorithm, a failure to clear a regis-
accelerometer output). The consequences of a spurious failure ter, or similar more subtle software discrepancies. It is there-
of the acceptance test must be evaluated to determine whether fore appropriate to use all of these facilities that modemn com-
the refinement is indeed warranted. To be particularly avoided puters, operating systems, and programming languages can
is the use of a variable in the acceptance test that is also used contribute to implementing acceptance tests even if the occur-
in the back-up routine because this could cause transfer to the rence of the monitored conditions per se could be prevented
back-up at exactly the time when its data source is unreliable, by other means. Run-time checks are not exhaustive but they
The importance of keeping the back-up program independent require very little development time or other resources. They
of software structures and data used in the acceptance test is supplement the previously mentioned types of acceptance tests
discussed further in connection with reliability modeling. for critical segments, and they can be used by themselves as



HECHT: FAULT-TOLERANT SOFTWARE 231

1,4 State 3 is defined as satisfactory operation of the back-up
routine through at least one complete program pass, and once
this is achieved, the further possible transitions are:

/ 2,4 \ Loop 3, 3 - Back-up continues to operate
Arc 3, 1 - Reversion to primary routine
Arc 3, 4 - Uncorrelated failure of the back-up

/ ,2 / 2,3 3,4 \\

/,. // ~/--*\\The word 'uncorrelated' is inserted because failures in the
|/ \ // A /\& back-up routine occasioned by the transition from state 2 are

3,1 yy represented by the arc 2, 4 as will be further discussed. The
2 3 4 uncorrelated failures (arc 3, 4) are extremely unlikely, given

thoroughly tested software and the usually limited time period
for operation in the back-up mode. This transition is therefore

FAILURE DETECTED APPLiCATIONMODULE FAILURE shown in dashed symbols.
PRIMA~RYSOFTWARE OKAY BACKUP OKAY The major sources for faflure of the recovery block are

expected to be undetected failures of the primary routine
Fig 2. Transition Model and correlated failures in the back-up. The former are caused

by deficiencies in the acceptance test. The previous discus-
the acceptance test for non-critical segments operating as part sion of this subject has shown that design of acceptance tests
of an overall fault-tolerant software system. is far from an established discipline, and the possibility of un-

Ultimately one would like to see a classification of accept- detected failures must be accounted for. Correlated failure
ance tests that characterize them by error detection capability, of the back-up routine (arc 2, 4) can be caused by two cir-
run-time penalty, and storage requirements, thus permitting a cumstances: correlated deficiencies in the primary and back-
rational selection for each application. This stage, unfortu- up routine software, and correlation of faults in the accep-
nately, has not yet been reached. But that need not deter ad- tance test with those in the back-up routine. Insistence on
vancing with practical applications; there is little methodology independent design and coding of the two software routines,
for the routine testing of software which is being carried out and, wherever possible, use of independent data sources, will
all the time, and occasionally even with satisfactory results. minimize the first of these. The second cause of these cor-

related failures is particularly insidious, since the failure
4. SYSTEM RELIABILITY MODELING occurs even though the primary software may execute cor-

rectly! Possible sources of such correlated failures of the
A potential advantage of the fault-tolerant software approach acceptance test and the back-up routine must therefore be

over other techniques for software reliability improvement is thoroughly investigated in the design of a recovery block. The
that it permits using (with some modifications) system relia- use of common data, common algorithms, and common sub-
bility modeling techniques that have been developed in the routines should be avoided. Where some commonality is un-
hardware field. The qualifying 'potential' in the previous avoidable (cf. the Eight Queens problem in section 3) at least
sentence reflects the fact that adequate parameters for the the detailed software design should be varied.
models do not yet exist although a methodology for obtain- Use of this transition model, even with the very inade-
ing them has been defined [23, 24]. Interesting insights quate data available, has led to some interesting insights into
can be achieved by modeling even at the present stage. the measures necessary to obtain software reliability consis-

