Parallel Prefix Computation

RICHARD E. LADNER AND MICHAEL J. FISCHER

Unversity of Washington, Seattle, Washington

ABSTRACT The prefix problem 1s to compute all the products x o x;° -+ oxx for 1 = &k < n, where © 1s an
associative operation A recursive construction s used to obtan a product circuit for solving the prefix problem
which has depth exactly [log.n] and size bounded by 4n An applicauon yields fast, small Boolean circuits
to simulate finite-state transducers. By simulating a sequential adder, a Boolean circunt which has depth
2[logn] + 2 and size bounded by 14n 15 obtained for n-bit binary addition The size can be decreased significantly
by permutting the depth to increase by an additive constant

KEY WORDS AND PHRASES automaton, binary addition, circust, combinational complexity, depth, fanout,
parallehism, size, transducer

CR CATEGORIES 5.22,525,61,632

1. Introduction

Many algorithmic problems are easy to solve sequentially with finite memory. Examples
are the addition of two binary numbers and the division of a binary number by a constant.
By way of contrast, efficient parallel solutions to these same problems (restricted to inputs
of a fixed length) seem complicated and mysterious and highly dependent on special
properties of the particular problem. For example, the “carry lookahead” circuit for binary
addition [6, 10] seems to rely on the details of carry propagation for its operation.

In this paper we give a general method for deriving efficient parallel solutions to the
fixed-length version of any problem solved by a finite-state transducer. Our construction
consists of two parts. First we exhibit a class of efficient parallel solutions to a fundamental
abstract problem, the prefix problem. We then show how to use such a solution to
“simulate” a finite-state transducer efficiently. The result is an efficient parallel solution to
the original problem solved by the finite-state transducer.

Let o be an associative operation on a domain D. The prefix problem is to compute, for
given xi, ..., X» € D, each of the products x;oxz20 e oxp, | Sk < n.

By analogy with Boolean combinational circuits [7, 8], we consider product circuits,
which are directed acyclic oriented graphs. Each node of indegree 2 represents a product
of its two inputs. All other nodes have indegree 0 and are labeled with an integer between
1 and n. These are the input nodes. With each node v we associate an element of D in the
obvious way.

We consider two complexity measures on a product circuit A4, C(A"), the size, is the
number of product nodes in .4, and D(.4"), the depth, is the maximum number of product
nodes on any directed path in 4. For example, the circuit of Figure 1 has depth 3, size 4,
and computes x; °x3° x3° Xz °x3 Note that 1t also computes x; °x3°x3°xz, X3 °x3, and
X3°Xa.

Permussion to copy without fee all or part of this materal 1s granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copynight notice and the title of the publication and its
date appear, and notice 1s given that copymng 1s by permussion of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission

A preliminary version of this paper was presented at the 1977 International Conference on Parallel Processing,
Bellaire, Mich , August 1977

This matenal is based on work supported by the National Science Foundation under Grant DCR 74-12997-A01,
through a subcontract from M.LT, and Grants MCS 74-12764 and MCS 77-02474

Authors’ address. Department of Computer Science, FR-35, Umiversity of Washington, Seattle, WA 98195

© 1980 ACM 0004-5411/80/1000-0831 $00 75

Journal of the A for Computing Machinery, Voi 27, No 4, October 1980, pp 831-838

832 R. E. LADNER AND M. J. FISCHER

OROROCEO,
ofjo oo
] an C@® D) o

° 1071 H/1
HsQ0

Fi6. 1. A product circuit. Fi6. 2. A sequential adder.
(All arcs are directed down-
ward)

The depth of a circuit corresponds to the computation time in a parallel computation
environment, whereas the size represents the amount of hardware required. For the prefix
problem it is straightforward to construct a circuit of the minimum possible size, n — 1, but
its depth is also n — 1. Similarly, it is not difficult to find a circuit of depth exactly [log.n],
the minimum possible depth, but the immediate recursive construction yields a circuit of
size (n log n).! In Section 2 we find a solution to the prefix problem of minimum depth
[logon] and size <4n.

In Section 3 we obtain a family of circuits for simulating a given arbitrary finite-state
transducer on inputs of length n which all have depth O(log n) and size O(n). In Section
4 we apply those constructions to the simple machine for binary addition of Figure 2 and
analyze the constants carefully. One result of our general methods is a circuit of
size 8n + 6 and depth 4[logzn] + 2 which is essentially the same as the “carry looka-
head” adder [10]. Changing the parameters of the construction decreases the depth to only
2flogzn] + 2, while the size increases to 14n, which is possibly advantageous in certain
practical situations. Asymptotically, there is still a factor-of-2 gap between the depth
achieved by our general methods and the best depth obtainable for addition. Brent has an
adder of depth log.n + O(Vlogzn), but its size is Q(n logen) [2]. Krapchenko achieves the
same bound on depth with a linear size circuit [5, 8].

