
eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

Previously Published Works
UC Berkeley

A University of California author or department has made this article openly available. Thanks to
the Academic Senate’s Open Access Policy, a great many UC-authored scholarly publications
will now be freely available on this site.
Let us know how this access is important for you. We want to hear your story!
http://escholarship.org/reader_feedback.html

Peer Reviewed

Title:
The problem with threads

Journal Issue:
Computer, 39(5)

Author:
Lee, E A

Publication Date:
05-01-2006

Series:
UC Berkeley Previously Published Works

Permalink:
http://escholarship.org/uc/item/63b2c5cz

Additional Info:
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE.

Abstract:
For concurrent programming to become mainstream, we must discard threads as a programming
model. Nondeterminism should be judiciously and carefully introduced where needed, and it
should be explicit in programs.

Copyright Information:
All rights reserved unless otherwise indicated. Contact the author or original publisher for any
necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more
at http://www.escholarship.org/help_copyright.html#reuse

http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org
http://escholarship.org/uc/ucb_postprints
http://escholarship.org/uc/ucb
http://escholarship.org/reader_feedback.html
http://escholarship.org/uc/search?creator=Lee%2C%20E%20A
http://escholarship.org/uc/ucb_postprints
http://escholarship.org/uc/item/63b2c5cz
http://www.escholarship.org/help_copyright.html#reuse

0018-9162/06/$20.00 © 2006 IEEE May 2006 33P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

C O V E R F E A T U R E

programming dominates all others—namely, threads,
sequential processes that share memory. They represent
a key concurrency model supported by modern com-
puters, programming languages, and operating systems.
Many general-purpose parallel architectures in use
today—such as symmetric multiprocessors—are direct
hardware realizations of the thread abstraction.

Some applications can use threads very effectively—
for example, so-called embarrassingly parallel applica-
tions that essentially spawn multiple independent
processes such as build tools (PVM gmake) or Web
servers. Given these applications’ independence, pro-
gramming is relatively easy and the abstraction being
used is more like processes than threads. Where such
applications do share data, they do so through database
abstractions, which manage concurrency through such
mechanisms as transactions. However, client-side appli-
cations are not so simple.

Threads are not the only possibility for concurrent
programming. In scientific computing, where perfor-
mance requirements have long demanded concurrent
programming, data-parallel language extensions and
message-passing libraries—such as PVM, MPI, and
OpenMP—dominate over threads for concurrent pro-
gramming. Computer architectures intended for scien-
tific computing often differ significantly from so-called
general-purpose architectures. They commonly support
vectors and streams in hardware, for example. However,
even in this domain, concurrent programs remain
tedious to write. C and Fortran dominate, despite a long
history of much better data-parallel languages.

For concurrent programming to become mainstream, we must discard threads as a

programming model. Nondeterminism should be judiciously and carefully introduced

where needed, and it should be explicit in programs.

Edward A. Lee
University of California, Berkeley

C oncurrent programming is difficult,1 yet many
technologists predict the end of Moore’s law
will be answered with increasingly parallel
computer architectures—multicore or chip
multiprocessors (CMPs).2 If we hope to achieve

continued performance gains, programs must be able to
exploit this parallelism.

Automatic exploitation of parallelism in sequential
programs, through either computer architecture tech-
niques such as dynamic dispatch or automatic paral-
lelization of sequential programs,3 offers one possible
technical solution. However, many researchers agree that
these automatic techniques have been pushed to their
limits and can exploit only modest parallelism. Thus,
programs themselves must become more concurrent.

Understanding why concurrent programming is so dif-
ficult can help us solve the problem. The physical world
is highly concurrent, and our very survival depends on
our ability to reason about concurrent physical dynam-
ics. This reasoning doesn’t extend to concurrent pro-
grams because we have chosen abstractions that do not
even vaguely resemble the physical world’s concurrency.
We have become so used to these computational abstrac-
tions that we have forgotten they are not immutable.
The difficulty of concurrent programming is a conse-
quence of these abstractions, and if we can let go of
them, the problem will be fixable.

THREADS
In general-purpose software engineering practice, we

have reached a point where one approach to concurrent

The Problem
with Threads

34 Computer

In distributed computing, threads are often not a prac-
tical abstraction because creating the illusion of shared
memory often costs too much. Even so, we have gone to
considerable lengths to create distributed computing
mechanisms that emulate multithreaded programming.

