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ABSTRACT 
The alpha-beta technique for searching game trees is analyzed, in an attempt to provide some 
insight into its behavior. The first portion o f  this paper is an expository presentation o f  the 
method together with a proof o f  its correctness and a historical ch'scussion. The alpha-beta 
procedure is shown to be optimal in a certain sense, and bounds are obtained for its running 
time with various kinds o f  random data. 

Put one pound of  Alpha Beta Prunes 
in a jar or dish that has a cover. 

Pour one quart o f  boiling water over prunes. 
The longer prunes soak, the plumper they get 

Alpha Beta Acme Markets, Inc., 
La Habra, California 

Computer programs for playing games like e, hess typically choos~ their 
moves by seaxching a large tree of potential continuations. A technique 
called "alpha-beta pruning" is generally ~ used to speed up such search 
processes without loss of information, The purpose of this paper is to 
analyze the alpha-beta procedure in order to obtain some quantitative 
estimates of its performance characteristics. 
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Section 1 defines the basic concepts associated with game trees. Section 2 
presents the alpha-beta method together with a related technique which is 
similar, but not as powerful, because it fails to make "deep cutoffs". The 
correctness of both methods is demonstrated, and Section 3 gives examples 
and further development of the algorithms. Several suggestions for applying 
the method in practice appear in Section 4, and the history of alpha-beta 
pruning is discussed in Section 5. 

Section 6 begins the quantitative analysis, byderiving lower bounds on 
the amount of searching needed by alpha-beta and by any algorithm which 
solves the same general problem. Section 7 derives upper bounds, primarily by 
considering the case of random trees when no deep cutoffs are made. It is 
shown that the procedure is reasonably efficient even under these weak 
assumptions. Section 8 shows how to introduce some of the deep cutoffs into 
the analysis; and Section 9 shows that the efficiency improves when there are 
dependencies between successive moves. This paper is essentially self- 
contained, except for a few mathematical resultsquoted i n  the later sec- 
tions. 

1. Games and Position Values 

The two-person games we are dealing with can be characterized by a set of 
"positions", and by a set of rules for moving from one position to ~,nother, 
the players moving alternately. We assume that no infinite sequence of 
positions is allowed by the rules, 2 and that there are only finitely many legal 
moves from every position. It follows from the "infinity lemma" (see [11, 
Section 2.3,4.3]) that for every position p there is a number N(p) such that no 
game starting a t p  lasts longer than N(p) moves. 

I fp  is a position from which there are no legal moves, there is an integer- 
valued function f(p) which represents the value of this position to the player 
whose turn it is to play from p; the value to the other player is assuraed to be 

- - - f ( p ) .  

If p is a position from which there are d legal moves Pl, • •., Pd, where 
d > 1, the problem is to choose the "best" move. We assume that the best 
move is one which achieves the greatest possible value when the game ends, 
if the opponent also chooses moves which are best for h im.  Let F(p) be the 
greatest possible value achievable from position p against the optimal 
defensive strategy, from the standpoint of the player who is moving from that 

2 Strictly speaking, chess does not satisfy this condition, since its rules for repeated 
positions only give the players the option to request a draw; in certain circumstances; 
if neither player actually does ask for a draw,: the game can go on  forever. But this techni- 
cality is of no practical importance, since computer chess programs only look finitely many 
moves ahead. I r i s  possible to deal with infinite games by assigning appropriate values to 
repeated positions, but such questionsare beyond the scope of this paper. 
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position. Since the value.(to this player) after moving to position Pt will be 
-F(pl), we have 

~f(p) if d = 0, (1) 
F(p)  = (max(-F(pl),..., i f  d > 0. 

This formula serves to define F(p) for al! positions p, by induction on the 
length of the longest game playable from p. 

In most discussions of game-playing, a slightly different formalism is used; 
the two players are named Max and Min, where all values are given from 
Max's viewpoint. Thus, if  p is a terminal position with Max to move, its 
value is f(p) as before, but if p is a terminal position with Min to move its 
value is 

gO') = -f(P) .  (2) 

Max will try to maximize the final value, and Min will try to minimize it. 
There are now two functions corresponding to( l) ,  namely 

F(p) V = ~f(P) if d = 0, 
[max(G(pl) , . . . ,  G(pd)) if d > 0, (3) 

which is the best value Max can guarantee starting at position p, and 

fg(p) if d = 0, 
G(p) = [.min(F(pl),..., F(Pd)) if d > 0, (4) 

which is the best that Min can be sure of achieving. As before, we assume 
that Pl , .  •., Pa are the legal moves from position p. It is easy to prove by 
induction that the two definitions of F in (1) and (3) are identical, and that 

ffi - F 0 , )  (5) 

for all p. Thus the two approaches are equivalent. 
Sometimes it is easier to reason about game-playing by using the "mini- 

max" framework of (3) and (4) instead of the "negmax" approach of eq. (1); 
the reason is that we are sometimes less confused if we consistently evaluate 
the game positions from one player's standpoint. On the other hand, formula- 
tion (1) is advantageous when we're trying to prove things about games, 
because we don't have to deal with two (or sometimes even four or eight) sep- 
arate cases when we want to establish our results. Eq. (I) is analogous to 
the "NOR" operation which arises in circuit design; two levels of NOR logic 
are equivalent to a level of ANDs followed by a level of OR~. 

The function F(p) is the maximum final value that can be achieved if both 
players play optimally; but we should remark that this reflects a rather 
conservative strategy that won't always be best against poor players or 
against the nonoptimal players we encounter in the real world. For example, 
suppose that there are two moves, to positions p~ and P2, where p~ assures a 
draw (value 0) but cannot possibly win, while P2 give a chance of either 
victory or defeat depending on whether or not the opponent overlooks a 
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rather subtle winning move. We may be better off gambling on the move to 
P2, which is our only chance to win, unless we are convinced of our opponent's 
competence. Indeed, humans seem to beat chess-playing programs by adopting 
such a strategy. 

2. Development of the Algorithm 

The following algorithm (expressed in an ad-hoc ALGOL-like l~ngnage) 
clearly computes F(p), by following definition (1): 

integer procedmre F (position p): 
begin integer m, i, t, d; 

determine the successor positions P i , - . . ,  P~; 
if d = 0 then F :=  f (p)  else 
begin m :ffi -Qo;  

for i :-- 1 step 1 until d do 
beg i .  t :ffi 

i f  t > m then m := t; 
end; 

F :-" m; 
end; 

end. 

Here Qo denotes a value that is greater than or equal to ]f(P)l for all terminal 
positions of the game, hence - u3 is less than or equal to +F(p) for all p. 
This algorithm is a "brute force" search through all possible continuations; 
the infinity lemma assures us that the algorithm will terminate in finitely 
many steps. 

It is possible to improve on the brute-force search by using a "branch-and- 
bound" technique [14], ignoring moves which are incapable of being better 
than moves which are already known. For example, i f  F(pi) = -10, then 
F(p) >i 10, and we don't have to know the exact Value ofF(p2) if  we can 
deduce that F(p2) >I - 10 (i.e., that -F(pz) ~ 10). Thus if P~t is a legal 
move from P2 such that F(Pzl)( <~ 10, w e n e e d n o t  bother to explore any 
other moves from Pz. In game-playing terminology, a move to Pz can be 
"refuted" (relative tothe alternative move Pt) ff the opposing player can make 
a reply to Pz that is at least as good as his best reply to Pl- Once a move has 
been refutedi we need not search for the best possible refutation. 

This line of reasoning leads to a computational technique that avoids much 
of the computation done by F. We shall define FI  as a procedure on two 
parameters p and bound, and our goal is to achieve the following Conditions: 

FI (p, bound)- F(p) if F(p) < bound, 
Fl(p, bound) ~ bound i fF(p) >~rbound. (6) 
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These relations do not fully define F1, but they are sufficiently powerful to 
calculate F(p) for any starting position p because they imply that 

Fl(p,  oo) = F(p). (7) 
The following algorithm corresponds to this branch-and-bound idea. 

integer procedure FI (positioRp, integer bound): 
begin integer m, i, t, d; 

determine the successor positions Pl , .  •., Pj" 
i f  d = 0 then F l  :=  f(p) else 
begin m :-- -oo ;  

for i := 1 step 1 nntil d do 
begin t := -F l (p t ,  : m ) ;  

i f t > m t h e n m : =  t; 
if m >i bound then go to done; 

end; 
done: FI : = m; 
end; 

end. 

We can prove that this procedure satisfies (6) by arguing as follows: At the 
beginning of the tth iteration of the for loop, we have the "invariant" 
condition 

m = m a x ( - F ( p l ) , . . . , - F ( p H ) )  (8) 
just as in procedure F. (The max operation over an empty set is conventionally 
defined to be -oo.)  For if ,F(pt )  is >m, then F l ( p i , - m )  = F(p~), by 
condition (6) and induction on the length of the game following p; therefore 
(8) will hold on the next iteration. And i f m a x ( - F ( p l ) , . . . ,  -F(pi)) >~bound 
for any i, then F(p) >t bound. It follows that condition (6) holds for all p. 

The procedure can be improved further if we introduce both lower and 
uppe. r bounds; this idea, which is called alpha-beta pruning, is a significant 
extension to the one-sided branch-and-bound method. (Unfortunately it 
doesn't apply to all branch-and-bound algorithms, it works only when a 
game tree is being explored.) We define a procedure F2 of three parameters p, 
alpha, and beta, for alpha < beta, satisfying the following conditions 
analogous to (6): 

F2(p, alpha, beta) <~ alpha if F(p) ~ alpha, 
F2(p, alpha, beta) - F(p) if alpha < F(p) < beta, "- (9) 
F2(p, alpha, beta) >~ beta if F(p) >/ beta. 