2. Circuits for the Prefix Problem

In this section we define a family of circuits Z4(n) for solving the prefix problem on n
inputs. For each k the depth D(Z(n)) < k + [logen]. The size C(Pu(n)) < 2(1 + 1/2%)n
— 4 forall n = 1 and 0 < k < [logen]. For small n the size is substantially smaller than this
bound would suggest.

The recursive construction of Zy(n) is shown in Figure 3, and the construction of 2, (n)
for k = 1 is shown in Figure 4. When n = 1, %(n) is simply a single input node and
contains no products. In the figures, circles represent concatenation nodes.

Figure 5 illustrates the construction of %(n) for small values of n.

ANALYSIS OF S1ZE AND DEPTH. That the constructions achieve the desired depth
follows easily by induction, given the additional fact, also proved by induction, that the
last output in Z(n) has depth exactly [logon], even when k > 0. The correctness of the
construction is also easily shown by induction and is left to the reader.

Let Sx(n) = C(Z(n)). Then S satisfies the following recurrences:

sir-s (2] o ([z) g} o>
&@=&qq§

Sk(n) = Si1 ([

Sr(1)=0, k=0.
'f=Q(g) 1ff g = O(f).

)+n—l, neven and n=2, k=1

])+n—2, nodd and n=3, k=1,

Parallel Prefix Computation 833

FiG 3. The construction of ZA(n).

n inputs

A

N

X %J‘
\\\\ . K/’/ n

,—-J/ SS

Fic 4 The construction of #.(n), k = |

When n is a power of 2, we get exact solutions

So(n) = 4n — F(5 + logzn) + 1,
Si(n) = 3n — F(4 + logzn),

and more generally, when 0 =< k < logan,

n 1
Sk(n)=So(E,;)+n-(2—--2—k:1-)—k

=2(l+%)n—F(5+logzn-k)+l—k.

Here F(m) denotes the mth Fibonacci number, and F(m) = (¢™ — ¢™)/V/5, where ¢ =
a+ V5)/2and ¢ =(1 - V5)/2 (cf. [3]). Thus for large n and fixed k, Sx(n) is bounded by
2(1 + 1/2%)n — a;, - n®®*** , where a; > 0 is a constant depending only on k. Some values
of Si(n) are shown in Figure 6.

834 R. E. LADNER AND M. J. FISCHER

P (1) M
k R (2) M ‘\H:i
R (3)

R (4)

M

A P (5}, k21

Fic. 5 The Z(myarcutsforl <n <S5

k
Q | 2 3 4 S e 7 P| (8)

| 0

2 [!

4 4 4 4

n 8 2 i I

6] 31 27 26 26 26

321 74 62 58 57 57 57

641 168 137 125 121 120 120 120 o
128 | 369 295 264 252 248 247 247 247]

Fic 6 Sk(n) for n a small power of 2 Fic. 7. A solution to the 9-input

! prefix problem

When n is not a power of 2, we do not have an exact solution, but it is easily verified by
induction that Sx(n) < 2(1 + 1/2¥)n — 2, n = 1. In fact, we know that Z,(n) is not optimal
for n not a power of 2. For example, C(Z(9)) = 13, but the circuit of Figure 7 has size
only 12 since Sy(8) = 11, and it also has minimal depth 4. It is an open problem to
determine just how to split the circuit to optimize the construction using the methods of
Figures 3 and 4.

There is an analogy between product circuits and addition chains [4, 9]). Let D be the
natural numbers, o be ordinary addition, and fix each input to 1. Then the minimum size
circuit for computing a number 7 is exactly the length of the shortest addition chain for m.
A prefix circuit on n inputs under this interpretation constructs each of the integers from
I to n. Unlike most of the work on addition chains, we are interested in the depth as well
as in the size. As with addition chains, analysis becomes much more difficult for » not a
power of 2.

ANALYSIS OF FaNouT. The fanout of an input or product node in a circuit is its
outdegree, and the fanout of a circuit is the maximum fanout of any node. In some
applications, fanout is an important consideration along with size and depth.

For the circuits %.(n), we happen to be able to give an exact characterization of the
fanout. To begin, define the ith output node to be the one which computes the ith output
value of the network. A node which is neither an input nor an output node is said to be
internal. (In Figures 3-5 and 7 the output nodes are identified by vertical lines leading up
from the bottom, but these lines are not counted in the fanout calculations.)

Parallel Prefix Computation 835

In Z.(n) the first output node is the first input node, and the other outputs are product
nodes. Every input node has fanout <2, and for every internal node there is an output
node of fanout at least as great. These facts are easily verified by induction on n, where the
induction hypothesis is strengthened to show that the first input has fanout <1 and no
output node has fanout exceeding n — 1. We conclude that the fanout of Z(n) equals the
maximum fanout of an output node unless that quantity is 1. That happens, as we shall
see, only for n < 3, in which case the fanout is easily determined from Figure 5.