This will be demonstrated with a transition model shown in tent with critical flight control applications [17]. A sub-
fig. 2 for a recovery block consisting of a primary and an stantial advantage of the recovery block approach illustrated
altemate routine [16]. Reliability models can also be devel- by this model is that the requirement for demonstrated relia-
oped for N-version programming and for recovery blocks hav- bility of the primary and alternate routines can be held several
ing multiple alternates. orders of magnitude (in terms of failure probability) below

Along the bottom of the figure are four possible states for that required for the recovery block as a whole.
the recovery block (here identifled as an application module).
Starting at state 1, primary routine operating, the immediate 5. DIRECTIONS FOR THE FUTURE
transitions are:

Loop 1 1 -rimar routne cotinue to oerateComplete fault-tolerant software systems can for the fore-
Ar1, 2 - Falr.npiayruiedtce seeable future be considered only for the most demanding and

Arc 1, 4 -Undetected failure in the primary routine safety-critical applications, e.g. fly-by-wire passenger aircraft
' ~~~~~~~~~~~~~~orsafety systems for nuclear reactors. But fault-tolerant

Out of state 2, a transient state after detection of failure, segments in otherwise conventional software may find much
two transitions are possible: wider use. Such segments may be needed only temporarily,

Arc 2, 3 -Transition to a satisfactory alternate e.g. when a new operating system is being introduced, or they
Arc 2, 4 -Failure at transition may be permanently installed, e.g. for back-up file manage-



232 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-28, NO. 3, AUGUST 1979

ment in a reservation or inventory control system. [10] K.H. Kim, et al., "Strategies for structured and fault-tolerant
Even more widespread may be the use of fault-tolerant design of recovery programs", Proc. COMPSAC '78, 1978 Nov,

techniques (short of a formal recovery block or N-version pp 651-656.
segment). In manyapplications it may besuff[11] W.R. Elmendorf, "Fault-tolerant programming", Digest of the

speget.Imayapiationsiortoflagoutu t) mn ber scuf ccienptohal 19 72 International Symposium on Fault-Tolerant Computing,operations (or to flag output) when errors occur. Acceptance pp 79-883.
tests or the previously referenced techniques for self-checking [121 A. Avizienis, L. Chen, "On the implementation of N-version
software will be used here. In other tasks, e.g. in the account- programming for software fault-tolerance during execution",
ing field, the availability of back-up routines and data caches Proc. COMPSAC '77, 1977 Nov, pp 149-155.
may be important, while the acceptance test might be relegated [13] L. Chen, A. Avizienis, "N-Version programming: A fault-toler-

t human observer to separately running audit routine.
ance approach to reliability of software operation", Digest ofto a human observer or to a separately running audit routine. Papers, FTC - 8, 1978 Jun, pp 3-9.

Research will more and more apply the basic techniques out- [14] J.J. Horning, et al., "A program structure for error detection
lined here to multi-tasking and multi-processing environments, and recovery", Proc. Conf. Operating Systems: Theoretical
and to the multi-layered operating systems of time-shared and PracticalAspects, IRIA, 1974 Apr, pp 174-193.[15] B. Randell, "System structure for software fault-tolerance",computers. IEEE Trans. Software Engineering, vol SE-1, 1975 Jun, pp

All of the present and most of the foreseeable applications 220-232.
are dictated by a need for greater reliability in the computing [16] H. Hecht, "Fault-tolerant software for real-time applications",
function without specific economic trade-offs of one technique ACM Computing Surveys, vol 8, 1976 Dec, pp 391-407.
versus another (the choices are very limited). It is question- [17] Advanced Programs Division, The Aerospace Corporation,. . ~"Fault-tolerant software study", NASA CR 145298, 1978 Feb.able whether at some future time good criteria can be developed Futtlrn otaesud" AAC 428 98Fb

[18] J.S.M. Verhofstad, "The construction of recoverable multi-
on where to apply software fault-tolerance and where to apply level systems", PhD Dissertation, University of Newcastle upon
intensive validation methods. Where highly reliable illumina- Tyne, 1977 Aug.
tion is desired we use long-life bulbs, redundant bulbs, and [19] K.H. Kim, C.V. Ramamoorthy, "Failure-tolerant parallel pro-
separate emergency lighting systems. Sometime all of these gramming and its supporting system architectures", AFIPS -

Conf: Proc., vol 45 (NCC 1976) pp 413-423.are used together and sometimes they are used separately. [20] L.G. Stucki, G.L. Foshee, "New assertion concepts for self-
Any one of them is better than reliance on a single standard metric software validation", Proc. 1975 International Conf.
light bulb. Future generations may look in the same way at Reliable Software, IEEE Cat. 75CH0940-7CSR, 1975 Apr,
our efforts to produce more reliable software. pp 59-71.