Again, these conditions do not fully specify F2, but they imply that 
F2(p, - oo, oo) - F(p). ( I O) 

It turns out that this improved algorithm looks only a little different from the 
others, when it is expressed in a programming language: 
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integer procedure F2 (position p, integer alpha, integer beta): 
begin integer m, i, t, d; 

determine the successor positions p 1, • •., Pa; 
i f  d = 0 then F 2  : =  f ( p )  else 
begin m := alpha; 

for i : -  1 step 1 until d do 
begin t : = - F2(pl, -- beta, - m ) ;  

i f  t > m then m :=  t; 
if m >1 beta then go to done; 

end; 
done: F2 : = m; 
end; 

end; 

To prove the validity of F2, we proceed as we did with FI. The invariant 
relation analogous to (8) is now 

m = m a x ( a l p h a , - F ( P i ) , . . . ,  -F(p~-I)) (11) 
and m < beta. If --F(p~ >i beta, then -F2(pl ,  -be ta ,  - m )  will also be 
>~beta, and i fm < - F ( p i )  < beta, then -F2(p t ,  -be ta ,  - m )  = -F(pt ) ;  so 
the proof goes through as before, establishing (9) by induction. 

Now that we have found two improvements of the minimax procedure, 
it is natural to ask whether still further improvement is possible. Is there an 
"alpha-beta-gamma" p~'ocedure F3, which makes use say of the second- 

largest value found so far, or some other gimmick ? Section 6 below shows 
that the answer is no, or at least that there is a reasonable sense in which 
procedure F2 is optimum. 

3. Examples and Refinements 

As an example of these procedures, consider thetree in Fig, 1, which repre- 
sents a position that has three successors, each of  which has three successors, 
etc., until we get t o  34 = 81 positions~possible after four moves; and these 
81 positions have been assigned ' , random',fvalues according to the first I]1 
digits of n. Fig, 1 shows the F values computed from t he f ' s ;  thus, the root 
node at the top of the tree has an effective value of  2 after best play by both 
sides. 

Fig. 2 shows the  same situation as it is evaluated by procedure FI Cp, oo). 
Note that only 36 of the 81 terminal positions are examined, and that one 
of the nodes at level 2 now has the "approximate" vaiue 3 instead of its true 
value 7; but this approximation does not of course affect the value at the top. 

Fig: 3 shows the same situation as it is evaluated by the full alpha-beta 
pruning procedure. F2(p, - o o ,  + oo) will always examine the same nodes as 
Fl(p,  oo) until the fourth level of  lookaheadis reached, in any game tree; 
Artificial lntell~ence 6 (1975), 293-326 
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this is a consequence of the theory developed below. On levels 4, 5 , . . . ,  
however, procedure F2 is occasionally able to make "deep cutoffs" which 
FI is incapable of finding. A comparison of Fig. 3 with Fig. 2 ~hows that 
there are five deep cutoffs in this example. 

2 

11/\ / iX / iX / /X  / i X  / N  I N  / ~ \  / ~ \  
- 1  - 1 - 2 - 3 - 7 - 2 - 4 - 2 - 3 - 2 - 0 - 2 - 1  -1  - 3  - 3 - 0 - 2 - 0 - 4 - 4 - 0 - 1 - 0 - 2 - 0 - 8  

0 0 0 0 0  0 0 0 0 • 0 0 0  0 • 0 0 0 0 0 0 0 0 0 0 • •  

FiG. I .  Complete ev~tluatioa o f  a game tree. 

2 

-2  2 
. i . / \  /e,.,. / \..,.,. 

_ ~ / !  i !  i " -  
/ i N , , ,  , . ,  

- 1 - 1 - 2 - 3  , ,  -4  , - 2 - o - 2  I ~\ I :~ ,  - - . .  - o - l - o  , , 
• e / t  e / t • i ~ • • • - . -  • • e  • * • 

/~, ~',~,,~,,,,,,~,,,,, ~'h,;:~ ~ ~ ~ ' 
3141 263358 846 3279502 0974944 230781640 

F=G. 2. Tit=' ::,une tree of Fig. 1 evaluated with procedure FI (branch-and-bound strategy). 

. . 1 t / \  ,. '":"-. / \ " ' -  
2 /  i \ 2  ~ .  , 4 /  

, - , , ,  
I\ ;~', ;,",', I~\ , ~\ ,,, 

--1 .1  - 2 - 2  r t - 2  I . 2 - 0 - 2  s i / : ~ e ' ~ , - 0 - 4  - 4 - 2 - 1 - 0  i* t , 
O O O O | ~  0 ~ %  O O O  t : \  o o e o O o  ~ , , 

/~ ~,, /~ ~ ,~, ;~,, /~ :t,, /~,, ~, /~ ~, ;~,, ,~,, A ~, ,~ ,A,,o~,~ ~ ,  p,, ~ ~ ;~,, t~,, ;~,, 
3141 265358 846 3 2 9 5 0 2  ,1~ I I ,  , i t  2 781640 

]FIG. 3. The game tree of Fig. 1 evaluated with procedure F2 (~dpha-beta strategy). 

All of these illustrations present the results in terms of the "negamax" 
model of Section 1; if the reader prefers to see it in "minimax" terms, it is 
sufficient to ignore all the minus signs in Figs. 1-3. The procedures of Section 2 
can readily be converted to the minimax conventions, for example by replac'- 
ing F2 l:y the following two procedures: 
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integer procedure F2 (position p, integer alpha, integer beta): 
begin integer m, i, t, d; 

determine the successor positions Pl ,  • • . ,  P~; 
if d = 0 then F2 :-- f (p)  else 
beg~ m :=  alpha; 

for i : -  1 step 1 until d do 
begin t : = G2(ps, m, beta); 

if t > m then m :=  t; 
if m >I beta then go to done; 

end; 
done: F2  : -  m; 
end; 

end; 

integer procedure G2 (position p, integer alpha, integer beta); 
begin integer m, i, t, d; 

determine the successor p o s i t i o n s p l , . . . ,  Pd; 
if d = 0 then G2 :=  g(p) else 
begin m : -  beta; 

for i :=  1 step 1 until d do 
begin t : -  F2(p~, alpha, m); 

if t < m then m :=  t; 
i f  m ~ alpha then go to done; 

end; 
done: F2 :=  m; 
end; 

end. 

It is a simple but instructive exercise to prove that G2(p, alpha, beta) always 
equals - F2(p, -beta ,  - alp/~), 

The above procedures have made use of  a magic routine that determines 
the successors Pl ,  - •., PJ of a given position p. If  we want to be more explicit 
about +how positions are represented, it is natural to use the format o f  
linked records: When p is a reference to a r e ~ r d  denoting a position, let 
first(p) be a reference to the first successor of  that position, or A (a null 
reference) i f  the position is terminal. Similarly if q references a successor p+ 
o f  p, let next(q) be a referenceto the next successor P++I, or A if  i -  d. 
Finally let generate(p)be a procedure that  creates the records for P t , . . . ,  PJ, 
sets their next fields, and makes first(p) point to Pl (or to A if d = 0). Then 
the alpha-beta pruning method takes the following more explicit form. 

integer procedure F2 (tel(position) p, integer alpha, integer beta): 
begin integerm, t; ref  (position) q; 

generate(p); 
q :=  first(p); 
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i f  q = A then F2 : = f ( p )  else 
begin m :=  alpha; 

while q ~ A and m < beta do 
begin t : -  - F 2 ( q , - b e t a ,  - m ) ;  

i f t  > m then m := t; 
q : -  next(q); 

end; 
F2 : = m ;  

end; 
end. 

It is interesting to convert this recursive procedure to an iterative (non- 
recursive) form by a sequence of mechanical transformations, and to apply 
simple optimizations which preserve program correctness (see [13]). The 
resulting procedure is surprisingly simple, but not as easy to prove correct as 
the recursive form: 

integer procedure alphabeta (gel (position) p); 
begin integer I; ¢.omment level of recursion; 

integer array a [ -2 :L] ;  comment stack for recursion, where 
all - 2], a[! - 1], all], all + 1] denote respectively 
alpha, - beta, m, - t in procedure F2; 

ref (position) array r[0:L + 1]; comment another stack for 
recursion, where rill and r[l + 1] denote respectively 
p and q in F2; 

1 : =  0; a [ - 2 ]  :=  a [ - l ]  : -  - o o ;  r[0] : = p ;  
1:2: generate (rill); 

r [ / +  1] : - f i r s t ( r i l l ) ;  
i f  r[l + 1 ] = A then a[l] : = f(r[l]) else 
begin a[l] :=  a [ / -  2]; 

loop: 1 :=  1 + I; go to F2; 
resume: if  - a l l  + 1 ]  > al l]  then 

begin all] := - a l l  + 1]; 
i f  all + 1] ~ a[! - 1] then go to done; 

end; 
r[I + 1] :=  next(r[1 + 1]); 
i f  r[l + 1 ] :P A then go to loop; 

end; 
done: l : = I - 1; if 1 t> 0 then go to resume; 
alphabeta : - a[0]; 

end. 