Let fo(k, n, i) be the fanout of the ith output node of Z(n). An easy induction establishes
that fo(k, n, 1) = 1 for all n # 1 and fo(k, n, n) = 0 for all n. Also, fo(k, 3, 2) = 1. For
n=4and |1 <i<n, folk, n, i) satisfies the following recurrences:

-

fo(l, [;]1) if i< ; ;

. n if .__nj_
If k=0, fo(k, n, i) = 3 if i= 3
a—

0 if i> 5 .

0 if iisodd and i#|;

fo(k—l,[q,i)+l if iiseven and“i<n-l;
Ifk>0, fo(k,n,i)= 212

fo(k—l,[%],%) if iiseven and i=n~— I

Let Bk, n) = [(n + 2* — 1)/2*"'| + k. It can be shown that for all n > 2*,
fo(k, n, i) = B(k, n). Moreover, this bound is best possible; that is, there is an i(k, n) such
that fo(k, n, i(k, n)) = B(k, n). i(k, n) 1s given by the formula

n

2+t [F] it 2" <n=2"+ 2

ik, n) =

2%. [%1 if 0> 284 2k
Putting these results together with the fact that when n =< 2**' and k = 1, then %(n) =
P-1(n), we have a complete characterization of the fanout of Z(n) for all k and n.

3. Application to Finite-State Machines

A classic example of a sequential process is a finite-state transducer (cf. [1]). Given an
input of length n and an initial state, we show below how to compute in parallel the output
and final state. This method leads to the construction of fast Boolean circuits that simulate
finite-state transducers.

We use the Mealy model of a finite-state transducer which 1s a five-tuple M = (Q, Z, A,
8, v), where Q is a finite set of states, Z is the input alphabet, A is the output alphabet,
§:Q X Z — Q is the transition function, and y: Q X X — A is the output function.

For each input symbol a we define a function M,:Q — @ by gM, = 8(q, a). (The
argument to M, is on the left.) Given an input word aia; - - - ax, the state gM,, o M,, °

-+ oM,, is the state of M after reading a; --- a starting in state ¢, where o denotes
functional composition.

A parallel algorithm for computing the output and final state given the input a1a; -+
ar and the initial state go is

1 Compute Mo, M., , M., 1 parallel.
2 Compute N1 = M., N:= Mo oM, ..., Np = Moo Mg,° -+ o M, by a parallel prefix algorithm

836 R. E. LADNER AND M. J. FISCHER

function
9P,
00 o]} 10
input function 00 00 00 10
function
*y g9r 9,p, or | 00 o1 10
00 00 g=xny o | o0 10 10
10 ol pex@y
o} ol g9=9,v (g, ~p,)
H IO p = pl A pz
Fic. 8 Computation of the function Fi. 9 Composition table

from the mputs.

3. Compute g1 = qoN1, g2 = qoN3, ..., gn = goN, 10 parallel
4. Compute by = y(qo, a1), b2 = y(qu, az), ..., bx = y(¢n-1, an) 1n parallel

The output is b1b; - - - b, and the final state is ..

Let ¢, (di) be the size (depth) of computing M., c: (d>) be the size (depth) of computing
functional composition, cs (ds) be the size (depth) of computing functional evaluation, and
¢4 (dy) be the size (depth) of computing y(g, a). Given an input of length n and an initial
state, the size and depth for computing the output and final state is

SIZE < cae(n) + (¢1 + ¢3 + ¢con,
DEPTH < dxd(n) + dh + ds + d,,

where c(n) (d(n)) is the size (depth) of a product circuit for solving the prefix problem.
(Note: we assume that the state ¢go can be coded or decoded at no cost.)

There are several ways of obtaining Boolean circuits from this method. One simple way
is to represent the M.’s as s X s Boolean matrices, where s is the number of states.
Functional composition 1s Boolean matrix multiplication, and functional evaluation is the
Boolean product of a matrix and a vector. For this representation, using the stan-
dard matrix multiplication algorithm and the prefix circuit % (or %, for fixed k),
we can construct a Boolean circuit for mnputs of length n with linear size and depth
(1 + logzs)logzn + d, where d is a constant depending only on M.

For a fixed finite-state machine there may be a particularly good representation for the
functions which would lead to a smaller or faster circuit. In the next section we find such
a representation for the addition finite-state machine of Figure 2.