[21] S.S. Yau, R.C. Cheung, "Design of self-checking software",
same source as [20], pp 450-457.

[22] S.S. Yau, R.C. Cheung,lD.C. Cochrane, "An approach to error-
ACKNOWLEDGEMENT resistant software design", Proc. Second International Conf

Software Engineering, IEEE Cat. 76CH1 1254C, 1976 Oct,
Portions of the work reported here were carried out under pp 429-436.

[23] J.D. Musa, "Measuring software reliability", ORSA/TIMSsubcontracts to C.S. Draper Laboratory and SRI International Journal, 1977 May, pp 1-25.
in connection with efforts by these organizations for the [24] H. Hecht, et al., "Reliability measurement during software
NASA Langley Research Center under contracts NAS1-15336 development", NASA CR-145205, 1977 Sep.
and NAS1-1 5428, respectively.

REFERENCES AUTHOR

[1] Proc. IEEE, Special Issue on Fault-Tolerant Digital Systems, Herbert Hecht; SoHaR, Inc.; 1040 S. LaJolla Ave.; Los Angeles, CA
vol 66, 1978 Oct. 90035 USA.

[2] W.E. Howden, "Theoretical and empirical studies of software
testing", IEEE Trans. Software Engineering, vol SE4, 1978 Jul, Dr. Hecht (M'47,SM'54) is president of SoHaR Incorporated, an organ-
pp 293-297. ization engaged in studies and consulting in computer software and

[3] S.L. Gerhart, L. Yelowitz, "Observations on the fallibility in hardware reliability problems. In prior employment he was Director
applications of modern programming methodologies", IEEE of Computer Technology in the Advanced Programs Division of The
7rans. Software Engineering, vol SE-2, 1976 Sep, pp 195-207. Aerospace Corporation and Department Head for Helicopter and Light

[41 C. Reynolds, R.T. Yeh, "Induction as the basis for program Aircraft Flight Controls at the Flight Systems Division of the Sperry
verification", IEEE Trans. Software Engineering, vol SE-2, Rand Corporation. Hecht received a Bachelor of Electrical Engineering
1976 Dec, pp 244-252. degree from City College, New York and a Master's degree in the same

[5] S.L. Gerhart, "Program verification in the 1980s: Problems, subject from Brooklyn Polytechnic Institute. He obtained a PhD in
perspectives, and opportunities", ISI/RR-78-71, Information Engineering from UCLA. He has published many papers on computer
Scienees Institute, Marina del Rey, Calif, 1978 August. and control system reliability subjects and has conducted a short course

[6] L.A. Belady, M.M. Lehman, "A model of large program develop- in Software Reliability at UCLA. He is registered as a Professional
ment",IBMSystems Journal, vol 15, no. 3, 1976, pp 225-25 2. Engineer (Control Systems) in California. He is Vice Chalr'n of the

[7] W.N. Toy, "Fault tolerant design of local ESS processors", in IEEE Computer Society Technical Committee on Software Engineering
[1], pp 1126-1145. and has initiated efforts to standardize software terminology and prac-

[8] A.L. Hopkins, et al., "FTMP - A highly reliable fault-tolerant tices.
multiprocessor for aircraft", in [1], pp 1221-1239.

[9] J.H. Wensley, et al., "SIFT: The design and analysis of a fault- Manuscript SI79-08 received 1978 December 1; revised 1979 January
tolerant computer for aircraft control", in [1], pp 1240-1254. 18.***