This procedure alphabeta(p) will compute the same value as F2(p, - oo, + oo); 
we must choose L large enough so that the level of recursion never exceeds L. 
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4. Applications 

When a computer is playing a complex game, it will rarely be able to :;earch all 
possibilities until truly terminal positions are reached; even the alpha-beta 
technique won't be last enough to solve the game of chess:! But we can still 
use the above procedures, if the routine that generates all moves is modified 
so that sufficiently deep positions are considered to be terminal. For example, 
if we wish to look six moves ahead (three for each player), we can pretend 
that the positions reached at level 6 have no successors. To compute f at 
such artificially-terminal positions, we must of course use our best guess 
about the value, hoping that a sufficiently deep search will ameliorate the 
inaccuracy of our guess. (Most of the time will be spent in evaluating these 
guessed values for f ,  unless the determination of legal moves is especially 
difficult, so some quickly-computed estimate is needed.) 

Instead of searching to a fixed depth, it is also possible to carry some lines 
further, e.g., to play out all sequences of captures. An interesting approach 
was suggested by Floyd in 1965 [6]), although it has apparently not yet been 
tried in large-scale experiments. Each move in Floyd's scheme is assigned a 
"likelihood" according to the following general plan: A forced move has 
"likelihood" of 1, while very implausible moves (like queen sacrifices in 
chess) get 0.01 or so. In chess a "recapture" has "likelihood" greater than ~; 
and the best strategic choice out of 20 or 30 possibilities gets a "likelihood" 
of about 0.1, while the worst choices get say 0.02. When the product of all 
"likelihoods" leading to a position becomes less than a given threshold 
(say 10-s), we consider that position to be terminal and estimate its value 
without further searching. Under this scheme, the "most likely" branches of 
the tree are given the most attention. 

Whatever method is used to produce a tree of reasonable size, the alpha- 
beta procedure can be somewhat improved if  we have an idea what the value 
of the initial position will be. Instead of calling F 2 ~ , ,  o0, .+ ~) ,  we can 
try F2(p, a, b) where we expect the value to be greater than a and less than b. 
For example, i f  F2(p, 0, 4) is used instead of F2(p, -10 ,  +10) in Fig. 3, the 
rightmost " - 4 "  on level 3, and t h e " 4 "  below it, do not need to be con- 
sidered. If our expectation is fulfilled, we may have pruned off more of the 
tree; on theother hand if the value turns out to be low, say F2(p,a,  b) ffi v, 
where v ~< a, we can use F2(p, - co, v)to deduce thecorrect value. This idea 
has been used in some versions of Greenblatt's chess program [8]. 

5. History -- 

Before we begin to make quantitative analyses of alpha-beta's effectiveness, 
let us look briefly at its historical development. The early history is somewhat 
obscure, became it is based on undocumented recollections and because 
Artificial Intelligence 6 (1975), 293--326 
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some people have confused procedure F1 with the stronger procedure F2; 
therefore the following account is based on the best information now avail- 
able to the authors. 

McCarthy [15] thought of the method during the Dartmouth Summer 
Research Conference on Artificial Intelligence in 1956, when Bernstein 
described an early chess program [3] which didn't use any sort of alpha-beta. 
McCarthy "criticized it on the spot for this [reason], but Bernstein was not 
convinced. No formal specification of the algorithm was given at that time." 
I t  is plausible that McCarthy's remarks at that conference led to the use of 
alpha-beta pruning in game-playing programs of the .late 1950s. Samuel has 
stated that the idea was present in his checker-playing programs, but he did 
not allude to it in his classic article [21] because he felt that the other aspects 
of his program were more significant. 

The first published discussion of a method for game tree pruning appeared 
in Newell, Shaw and Simon's description [16] of their early chess program. 
However, they illustrate only the "one-sided" technique used in procedure 
F1 above, so it is not clear whether they made use of "deep cutoffs". 

McCarthy coined the name "alpha-beta" when he first wrote a LISp 
program embodying the technique. His original approach was somewhat 
more elaborate than the method described above, since he assumed the 
existence of two functicns "optimistic value(p)" and "'pessimistic value(p)'" 
which were to be upper and lower bounds on the value of a position. 
McCarthy's form o f  alpha-beta searching was equivalent to replacing the 
abort: body of procedure F2 by 

i f  optimistic value(p) <~ alpha then F2 : = alpha 
else ifpessimistic value(p) >>. beta then F2 := beta 
else begin <the above body of procedure F2) end. 

Because of this elaboration, he thought of alpha-beta as a (possibly in- 
accurate) heuristic device, not realizing that it would also produce the same 
value as full minimaxing in the special case that optimistic value(p) = + oo 
and pessimistic value(p) = - c o  for all p. He credits the latter discovery to 
Hart and Edwards, who wrote a memorandum [10] on the subject in 1961. 
Their unpublished memorandum gives examples of the general method, 
including deep cutoffs; but (as usual in t961) no attempt was made to 
indicate why the method worked, much less to demonstrate its validity. 

The first published account of alpha-beta pruning actually appeared in 
Russia, quite independently of the American work. Brudno, who wasone of the 
developers of ai~ early Russian chess-playing program, described an algorithm 
identical tO alpha-beta pruning, together with a rather complicated proof, in 
1963 (see [4]). 

The fall alpha-beta pruning technique finally appeared in "Western" 
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computer-science literature in 1968, within an article on theorem-proving 
strategies by Slagle and Bursky [24], but their description was somewhat 
vague and they did not illustrate deep cutoffs. Thus we might say that the 
first real English descriptions of themethod appeared in 1969, in articles by 
Slagle and Dixon [25] and by Samuel [22]; both of these articles clearly 
mention the possibifity of deep cutoffs, and discuss the idea in  some 
detail. 

The alpha-beta technique seems to be quite difficult to communicate 
verbally, or in conventional mathematical language, and the authors of  
the papers cited above had to resort to rather complicated descriptions; 
furthermore, considerable thought seems to be required at first exposure 
to convince oneself that the method is correct, especially when it has been 
described in ordinary language and "deep cutoffs" must be justified. Perhaps 
this is why many years went by before the technique was published. However, 
we have seen in Section 2 that the method is easily understood and proved 
correct when it has been expres~d in algorithmic language; this makes a 
good illustration of a case where a "dynamic" approach to process description 
is conceptually superior to the "'static" approach of conventional mathe- 
matics. 

Excellent presentations of the method appear in the f e i n t  textbooks by 
Nilsson [18, Section 4] and Slagle [23, pp. 16-24], but in prose style instead of 
the easier-to-understand algorithmic form. Alpha-beta pruning has become 
"'well known"; yet to the authors' knowledge only two pui~lished descriptions 
have heretofore been expressed in an algorithmic language. In fact the first 
of these, by Wells [27, Section 4.3.3], isn't really the ful| alpha-beta pro- 
cedure, it isn't even as strong as procedure FI. (Hot only is his algorithm 
incapable of making deep cutoffs, it makes shallow cutoffs only on strict 
inequality.) The other published algorithm, by Dahl and Belsnes [5, Section 
8.i], appears in a recent Norwegian-language textbook on data structures; 
however, the alpha-beta method is presented using iab=l pa. r~meters, so the 
corresponding proof of correctness becomes somewhatdifficult. Another 
recent textbook [17, Section 3.3.1] contains an informal description of what 
is called "alpha-beta prtming", but again only .themethod of procedure 
F1 is given; apparently many people are unaware that ~the alpha-beta 
procedure is capable of making deep cutoffs, s For  the~e reasons, the authors 
of the present paper d o  not fee ~t redundant to present aneW expomtory 
account of the method, even though alpha-beta pruning has been in use for 
more than 15 years. 

s ~ d e ~  one of the authors of the present Paper 0D.E.K.) did some of the research 
described in  Section 7 approxinuttely five ~ before he was awar~.~ that deep cutoffs 
were possible. It is easy to understand procedme F1 and to associate it with the term 
"'alpha-beta pruning" your colleagues are talking about, without discovering F2. 
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6. Analysis of the Best Case 

Now let us turn to a quantitative study of the algorithm. How much of the 
tree needs to be examined ? 

For this purpose it is convenient to assign coordinate numbers to the nodes 
of the tree as in the "Dewey decimal system" [11, p. 310]: Every position on 
level l is assigned a sequence of positive integers ax a2 • • • at. The root node 
(the starting position) corresponds to the empty sequence, and the dsuccessors 
of position a l . . .  at are assigned the respective coordinates a t . . .  atl, 
• • . ,  ai ... .  a~d. Thus, position 314 is reached after making the third possible 
move from the starting position, then the first move from that position, and 
then the fourth. 

Let us call position a t . . .  at critical if a~ ffi I for all even values of i or for 
all odd values of L Thus, positions 21412, 131512, 11121113, and 11 are 
critical, and the root position is always critical; but 12112 is not, since it has 
non-l's in both even and odd positions. The relevance of this concept is due 
to the following theorem, which characterizes the action ok" alpha-beta 
pruning when we are lucky enough to consider the best move first from 
every position. 

TH~OP, ZM 1. Consider a game tree for  which the value o f  the root position is 
not +_-oo, and for  which the first successor o f  every position is optimum; i.e., 

~f(az . . . at) i f  a t . . .  a4 is terminal, (12) 
F ( a i . . .  at) "= [ - F ( a l . . .  ajl) otherwise. 

The alpha-beta procedure F2 examines precisely the critical positions o f  this 

game tree. 