4. Application to Binary Addition

Consider the finite-state transducer 4 of Figure 2. There are three functions Ao, Aoy = Ao,
An on states which are closed under composition. We repesent them by a pair of bits
g, p (for generate and propagate, respectively) as shown in Figure 8. The composition table
is shown in Figure 9, and the evaluation table in Figure 10.
From Figure 8 the inputs can be represented by the initial g, p pair, so we get the
output table shown in Figure 11.
By observation we can calculate the constants

C|=2, d1=l,
6‘2=3, dz=2,
C3=2, d3=2,
a=1, dy= 1.

The basic costs for addition are SIZE < 3¢(n) + 57 and DEPTH < 2d(n) + 4. There are
certain refinements that can be made.

Parallel Prefix Computation 837

function inout
ap npu
ap
00 o]} 10
00 0l 10
0 0 o] [
state 0 o I (o]
s | o] ! 1 state
t 1 I 0 1
t=gv (s Ap) z=tep
FiG. 10 Evaluation table Fic 11. Output table.

0 L 2 3
DEPTH SIZE DEPTH SIZE DEPTH SIZE _ DEPTH SIZE

4 6 20 8 20 10 20
8 8 52 10 49 12 49 14 49
number 16 i0 125 12 13 14 110 16 110

ofbls 35 | 12 286 | 4 250 | 16 238 | 18 235

64 14 632 16 539 18 503 20 491
128 16 1363 18 1141 20 1048 22 1012

Fic 12 DEPTH and SIZE of small adders

(1) Let the input state be the constant 0. The evaluation table reduces to ¢ = g. There
is no “evaluation,” so there is no need to compute p at the last level before step 3.
This results in a total savings of 3n in size and 2 in depth, so SIZE =< 3c¢(n) + 2n and
DEPTH =< 2d(n) + 2.

(2) We may obtain an n-bit adder with the state as an additional “carry-in” input by
forming an (n + 1)-bit adder which starts in state 0 and uses the lowest order bits to
simulate the incoming state. This observation leads to an adder of SIZE < 3¢(n + 1) + 2n
and DEPTH =2d(n + 1) + 2.

(3) These techniques can also be used to construct ones-complement adders. Because of
the “end-around” carry the input state is a function of the mnput numbers. The input state
is computed in step 2, which makes it available for step 3 where it is used. In this case the
adder has SIZE < 3¢(n) + 5n and DEPTH =< 2d(n) + 4.

Using the results of Section 2 and observation (1) above, it is seen that there exist
Boolean circuits to compute n-bit sums (with no carry in) of

6
SIZE = (8 + F)n and DEPTH =< 2 logan + 2k + 2

for 0 = k < logsn.

Notice that if we set k = logzn, then we obtain a circuit of SIZE = 8n + 6 and
DEPTH =< 4 logen + 2. These bounds are similar to those obtained for the “carry-
lookahead” adder [10]. We believe that our circuit 2 (n) for k = logen is essentially the
same as the “carry-lookahead” adder.

The table of Figure 12 illustrates the trade-offs that can be made between size and depth
in small adders. The numbers of Figure 12 are based on those of Figure 6 together with
observation (1).

ACKNOWLEDGMENTS. We wish to thank Glenn Goodrich and Garret Swart for several
helpful discussions.

838 R. E. LADNER AND M. J. FISCHER

REFERENCES

. BootH, TL. Sequential Machines and Automata Theory. Wiley, New York, 1967.
. BRENT, R. On the addition of binary numbers. JEEE Trans. Comput. C-19, 8 (1970), 758-759
. Knuth, D.E. The Art of Computer Programming, Vol. 1. Addison-Wesley, Reading, Mass., 1968
. KNUTH, D.E. The Art of Computer Programming, Vol. 2. Addison-Wesley, Reading, Mass , 1969.
KRAPCHENKO, V.M. Asymptotic estimation of addition time of a parallel adder Syst. Theory Res. 19 (1970),
105-122 {Probl Kibern. 19, 107-122 (Russ.)).
OFMAN, YU. On the algorithmic complexity of discrete functions. Sov Phys Dokl 7 (1963), 589-591
7. PATERSON, M'S An introduction to Boolean function complexity. Société Math de France Astérisque 38-39
1976, 183-201 Also Tech. Rep STAN-CS-76-557, Computer Science Department, Stanford Univ , Stanford,
Calif, August 1976
8. SAVAGE, J E. The Complexity of Computing. Wiley, New York, 1976
9 SCHONHAGE, A A lower bound for the length of addition chains. Theor Comput. Sct 1 (1975), 1-12
10 TunGg, C Anthmetic In Computer Science, AF Cardenas, L. Presser, and M A Marin, Eds, Wiley-

Interscience, New York, 1972

bW -

-

RECEIVED JULY 1978, REVISED NOVEMBER 1979; ACCEPTED DECEMBER 1979

Journal of the A for Computing Machinery, Vol 27, No 4, October 1980