CORBA and .NET, for example, are rooted in distrib-
uted object-oriented techniques, where software com-
ponents interact with proxies that behave as if they were
local objects with shared memory. Object orientation’s
data abstraction limits the extent to which the illusion

Nondeterminism and Threads

From a fundamental perspective, threads are seriously
flawed as a computation model.To wit,

Let N = {0, 1, 2, …} represent the natural numbers and
B = {0, 1} be the set of binary digits. Let B* be the set of all
finite sequences of bits, and Bω = (N → B) be the set of all
infinite sequences of bits, each of which is a function that
maps N into B. Further, let B** = B* ∪ Bω, which we will use
to represent the state of a computing machine, its poten-
tially infinite inputs, and its potentially infinite outputs. Finally,
let Q denote the set of all partial functions with domain and
codomain B**. Partial functions are functions that may or
may not be defined on each element of their domain.

An imperative machine (A, c) is a finite set A ⊂ Q of atomic
actions and a control function c : B** → N.The set A represents
the atomic actions, typically instructions, of the machine; the
function c represents how instructions are sequenced.We
assume that A contains one halt instruction h ∈ A with the
property that

∀ b ∈ B**, h(b) = b

That is, the halt instruction leaves the state unchanged.
A sequential program of length m ∈ N is a function

p: N → A, where

∀ n ≥ m, p(n) = h

That is, a sequential program is a finite sequence of instruc-
tions tailed by an infinite sequence of halt instructions.The
set of all sequential programs, which we denote P, is a count-
ably infinite set.

An execution of this program is a thread. It begins with an
initial b0 ∈ B**, which represents the initial state of the
machine and the potentially infinite input, and for all n ∈ N,

bn+1 = p(c(bn))(bn) (1)

Here,c(bn) provides the index into the program p for the
next instruction p(c(bn)).That instruction is applied to the state
bn to get the next state bn+1. If for any n ∈ N, c(bn) ≥ m, then
p(c(bn)) = h and the program halts in state bn and the state
henceforth never changes. If for all initial states b0 ∈ B a pro-
gram p halts, then p defines a total function in Q. If a program p
halts for some b0 ∈ B, then it defines a partial function in Q.

We now get to the core appeal that sequential programs

have. Given a program and an initial state, the sequence given
by Equation 1 is defined. If the sequence halts, then the
function computed by the program is defined.Any two
programs p and p′ can be compared and be found equivalent
if they compute the same partial function.That is, they are
equivalent if they halt for the same initial states, and for such
initial states their final state is the same. Such a theory of
equivalence is essential for any useful formalism. In this
classical theory, programs that do not halt are all equivalent;
this creates serious problems when applying the theory of
computation to embedded software, where useful programs
do not halt.

We lose these essential and appealing properties of pro-
grams when multiple threads are composed. Consider two
multithreaded programs, p1 and p2, that execute concur-
rently. In this case, we replace Equation 1 with the following

bn+1 = pi(c(bn))(bn), where i ∈ {1, 2} (2)

At each step n, either program can provide the next
atomic action. Consider now whether we have a useful
theory of equivalence.That is, given a pair of multithreaded
programs (p1, p2) and another pair (p′1, p′2), when are these
two pairs equivalent? A reasonable extension of the basic
theory defines them to be equivalent if all interleavings halt
for the same initial state and yield the same final state.The
enormous number of possible interleavings makes it
extremely difficult to reason about such equivalence except
in trivial cases where, for example, the state B** is parti-
tioned so that the two programs are unaffected by each
other’s partition.

Even worse, given two programs p and p′ that are equiva-
lent when executed according to Equation 1, if they execute
in a multithreaded environment we can no longer conclude
they are equivalent.We must know about all other threads
that might execute—something that may not itself be well-
defined—and we would have to analyze all possible inter-
leavings.We conclude that no useful theory of equivalence
can be applied to threads.

The core abstraction of computation given by Equation 1,
on which all widely used programming languages are built,
emphasizes deterministic composition of deterministic
components. Both the actions and their sequential composi-
tion are deterministic. Sequential execution is, semantically,
function composition—a neat, simple model where deter-
ministic components compose into deterministic results.

May 2006 35

of shared memory must be pre-
served, so such techniques prove rea-
sonably cost effective. They make
distributed programming look much
like multithreaded programming.

Yet this argument is not a resur-
rection of the old shared-memory
versus message-passing debate.
Message passing can be made as
nondeterministic and difficult to
understand as threads. Conversely,
shared memory can be used in
deterministic and understandable
ways—using data-parallel lan-
guages, for example. The argument
here is against the use of nondeter-
ministic mechanisms to achieve
deterministic aims.

Embedded computing also exploits concurrency mod-
els other than threads. Programmable DSP architectures
are often VLIW machines. Video signal processors often
combine SIMD with VLIW and stream processing.
Network processors provide explicit hardware support
for streaming data. However, despite considerable inno-
vative research, in practice, programming models for
these domains remain primitive. Designers write low-
level assembly code that exploits specific hardware fea-
tures, combining this code with C code only where
performance is noncritical.