Proof. Let us say that a critical position a i . . .  at is of type 1 if all the ai 
are 1; it is of type 2 if at is its first entry > 1 and I - j is even; otherwise (i.e., 
when l ,  j is odd, hence at = I) it is of type 3. It is easy to establish the 
following facts by induction on the computation, i.e., by showing that they 
are invariant assertions: 

(1) A type i position pis examined by calling F2(p, - ~ ,  + oo). If it is not 
terminal, its successor positionpl is of type 1, and F(p) = - F ( p 0  # +oo. 
The other succesror positions p , . . . ,  Pd are of type 2, and they are all 
examined by caning F2(pi, --o~, F(pl)). 

(2) A type 2 position p is examined by calling F2(p, - c o ,  beta), where 
- Qo < beta <<. F(p). If it is not terminal, its successor position Pi is of type 3, 
and F(p)ffi -F (p l ) ;  hence, by the mechanism of procedure F2 as defined in 
Section 2, the ot~zer successors P 2 , . . . ,  Pd are not examined. 

(3) A type 3 position p is examined by calling F2(p, alpha, + oo) where 
+ oo > alpha >t F(p). I f  it is not terminal, each of its successor positions Pl 
is of type 2 and they are all examined by calling F2(pi, - o o ,  -alpha). 

Artificial Intelligence 6 (1975), 293-326 
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It follows by induction on I that every critical position is examined. 

COROLLARY 1. I f  every position on levels O; I . . . . ,  1 -- 1 o f  a game tree 
satisfying the conditions o f  Theorem 1 has exaetly d successors, for  some 
f i xed  constant d, then the alpha-beta procedure examines exactly 

d tll2j "t" d rl/21 - 1 (13t 
positions on level I. 

Proof. There a r e  d i-|/2J sequences at • . .  at, with I ~< al ~ d for all i, such 
that at = I for all odd values of / ;  there are dr ~/21 such sequences with a| ffi 1 
for all even values of i; and we subtract I for the sequence I . . .  I which was 
counted twice. 

This corollary was first derived by Levin in 1961, but no proof was 
apparently ever written down at the time. In fact, the informal memo [I0] 
by Har t  and Edwards justifies the result by saying: , 'For a convincing 
personal proof using the new heuristic hand waving technique, see the 
author of this theorem. '~ A proof was later published by Slagle and Dixon 
[25]. However, none of these authors pointed out that t h e  valueof  the root 
position must not equal + oo. Although this is a rare occurrence innontrivial 
games, since it means that the root position is a forced win or loss, it is a 
necessary hypothesis for both the theorem and the corollary, since the 
number of positions examined on level I will be d t|/2J when the root value is 
+co, and it will be d r~/21 when the root value is - co .  Roughly s ' peaking, we 
gain a factor of 2 when the root value is ~ oo. 

The characterization of perfect alpha-beta pruning in terms of critical 
positions allows us to extend Corollary 1 to a much more general class of  
game trees, having any desired probability distribution of legal moves on 
each level• 

COROLLARY 2. Let  a random game tree be generated in such a way that each 
position on leve l j  has probability ql o f  being nontermi~tal, and has an average o f  
dj successors. Then the expected number o f  position s on level l i s  do dt  . . . d t ,  l ; 
and  the expected number o f  positions on level I e x a m ~ d  by alpha-beta 
technique under the assumptions o f  Theorem l is 

doqldzq3 . . . dt-2q,-t ~ qodxq2d3 . . •  qi.2d|-t : qoqt . . .  qt-i " ' " I even; ~14~ 
doqld~q~ . . . qr-2dl-t ~ qodiq2d3 . . . dl-2q~-x - q0qt:- 'J ql-t l odd. ( ') 

• (M re  precisely. :theassumpUons underlying this random branclfing 
process are that level j :+ 1 of the: tree is formed £tom level j as follows: 
Each position p on l e v e l j  is  assigned a probability ~str ibution <re(p), 

r l ~ ) ,  , ,  .>. where ra(p)::~ theprobab~ty  t ha tp  will have d successors; these 
• distributions may be d:fiTerent for:different positions p, but leach must satisfy 
to(P) = i -  qj, and each must have the mean vaiucrt(p)  + 2r~(p) + . .  . 
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= dj. The number of successor positions for p is chosen at random from this 
distribution, independently of the number of successors of other positions on 
level j.) 

Proof If x is the expected number of positions of a certain type on levelA 
then xd~ is the expected number of successors of these positions, and xqj is 
the expected number of "number 1" successors. It follows as in Corollary 1 
that (14) is the expected number of critical positions on level l; for example, 
qo q l . .  - q H  is the expected number of positions on level ! whose identifying 
coordinates are all l 's. 

Note that (14) reduces to (13) when qj = 1 and dl - d for 0 ~< j < / .  
Intuitively we might think that alpha-beta pruning would be most effective 

when perfect-ordering assumption (12) holds; i.e., when the first successor of 
every position is the best possible move. But this is not always the case: 
Fig. 4 shows two game trees which are identical except for the left-to-right 
ordering of successor positions; alpha-beta search will investigate more of 
the left-hand tree than the right-hand tree, although the left-hand tree has 
its positions perfectly ordered at every branch. 

4 4 

A A 
2 i f "  "~3 3 

A , ,  
- 2  -1  - I  - 2 

FIG. 4. Perfect ordering is not always best. 

Thus the truly optimum order of game trees traversal isn't obvious. On the 
other hand it is po~ible to show that there always exists an order for pro- 
cessing the tree so that alpha-beta examines as few of  the terminal positions 
as possible; no algorithm can do better. This can be demonstrated by 
strengthening the technique used to prove Theorem I,  as we shall see. 

Tt~oe~M 2. Alpha, beta pruning is optimum in the following sense: Given 
any game tree and any algorithm which computes the value o f  the root positim~, 
there is a way to permute the tree (by reordering successor positions i f  necessary) 
so that every terminal position examined by the alpha-beta method under this 
permutation is examined by the given algorithm. Furthermore i f  the value of  
the root is not +_ oo, the aipha-bet~ procedure examines precisely the positions 
which are critical under this permutation. 

(It is assumed that all terminal positions have independent values, or 
Artificial Intelligence6 (1975), 293-326 
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equivalently that the algorithm has no knowledge about dependencies 
between the values of terminal positions.) 

An equivalent result has been obtained by G. M. Adelson-Velskiy [l, 
Appendix l]; a somewhat simpler proof will be presented here. 

Proof. The following functions F~ and F~ Oefine the best possible bounds 
on the value of any position p, based on the terminal positions examined by 
the given algorithm: 

" (  , ifp is terminal and not examined, 
Fj(p) = ~f(p) i fp is terminal and examined, (15) 

[max( -  F~(p0, • . . ,  -F~(pd)) otherwise; 

+ (  , ifp is terminal and not examined, 
F~(p) -- ~f(p) i fp is terminal and examined, (16) 

[max(-F~(p), . . . ,  -F~p~)) otherwise. 

Note that Fz(p) < F~(p)for all p. By independently varying the values at 
unexamined terminal positions below p, we can make F(p) assume any given 
value between F~p) and F.(p), but we can never go beyond these limits. 
When p is the root position we must therefore have F~(p) -- F~(p) = F(p). 

Assume that the root value is not _+ co. We will show how to permute the 
tree so that every critical terminal position (according to the new numbering 
of positions) is examined by the given al~orithm and that precisely the 
critical positions are examined by the alpha-beta procedure F2. The critical 
positions will be classified as type 1, 2, or 3 as in the proof of Theorem 1, 
the root being type I. "Une following facts can be proved by induction : 

(1) A type I positionp has Ft(p) = ~(p)  = F(p) # _+ co, and it is examined 
during the alpha-beta procedure by cailingF2(p, - co, + co). Ifp is terminal, 
it must be examined by the given algorithm, since Fdp) # - co. I f  it is not 
terminal, let j and k be such that F~(p)= -F.(pj) and F.(p)--- -Fg(pt). 
Then by (15) and (16) we have 

,,), • • 

hence ~(pj) = Fz(Pt)and wemay assume that j~=k. By pe.rmuting the 
successor posi!i0ns we may assume in fact that j - k _ ~1. Posit~on Pi (after 
permutation) is Of ~ 1 ; the  other s U ~ o r  positions pc ' . . . ,p~ are of 
type 2, anti'they are allexaminedby calfing P2(pt, - c o ,  '~F(p0). 

(2) A type 2 position phaS F~(p) ~ > - c o ,  and it is examined during the 
a l p h a ' b e t a p r ~ u r e  by calling F2(p, , c o ,  beta), wheie'--oo < beta ~ F~(p). 
I f p  ~term~ai,  rit m n s t ~  ex~ined by ~ given algorithm. Other~v. !selet J 
b e  ~t/ch ~ a t  ~ ( p ) = / ~ F . ( p j ) ,  ~ d  ~ m u ~  the i SucceSs0r positions • if 
necessary So that j = L position pk (after ~rmutation)is of  type 3and is 
examined by calling F2(px, -be ta ,+ co). Since F . ( p O -  -F~p)  <~-beta, 
this call returns a value ~ - b e t a ;  hence the other successors P2 , - . . ,Pd 
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(which are not critical positions) are not examined by the alpha-beta method, 
nor are their descendants. 

(3) A type 3 position p has F,.(p) < co, and it is  examined during the 
alpha.beta procedure by calling F2(p, alpha, + co), where F~(p) <~ alpha < oo. 
I fp  is terminal, it must be exam/ned by the given algorithm. Otherwise all its 
sl:ccessor positions p~ are of type 2, and they are all examined by calling 
F2(p~, - co, -alpha). (There is no need to permute them, the ordering makes 
absolutely no difference here.) 

A similar argument can be given when the root value is + co (treating it as 
a type 2 position) or - c o  (type 3). 

A surprising corollary of this proof is that the ordering of  successors to 
type 3 positions in an optimally-ordered tree has absolutely no effect on the 
behavior o f  alpha-beta pruning. Type 1 positions constitute the so-called 
"principal variation", corresponding to the best strategy by both players. 
The alternative responses to moves on the principal variation are of type 2. 
Type 3 positions occur when the best move is made from a type 2 position, 
and the successors of type 3 positions are again of type 2. Hence about half 
of the critical positions of a perfectly ordered game tree are of type 3, and 
current game-playing algorithms are probably wasting nearly half of the 
time they now spend trying to put successor moves in order. 

Let us say that a game tree is uniform of degree d and height h if  every 
position on levels 0~ 1 , . . . ,  h - i  has exactly d successors, and if  every 
position on level h is terminal. For example, Fig. 1 is a uniform tree of 
height 4 and degree 3, but the trees of Fig. 4 are not uniform. Since all 
permutations of a uniform tree are uniform, Theorem 2 implies the following 
generalization of Corollary 1. 

COROLLARY 3. Any algorithm which evaluates a uniform game tree of  height 
h and degree d must evaluate at least 

d rh/zl + d th/z' - 1 (17) 

terminal positions. The aiFha-beta procedure achieves this lower bound, i f  the 
best move is considered first at each position of types 1 and 2. 

7. Uniform Trees Without Deep Cutoffs 

Now that we have determined the best case of alpha-beta pruning, let's be 
more  pessimistic and try to look at the worst that can happen. Given any 
finite tree, it is possible to find a sequence of values for the terminal positions 
so that the alpha-beta procedure will examine every node of the tree, without 
making any cutoffs unless the tree branches are permutco. (To see this, 
arrange the values so that whenever F2(p, alpha, beta) is called, the condition 
-alpha > F(pj) > F(pz) > . . .  > F(p~) > -be ta  is satisfied.) On the other 
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hand, there are game trees with distinct terminal values forwhich thealpha- 
beta procedure will always find some cutoffs no matter how the branches 
are permuted, as shownin Fig. 5. (Procedure FI does not enjoy this property.) 

/ \ . . l \ .  
! \  ./,,. !\ .  / \  
/ \ / \ / \ / \ / \ / \ / ' \ / \  

al a 2 b l  b 2 a 3 a 4 b3 b4 a 5 a 6 b 5 be a7 a 8 b7 b 8 

FXG. 5. I f  max(ab . . . .  as )<  min(bh . . . ,be) ,  the alpha-beta procedure will always find at 
least two cutoffs, no matter how we permute t i c  branches of this game tree. 

Since game-playing programs usually use some sort of ordering strategy in 
connection with alpha-beta pruning, these facts about the worst case are of 
tittle or no practical significance. A more useful upper bound relevant to the 
behavior we may expect in practice can be based on the assumption of 
random data. Feller, Gaschnig and GiUogly have recently undertaken a study 
[7] of the average number of terminal positions examined when the alpha- 
beta procedure is applied to a uniform tree of degree d and height h, giving 
independent random values to the terminal positions on level h. They have 
obtained formulas by which this average number can be computed, in roughly 
d s st~,s, and their theoretically-predicted results Were only Slightly higher 
than empiricaUy, observed data obtained from a modified chess-playing 
program. Unfortunately the formulas turn out to be extremely complicated, 
even for this reasonably simple theoretical model, so t h a t t h e  asymptotic 
behavior for large d and/or h seems to defy analysis. 

Since we are looking for upper bounds ~yway, it is natural to consider 
the behavior of the We.aker procedure F L  ~ S  method is weaker since it 
doesn't find any "deep cutoffs" ; but it is m ~  better than complete mir~i- 
niaxing, and Figs. 1-3 indicatethat  deep cutoffs probably have only a 
second-order effect/on the efficiency. Furthermore, procedure FI  has the 
great virtue that its analysis is much simpler than that of  the full alpha-beta 
procedure F2. 

Onthe other hand, the analysis of F l  i sby no means as easy as it looks, 
and the mathematics turnsou~ to be extremely interesting. I n  fact, the 
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authors' first analysis was found to be incorrect, although several competent 
people had checked it without seeing any mistakes. Since the error is quite 
instructive, we shall present our original (but fallacious) analysis here, 
challenging the reader to "find the bug"; then we shall study how to fix 
things up. 

With this understanding, let us conside~ the following problem: A uniform 
game tree of degree d and height h is constructed with random values attached 
to its d ~ terminal positions. What is the expected number of terminal positions 
examined when procedure FI is applied to this tree? The answer to this 
problem w~H be denoted by T(d, h). 

Since the search procedure depends only on the relative order of the d h 
terminal values, not on their magnitudes, and since there is zero probability 
that two different terminal positions get the same value, we may assume that 
the respective values assigned to the terminal positions are p~rmutations of 
{1, 2, .... , dh}, each permutation occurring with probability 1/(dh)!. From 
this observation it is clear that the d ~ values of positions on each level I are 
also in random order, for 0 ~< l < h. Although procedure Fl  does not 
always compute the exact F values at every position, it is not difficult tO r' 
verify that the decisions F1 makes a~aut ,'atoffs depend entirely on the F 
values (not on the approximate values Fli~p)); so we may conclude that the 
expected number of positions examined on level I is T(d, l) for 0 ~< l ~< h. 
This justifies restricting attention to a single level h when we count the 
number of positions examined. 

In order to simplify the notation, let us consider first the case of ternary 
trees, d = 3; the general case will follow easily once this one is understood. 
Our first step is to classify the positions of the tree into types A, B, C as 
follows: 

The root position is type A. 

The first successor of every nonterminal position is type A. 

The second successor of every nonterminal position is type B. 
The third successor of every nonterminal position is type C. 

1 1 1 1 314 3/5 1 9/14 9/20 
I i \ I I \ I I \ 

¥11 V12 Y13 Y21 Y22 Y23 Y31 Y32 Y33 

Fzo. 6. Part of a uniform ternary tree. 
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Fig. 6 shows the local "environment" of  typical A, B, C positions, as they 
appear below a nonterminal position p which may be of any type. The F-values 
of these three positions are xl, x2, x3, respectively, and their descendants 
have respective F-vahles Y11,--.,Y33. Our assumptions guarantee that 
Yll,- .., Y33 are in random order, no matter what level of the tree we are 
studying; hence the values 

x~ = m a x ( - Y l t ,  --Yl2, -Y13), • • . ,  x3 ~-" m a x ( - y ~ l ,  --Y32, --733) 

are also in random order. 
If position p is examined by calling Fl(p, bored), then position A will be 

examined by the subsequent call FI(A, + o0), by definition ofF1 (see Section 
2). Eventually the valu~ xt will be returned; and if - x l  < bound, position B 
will be examined by calling FI(B, xt). Eventually the value x2 will be returned; 
or, if x2 >i xi, any value ~ >t Xl may be returned. If max( -x l ,  -x~)  < 
bound, position C will be examined by calling FI(C, min(xl, x2)). Note that 
- m a x ( - x l ,  -~2)  -min (x l ,  x2); the precise value of x~ is not involved 
when C is called. 

This argument shows that all three successors of an A position are always 
examined (s,:nce the corresponding bound is +00). Each B position will 
examine its first successor, but (since i',s bound is xt - - min(.vl 1, Yt 2, Yl 3)) it 
will examine the second successor if and only if -Y2t < -min(y~ ~, Y12, Yi3), 
i.eo, if and only if the values satisfy min(ylt, YI2, Yt3) < Y21- This 
happens with probability ¼, since the y's are randomly ordered and since the 
relation min(yl 1, Yl 2, Yl 3) > Y2~ obviously holds with probability ¼.Similarly 
the third successor of a B position is evaluated if and only if the values 
satisfy min(yll, YI2, YI3) <: min(y2t, Y22), and this has probability ~. The 
probability that the second successor of a C position is evaluated is the 
probability that max(min(yll, YI2, Y13), min0'21, )22, Y23)) < Y31, and this 
occurs ~ of the time; the third successor is examined with probability ~o. 
(A general formula for ithese probabilities is derived below.) 

Let A~, B,, C~ be the expected number of positions examined n levels 
below an A, B, or C position examined by p r ~ d u r e  F1 in  a random game 
tree. Our discussion proves that 

A o - B o f C o = l ;  

A,,+l = A,,% B,, + C,; (18) 
B.+l = A. + ¼S, + IC.;.i: 

c.+i = A ,  + + 

and T(3, h) - As is the answer to our problem when d -- 3. 
The solution to these simultaneous linear rec~lrrences can be studied in 

many ways, and for our purposes the use of generating functions is most 
convenient. Let 
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A(z) = ~ A, z ~, B(z) = #~o B~ z", C(z) = E C, z', 
n~-O n~>O 

so that (18) is equivalent to 
A(z) - 1 = zA(z) + .zB(z) + zC(z), 
B ( z ) -  1 = zA(z) + ~}zB(z)+ ~}zC(z), 
C(z) - 1 = zA(z) + ,-~4zB(z) + 2-~zC(z). 

By Cramer's rule, A(z) - U(z)/V(z), where 

U(z) = de 1 ~ z -  1 ]z , 

V(z) det ¼z-I  ] z  
. ~-g4z ~f-6z-- 1 

(19) 

(2o) 

¢1 c2 C3 
+ + , (21) A(z) = 1 - rlz 1 - -  r 2 z  1 - -  r 3 z  

c, = -r,U(1/rt)/r'(l/r~). (22) 
Consequently A(z) = ~.)o(cl(rlz)" + cz(rzz)" + ea(raz)'), and we have 

A, = + c2 z + 
by equating coeflicie,Rs ofz,. Ifwe number the roots so that {rl [ > It21 >~ Ir3[ 
(and the theorem of Perron [17] assures us that this can be done), we have 
asymptotically 

A,  .., clr ~. (23) 

Numerical calculation gives rt - 2.533911, ci---- 1.162125; thus, the alpha- 
beta procedure without deep cutoffs in  a random ternary tree w/ll examine 
about as many nodes as  in a tree of the' same height with average degree 
2,534 instead of  3. (It is worthwhile to note that (23) -redicts about 48 
positions to be examined on: the fourth level, while on:~; 35 occurred in 
Fig. 2; the reason for this discrepancy is chiefly that the one-digit values in 
Fig. 2 are nonrandom because of frequent equalities.) 

Elementary manipulation of determinants shows that the equation z 3 V(l/z) 
= 0 is the same as 

1 - z  1 z /  
det I ¼-z  = 0 ;  

hence r s is the largest eigenvalue of the matrix 
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We might have deduced this directly from eq. (18), i f  we had known enough 
matrix theory to calcolat¢ the constant cl by matrix-theoretic means instead 
of function-theoretio means. 

This solves the case d .-- 3. For general dwe find similarly that the expected 
number of terminal positions examined by the alpha-beta procedure without 
deep cutoffs, in a random uniform game tree of degree d and height h, is 
asymptotically 

T(d ,  h) ,.. co(d) ro(d) ~' (24) 
for fixed d as h ~ 00, where re(d) is the largest eigenvalue of a certain d x d 

M d - -  

matrix 
rP l l  P12 " ' "  Ptd~ 

P21 P22 - - -  P24 
i • 

Pdt  Pd2 " ' -  Pdd 

(25) 

and where co(d) is an approl ~riate consent. The general matrix element p~j 
in (25) is the probability that 

max (min(Ylt,. . . ,  Y~d)) < rain Y~ (26) 
l ~ k < l  1~/¢< / 

in a sequence of ( i -  l)d + ( j -  1) independent identically distributed 
random variables YI t , . . . ,  Ylcj-t~- 

When i - 1 o r j -  1, the probability in (26) is 1, since the rain over an 
empty set is + 00 and the max is -Qo. When i , j  > 1 we can evaluate the 
probability in several ways, of which the simplest seems to be combinatorial: 
For (26) to hold, the minimum of all the Y's must b~ Yt,tl for some kl < i, 
and this occurs with probability (i  - l )d / ( (  ! - l ) d +  j - I ) ;  remov- 
ing Yk, t, .... ,Yti4 from consideration, the minimum of the remaining 
Y's must be Y~a,2 for s o m e  k2 < i ,  and  this occurs with probability 
( i  - 2 ) d / ( ( i  - 2 ) d  + j - 1); and so on. Therefore (26) occurs with pro- 
bability _ , /  . 

( i -  1)d ( i -  2)d d 
~ . .  . . a e B 

Pu = (i - Dd  + j ' -  I (i - 2)d + j - - 1  d + i - I 

- - l / ( i - I t 2 1 - 1 ) / d  ) .  (27) 

This explicit formula allows us to calculate to(d)numerically for small d 
without much difficulty, and to calculate c o ( d ) f o r  small d with somewhat 
more difficulty using (22). 
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The form of (27) isn't very convenient for asymptotic calculations; there is 
a much simpler expression which yields an excellent approximation: 

LEMMA 1. When 0 <~ x <. 1 and k is a positive integer, 

k - ' , ~ < ( k - l + x )  
k -  1 <~ kX/r(1 + x). (a8) 

(Note that 0.885603 < F(l + ac) ~< l for 0 ~< x ~< 1, with the minimum 
value occurring at x = 0.461632; hence the simple formula k x is always 
within about 11 ~o of  the exact val!ue of  the binomial coefficient.) 

Proof. When 0 ~ x <~ I and t > - 1 we have 

(1 + t) ~' ~< 1 + tx, (29) 

since the function f (x )  = (1 + t)X/(l + tx) satisfies f (0)  = f ( l )  = 1, and 
s ince  

f"(x) = ((ln(l + t) - t/(1 + tx)) z + t2/(l + tx)2)f(x) > O. 

Using (29) for t ~- 1, ½, ~ , . . .  yields 

l + x  l % x  l + ~ x  | , <  ~ < - -  - - ~ < . . .  
2 ~ 2 ~ (t)~ 

~< l i m ( l  + x ) ( 2  + x )  ( m + x )  1 1 
m-.® 1 ~ " ' '  m (m + 1)" = 1-(1 + x)  

and the kth term of  this series of  inequalities is k - 1 

For trees of height 2, deep cutoffs are impossible, and procedures F I  and 
F2 have an identical effect. How many or" the d 2 positions at  level 2 are 
examined ? Our analysis gives an exact answer for this case, and Lemma 1 
can be used to give a good approximate result which we may state as a 
theorem. 

THEOR~ 3. The expected number of  terminal positions examined by the 
alpha-beta procedure on level 2 of  a random uniform game tree of  degree d is 

T(d, 2) = E p .  O0) 
l~l , j~d 

where the Pi~ are defined in (27). We have 
dZ d 2 

C, l ~  <~ T(d, 2) <~ C2 log d (31) 

for  certain positive constants C1 and (?2. 

Proof. Eq. (30) follows from our previous remark3, and from Lemma 1 
we know that 

C S(d) <<. T(d, 2) g S(d), 

where C ~ n.885603 = i n f o ~ t  F(l  + x) and 
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l e~t,j~d 
d d--I 

= d + 1 k 
Now for k=d'we have k- lJdfexp(-- t  In d/d)f f i l - t  In d/d+O((Iog d/d)Z), 
hence for x / d g  k ~<d, ( 1 -  k - l ) / ( l -  k -l/a) lies between d/lnd and 
2d/In d times 1 + O(log d/d). The bounds in 01) now follow easily. 

When the values of re(d) for d ~< 30 are plotted on log log paper, they seem 
to be approaching a straight line, suggesting that re(d) is approximately of  
order d °'75. In fact, a least-squares fit for 10 <~ d ~g 30 yielded d °'~6 as an 
approximate order of growth; this can be compared to the lower bound 
2d °-5 of an optimum alpha-beta search, or to the upper bound d of a full 
minimax search, or to the estimate d °'Tz obtained by Fuller et al. [7] forrandom 
alpha-beta pruning when deep cutoffs are included, However, we shah see 
that the true order of growth of re(d) as d - ,  ao is really d/log d. 

There is a moral to this story: If we didn't know the theoretical asymptotic 
growth, we would be quite content to think of it as d °-76 when d is in a 
practical range. The formula d/log d seems much worse than d °-Ts, until we 
realize the magnitude of log din the range of interest. (A similar phenomenon 
occurs with respect to Shell'S sorting method, see [12, pp. 93-95].) On the 
basis of this theory we may well regard the approximation d °-Tz in [7] with 
some suspicion. 

But as mentioned above, there is a much more significant moral to this 
story. Formula (24) is incorrect because the proof overlooked what appears to 
be a rather subtle question of conditional probabilities. Did the reader spot 
a fallacy ? The authors found it only by comparing their results to those of  
[71 in the- ~ h = 3, ~ d = 2, since procedures Fi: and-F2 are equivalent for 
heights ~< 3. According to the analysis above, the alpha-beta procedure will 
examine an average of ~- nodes on level 3o f  a random binary game tree, but 
according to [7] the number is ~ .  After th~ authors o f  [7] were politely 
informed that they must have erred, since we had proved that 67¢9 was correct, 
~:hey politely replied that simulation results (including a test on all 8! 
permutations) had confirmed that the corre¢: answer is 6i~s. 

A careful scrutiny of the situation explains what is going on. Theorem 3 is 
correct, sivce it deals only with level 2, but  trouble occurs at level 3. Our 
theory predicts a cutoff on the right subtree Of every B node with probability 
~}, so that the terminal 'values ( f~ , . . - , r e )  in Fig. 7 will be examined with 
respective probabilities (1, t ,  I, ~,:1, 1, 3, ~), Actually fs  is examined with 
probability ~ instead of ~; for fs  is examined if and only if 
Artifwial Intellioence 6 (1975), 293.326 



AN ANALYSIS OF ALPHA-BETA PRUNING 317 

f7 > min(j~,f6), 
(32) 

min(fs,f6) < max(mm(fi, f2), min(fs,f,)). 
Each of these two events has probability {, but they are not independent. 

A 
i • 

I A  ( IB  QA ( l i b  OA  (lib QA (liB 

tl #2 f3 f4 vs fe f7 f8 

FIG. 7. A tree which reveals the fallacious reasoning. 

When the fallacy is stated in these terms, the error is quite plain, but the 
dependence was much harder to s~; in the diagrams we had been drawing for 
ourselves. For example, when we argued using Fig. 6 that the second successor 
of a B position is examined with probability ¼, we neglected to consider that, 
when p is itself of type B or C, the B node in Fig. 6 is entered only when 
rain(y11, Y12, Yt3) is less than the bound at p; so rain(y, t, Yt2, Yl 3) is some- 
what smaller than a random value would be. What we should have computed 
is the probability that Yzt > min(ytl,  Yl2, Y~3) given that position B is not 
cut off. And unfortunately this can depend in a very complicated way on the 
ancestors ofp. 

To make matters worse, our error is in the wrong direction, it doesn't even 
provide an upper bound for alptm-~eta searching; it yields only a lower 
bound on an upper bound (i.e., nothing). In order to get information relevant 
to the behavior of procedure F2 on random data, we need at least an upper 
bound on the behavior of procedure F1. 

A correct analysis o f  the binatry case (d 2 )  involves the solution of 
recurrences 

A.+t -- An + B.¢°)' 

Bi,+) ,= Aa + ~tBCt÷ t) for k ~ 0, 03)  

A o  = °) = Boo " = ]3I, 2) = - " =  l ,  

where the Pt are appropriate probabilities. Fo r  example, Po = ~; PoP. is the 
probability that (32) holds;andpoptp2 is the probability that fifteen indepen- 
dent random variables satisfy 

As>f13Aft,t, 
f13 A f i*  < (f ,  Afro) V (f i t  Aft2), (34) 

(fg^ fto)V ( f i t  Af t2 )>( ( f l  ^ f , ) V  (f3 ^ f ,))  A ((fs A f¢) v (f'n A fs)), 
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writing v for max and ^ for min. These probabilities can be computed 
exactly by evaluating appropriate integrals, bug the formulas are complicated 
and it is easier to look for upper bounds. We can at least show easily that the 
probability in (34) is g} ,  since the fLrSt and third conditions are independent, 
and they each hold with probability ~. Thus we obtain an upper bound if we 
set Po - -P ,  ffi P4 ffi . - -  ffi ~ and Pt = Pa = . - .  -- 1; this is equivalent to 

A o - B o  = 1~ 
= An + en, 

en+~ = A. + }A,. 

the recurrence 

(35) 

Similarly in the case of degree 3, we obtain an upper bound on the average 
number of nodes examined without deep cutoffs by solving the recurrence 

A o - B o f f i C o - - - 1 ,  

A.+I = An + Bn + C., (36) 
S.+~ = A . +  ~}A. + ~jAn. 
C.+, = A. + ~2~A. + z~oAn, 

in place of (18). This is equivalent to 

A.+I -- A. + (I + ¼ + t + 1 + ~ + ~o)An-t 
and for general degree d we get the recurrence 

An+l ffi An + $~An-l, (37) 

where Ao --- 1, Al --- d, and 

Sd ~" 2~l~d PlJ" (38) 

This gives a valid upper bound on the behavior of procedure F1, because it is 
equivalent to setting bound,-- + ooat  certain positions (and this operation 
never decreases the number of positions examined). Furthermore we can 
solve (37) explicitly, to obtain an asymptotic upper bound on T(d, h) ofthe 
form ct(d)r~(d) s, wherethe growth ratio is 

rl(d) ffi ~/(Sd + ¼) + ½. (39) 

Unfortunately it turns out that Sa is o f  order d2/log d, by Theorem 3; so 
(39) isof  order d/~/logd, while an upper boundofbrder d/log dis desired. 

Another way to get an upper bound reties On amore detailed analysis of 
the structural behaviorof procedure F1,  as in the following theorem. 

Tt~om~ 4. The expocted number of tertninal positions examined by :he 
alpha-beta procedure without deep cutoffs, in a random uniform gamet ree of 
degree d and height h, satisfies 

T(d, h) < c*(d)r*(d) h, (40) 
where r*(d) is the largest eigenvalue -of the matrix 
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g~ 

/Pdl  ~ P d 2  

and c*(d) is an appropriate constant. 
(The p~ in (41) are th~ same as in (25),) 

O a ~  

~/P2a 

~Pdd 

319 

(40 

Proof. Assign coordinates at  • . .  a~ to the positions of  the tree as in Section 
6. For  1 1> 1, it is easy to prove by induction that position a t . . .  a~ has 
bound = min{F(a, . . .  a:_lk) i I ~< k < al} when it is examined by procedure 
F !  ; hence it is examined if and only if at  . .  • a H  is examined and 

- min F(al . . .a~_lk)  < rain F(al . . .a~-2k)  or I = 1, (42) 
1 <~k<m i<~k<ar_ 

It follows that a terminal l~osition a ~ . . .  ah is examined by F I  if and only if 
(42) holds for 1 <~ l ~< h. Let us abbreviate (42) by P~, so that al . . .  ah holds 
if and only if P t  a n d . . ,  and Ph- Condition P~ by itself for 1 i> 2 holds with 
probability p~j, where i = at- i  and ] = a~, because of  definition (26); hence if 
the P~ were independent we would have a ~ . . .  ah examined with probability 
P,~a3 polo3 • . .  Po,-za,, and this is precisely equivalent to the analysis leading 
to (24). However, the P~ aren't independent, as we have observed in (32) and 
(34). 

Condition P~ is a function of  the terminal values 

f ( a x , . ,  a l -2jk  a~+l . . .  as), 
where j  < a H o r j  = al- l  and k < az. Hence Pi is independent of PI,  P 2 , . . . ,  
Pi-2. (This generalizes an observation we made about (34).) Let x be the 
probability that position a l . . .  ah is examine/t, and assume for convenience 
in  notation that h is odd.  Then by the partial independence of the P{s, we 
have - 

X < Pala~ [ ' ~ 4  " " " PaJ,.2ah. t" 

X < p ,~ ,  ~a4as" Pah',oh; 
hence 

x < Jpol.:  p.2o3 .Poh_,  
and the theorem follows by choo~.~ing c*(d) large enough. 

~.T~.w.w..we are ready to establish the correct asymptotic growth rate of  the 
branchmg facLoz for procedure F l. 

T,~ORm 5. The expected number T(d, h) of terminal positions examined by 
the alpha-beta procedure without deep cutoffs, in a random uniform game tree 
of degree d and height h, has a branc,~ing factor 

lira T(d, h) l/h - r(d) (43) 
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which satisfies • 
d d ~ 

cS~ .o~ ,  ~< r(d~ <~ C,  log. ~. . .  (44) 

for certain positive constants Cs and G .  

Proof We have 
T(d. hi + h2) <~ T(d, hi) T(d, h2); ' (45) 

since the right-hand side of (45) is the number of positions that would be 
examined by FI  if bound were set to  + oo for all positions at height hi. 
Furthermore the arguments above prove that • 

lim inf T(d, h) >~ ro(d), lim sup T(d, h) <~ rt(d), r*(d). 
h'* ~ h-* eo 

By a standard argument about subadditive functions (see, e.g,, [20, P¢oblem 
1.98]) it follows that the limit (43) exists. 

To prove the lower bound in (44) weshalt  show that ro(d) >i C3 d]log d. 
The largest eigenvalue of  a matrix with positive entriesp~l is known to be 
>~min~(~jp~j), according to the  theory of Perron [19]; see [26, Section 2.1] 
for  a modem account of this theory, 4 Therefore by  Lemma 1, 

• ( Z i ' u  1'~'~ " r e (d )~  C rain - ' )  

l--z 
C m i n (  ', . I i .~  

• 2 ~ , . ~ , k l -  i j . 
1 d - t  d - 1  

- C l . d . ~ / , z  > C -J'~d-' 

where C = 0.885603 = info~=~t F(1 + x), since d "ila ffi exp(- lnd/d)  > 
I - in did. . . . .  • ..... - , 

To get the upper bound in (44), we shall prove that r*(d) < C4 d/log d, 
using a rather curious matrix norm. If s and t are positive real numbers with 

1 I 
- +  = i ,  (46) 

then all eigenvalues ~ of a matrix A with entries :a~ l satisfy 

To prove this, let 24x =' ~ ,  where is a non~ero vector; b y  H~lder's in- 
equality [9, Section 2.7], 

pt(E i" = ( E / X  a,sxjl'~ l~" 
x.t , I.-,.~,~ I I 

r " ' a* * I t  ~ 1  t#t 

• We are indebted to Dr-L H. Wilkinson for suggesting this proof of the lower bound. 
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- -  ( ~ ( ' ~  la~jl)s/')I/*/~ lX~il) t/s 

and (47) follows. 

If we let s - t = 2, inequality (47) yields r*(d) = O(d/x/log d), while if s 
or t ~ oo the upper bound is merely O(d). Therefore some care is necessary in 
selecting the best s a n d  t; for our purposes we choose s = f (d)  and t = 

f(d)/(f(d) -1) ,  wheref(d)= ½ In d/ln In d. Then 

\ 1  -,~ i~ .d\ l  -,Q'~d 

< (v/d d'/''F ( d - / d ) G ~ '  v/d-'('i-')/2d)s") '/'" (48) 

The inner sum is 9(d) = l/(1 - d -f/td) = (4d/in d)(l  + O(ln In d/In d)), so 

dg(d) "/* = d s(a)-x/2 exp(½ I n 4  In d/In l n d  + In In d + O(1)). 

Hence the right-hand side o f  (48) is 

exp(ln d - In In d + In 4 + O((ln In d)2/ln d)); 

we have proved that 

r*(d) ~< (4d/In d)(l  + O((ln in d)Z/ln d)) as d --~ ~ .  

8 
9 

10 
11 
12 
13 
14 
15 
16 

t l l  

TASx~ 1. Bounds for the branching factor in a random tree 
when no deep cutoffs are performed 

i l l  i 

d ro(d) 

2 1.847 
3 2.534 
4 3.142 
5 3.701 
6 4.226 
7 4.724 

5.203 
5.664 
6.!12 
6.547 
6.972 
7.388 
7.795 
8,195 
8:589 

t I 

i i  i 

rl(d) r*(d) 

1.884 ! .912 
2.666 2.722 
3.397 3.473 
4.095 4.186 
4.767 4.871 
5.421 5.532 
6.059 6.176 
6.684 6.805 
7.298 7.420 
7.902 8.024 
8.498 87618 
9.086 9'203 
9.668 9.781 

10.243 10'350 
10.813 10.913 

i i  i 

I 

d 

17 
18 
19 
2O 
21 
22 
23 
24 
23 
26 
27 
28 
29 
30 
31 

i | 

i 

ro(d) 

8.976 
9.358 
9.734 

10.106 
10.473 
10.836 
11.194 
11.550 
11.901 
12.250 
12.595 
12.937 
13.277 
13.614 
13.948 

I l l l  . I I  I I 

u l  , • i ,  L i i  

rl(tO r*(d) 

11 378 11.470 
11.938 12.021 
12.494 12.567 
13.045 13.108 
13.593 13.644 
14d37 14.176 
14.678 14.704 
15.215 15.228 
15.750 ".5.748 
16.282 16.265 
16.811 16.778 
17.337 17., ]8 
! 7,861 17.796 
18.383 18.300 
18.903 18.802 

i i i  i i 

Table 1 shows the various bounds we have obtained on r(d), namely the 
lower bound to(d) and the upper bounds rl(d) and r*(d). We have proved 
that to(d) and r*(d) grow as d/log d, and that rl(d) grows ~ as d/v/log d; but 
the table shows that rl(d) is actually a better bound for d ~ 24. 
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8. Discussion of the Model 

The theoretical model we have studied gives us an upper bound on the actual 
behavior obtained in practice. It is an upper bound for four separate reasons: 

(a) the deep cutoffs are not considered; 

(5) the ordering of successor positions is random; 

(c) the terminal positions are assumed to have distinct values; 

(d) the terminal values are assumed to be independent of each other. 

Each of these conditions makes our model pessimistic; for example, it is 
usually possible in practice to make plausible guesses that some moves will 
be better than others. Furthermore, the large number of equal terminal 
values in typical games helps to provide additional cutoifs. The effect of 
assumption (d) is less clear, and it will be studied in Section 9. 

In spite of all these pessimistic assumptions, the results of our calculations 
show that alpha-beta pruning will be reasonably efficient. 

Let us now try to estimate the effect of  deep cutoffs vs no deep cutoffs. 
One way to study this is in terms of the best case: Under 'ideal ordering of 
Successor positions, what is the analogue for procedure F1 of the theory 
developed in Section 67 It is not difficult to see that the positions ai . .  • at 
examined by FI in the best case are precisely those with no two non-l's in a 
row, i.e., those for which a~ > 1 implies a~+t = 1. 

In the ternary case under best ordering, we obtain the recurrence 

Ao = Bo = Co = 1, 

An+l - An + Bn + Cn, (49) 
B.+I = A., 

C,+t = An, 
hence An÷i - A, -I- 2A._i. For general d the corresponding recurrence is 

A o = 1, A1 - d, An+ 2 = An+t + ( d -  1)An. (50) 
The solution to this recurrence is 

1 
An - x/(4d 3) ((x/(d - ¼) ~+ ½).+2 _ (_x/(d -i) + ½)"+2); (51) 

so the growth rate or effective branching factor is x/(d - I) + ½, not much 
higher than the value x/d obtained for the full method includingdeep cutoffs. 
This result tends to support the rcontention that deep cutoffs have only a 
second, order effect, although we must admit that poor ordering of successor 
moves will make deep cutoffs increasingly valuable. 

9. Dependent Terminal Values 
Our model gives independent values to  all the terminal positions, but such 
independence doesEt  happen very often i n  real games. For example, i f f (p)  
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is based on the piece count in a chess game, all the positions following a 
blunder will tend to have low scores for the player who loses his men. 

In this section we shall try to account for such dependencies by considering 
a total dependency model, which ha~ the following property for all non- 
terminal positions p:  For each i and A all of the terminal successors of p~ 
either have greater value than all terminal successors of p j, or they all have 
lesser value, This model is equivalent to assigning a permutation of {0, 1 , . . . ,  
d - 1 } to the moves at every position, and then l~sing the concatenation of all 
move numbers leading to a terminal position as that position's value, 
considered as a radix-d number. For example, Fig. 8 shows a uniform 
ternary game tree of height 3 constructed in this way. 

. / 0  , \ / 1  ~ o , _/ ~. ,~)_ 

201 .021 210 201 102. 201 102. 021. 120. 
/ ~ I I  \ I \ I . ~ \  102 1(~0101/ [ ~122121 120/ I ~021 0~0022/ I ~20'i 2~00~202/ ~ zL~1222220 

110 112 111 .012 010 011 002 O0Q 001 210 212 211 
Fz(~. 8. A tree with "totally dependent" values, 

Another way to look at this model is to imagine assigning the values 
0, 1 , . . . ,  d ~ - ! in d-ary notation to the terminal positions, and then to apply 
a random permutation to the branches emanating from every nonterminal 
position. It follows that the F value at the root of a ternary tree is always 
- ( 0 2 0 2 . . .  20)s i fh  is odd, + ( 2 0 2 0 . . .  20)s i fh  is even. 

THEOREM 6. The expected number o f  terminal positions examined by the 
alpha-beta procedure, in a random totally dependent uniform game tree of 
degree d and height h, is 

d -//~,~,~rht21 dt~12j Hi+ -- ~ , . -  + Ha i _ Hi ) + H i ,  (52) 

where Ha = 1 + ½ + . . .  + l/d. 

Proof. As in our other proofs, we divide the positions of the tree into a 
finite number of classes or types for which recurrence relations can be given. 
In this case we use three types, somewhat as in our proof of Theorems I and 2. 

A type 1 position p is examined by calling F2(p, alpha, beta) where all 
terminal descendants q of p have alpha < +f(q) < beta; here the + or - 
sign is used according as p is an even or an odd number of  kvcls from the 
bottom of the tree. I f p  is nonterminal, its successors ere assigned a definite 
ranking; let us say that p~ is relevant ifF(pi) < F(pj) for all 1 ~. j < i. Then 
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all of the relevant successors ofp axe examhted by calling F2(p~, -beta, - m )  
where F(pi) lies be tween-be ta  and - m ,  hence the relevant p~ are again of 
type 1. The irrelevant p~ are examined by calling F2(pa, -beta, -m)  where 
F(pi) > - m ,  and we shall call them type 2. 

A type 2 position p is examined by calling F2(p, alpha, beta) where all 
terminal descendants q of p have -If(q) > beta. I f p  is nonterminal, its first 
successor Pt is classified as type 3, and it is examined by calling F2(pl, -beta, 
-alpha). This procedure call eventually returns a Value ~< -beta, causing 
an immediate cutoff. 

A type 3 position p is examined by calling F2(p, alpha, betd) where all 
terminal descendants q of p have- l - f (q)<  alpha. If p i s  nonterminal, all its 
successors are classified type 2, and they ar~ examined by calling F2(pi, 
-beta, -alpha); they aH return values >~ -alpha. 

Let An, Bn, C, be the expected number of terminal positions examined in a 
random totally dependent uniform tree of degree d and height h, when the 
root is of type 1, 2, or 3 respectively. The above argument shows that the 
following recurrence relations hold: 

A o -  Bo = Co = 1, 
A.+I = An + (½A. + ½On) + ( An +  en) + . . .  

+((I/d)An + ( (a"  l)td)B,) 
-//dAn+ ( d -  Hd)e,, (53) 

B.+I 
Cn+l = dB~. 

Consequently B, -- d tn/2j, and As has the value stated in (52). 

COROLLARY 4. When d >1 3, the average number of positions examined by 
alpha.beta search under the assumption of totallydependent terminal values is 
bounded by a constantS times the optimum number of  positions specified in 
Corollary 3. 

Proof. The grO~:dl of (52) as h --, oo is order d s/2. The stated constant is 
approxitaately 

( d -  Hd)(l + t td)/2(d.  1t2). 

(Whenld= 2 the growth rate of (52) is order (~)~ instead o f  ~/2s,) 

Incidentally, we can also analyzeprocedureFlunder ~the same assumptions; 
the restriction Of deep cutoffs leads to the recurrence 

Ao -- 1, AI - 1, A~+2 --HdA~+I + (d - Hd)A,, (54) 

and the corresponding growth rate is of order (~/(d - Ha + ¼H 2) + ½Hd) h. 
So againthe branching:factor is approximately ~/d for large d. 

sThis "constant" depends on the degree d, but not onthe height ,~, 
Artillcial haell~ence 6 0975), 293-.326 
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The authors of  [7] have suggested another model to account for depen- 
dencies between positions: Each branch O.e., each arc) of  the uniform game 
tree is assigned a random number b:tween 0 and 1, and the values of terminal 
positions are taken to be the sums of all values on the branches above. If  we 
apply the naive approach of Section 7 '!o the analysis of this model without 
deep cutoffs, the probabdity needed in place of eq. (26) is the probability that 

max (Xk + min(Y~l , . . . ,  Ykd)) < X~ + rain Yl~, (55) 
l<~k<i l ~ k < j  

where as before the Y's are independent and identically distributed random 
variables, and where X1,. •., X: are independent uniform random variables 
in [0, I]. Balkema [2] has shown that (55) never occurs with greater probability 
than the value Pu derived in Section 7, regardless of the distribution of the 
Y's (as long as it is continuous). Therefore we have good grounds to believe 
that dependencies between position values tend to make alpha-beta pruning 
more efficient than it would be if  all terminal positions had independent 
values. 
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