For many embedded applications, reliability and pre-
dictability are far more important than expressiveness
or performance. We can argue that this should be true
in general-purpose computing, but that’s a side argu-
ment. I contend that achieving reliability and pre-
dictability using threads is essentially impossible for
many applications.

THREADS AS COMPUTATION
From a fundamental perspective, threads are seriously

flawed as a computation model because they are wildly
nondeterministic, as the “Nondeterminism and
Threads” sidebar describes. The programmer’s job is to
prune away that nondeterminism. We have developed
tools to assist in the pruning: Semaphores, monitors,
and more modern overlays on threads offer the pro-
grammer ever more effective pruning. But pruning a wild
mass of brambles rarely yields a satisfactory hedge.

To offer another analogy, a folk definition of insan-
ity is to do the same thing over and over again and
expect the results to be different. By this definition, we
in fact require that programmers of multithreaded sys-
tems be insane. Were they sane, they could not under-
stand their programs.

Moreover, implementing a multithreaded computa-
tion model is difficult. Witness, for example, the sub-
tleties with the Java memory model, where even

astonishingly trivial programs produce considerable
debate about their possible behaviors.4

We must and can build concurrent computation mod-
els that are far more deterministic, and we must judi-
ciously and carefully introduce nondeterminism where
needed. Nondeterminism should be explicitly added to
programs, and only where needed, as it is in sequential
programming. Threads take the opposite approach.
They make programs absurdly nondeterministic and rely
on programming style to constrain that nondetermin-
ism to achieve deterministic aims.

HOW BAD IS IT IN PRACTICE?
In practice, many programmers today write multi-

threaded programs that work. This appears to be a con-
tradiction, but programmers can employ tools that
prune away much of the nondeterminism.

Object-oriented programming, for example, limits the
visibility that certain portions of a program have into
portions of the state. This effectively partitions the state
space into disjoint sections. Where programs do operate
on shared portions of this state space, semaphores,
mutual-exclusion locks, and monitors (objects with
mutually exclusive methods) provide mechanisms that
programs can use to prune away more of the nondeter-
minism. But in practice, these techniques yield under-
standable programs only for very simple interactions.

Consider the observer pattern,5 a very simple and
widely used design pattern. Figure 1 shows a Java imple-
mentation valid for a single thread. This shows two
methods from a class where an invocation of the
setValue() method triggers notification of the new value
by calling the valueChanged() method of any objects
that have been registered by a call to addListener().

The code in Figure 1 is not thread safe, however. That
is, if multiple threads can call setValue() or
addListener(), the listeners list could be modified while
the iterator is iterating through the list, triggering an
exception that will likely terminate the program.

public class ValueHolder {
private List listeners = new LinkedList();
private int value;
public interface Listener {

public void valueChanged(int newValue);
}
public void addListener(Listener listener) {

listeners.add(listener);
}
public void setValue(int newValue) {

value = newValue;
Iterator i = listeners.iterator();
while(i.hasNext()) {

((Listener)i.next()).valueChanged(newValue);
}

}
}

Figure 1. A Java implementation of the observer pattern, valid for one thread.

36 Computer

The simplest solution adds the Java keyword syn-
chronized to each of the setValue() and addListener()
method definitions. The synchronized keyword in Java
implements mutual exclusion, turning instances of this
ValueHolder class into monitors and preventing any two
threads from being in these methods simultaneously.
When the program calls a synchronized method, the call-
ing thread attempts to acquire an exclusive lock on the
object. If any other thread holds that lock, the calling
thread stalls until the lock releases.

However, this solution is unwise because it can lead to
deadlock. In particular, suppose we have an instance a
of ValueHolder and an instance b of another class that
implements the Listener interface. That other class can
do anything in its valueChanged() method, including
acquiring a lock on another monitor. If it stalls in acquir-
ing that lock, it will continue to hold the lock on this
ValueHolder object while stalled. Meanwhile, whatever
thread holds the lock it is trying to acquire might call
addListener() on a. Both threads are now blocked with
no hope of becoming unblocked. This sort of potential
deadlock lurks in many programs that use monitors.

Already, this rather simple design pattern is proving
difficult to implement correctly. Consider the improved
implementation shown in Figure 2. While holding a lock,
the setValue() method copies the listeners list. Since the
addListeners() method is synchronized, this avoids the
concurrent modification exception that might occur with
the code in Figure 1. Further, it calls valueChanged() out-

side of the synchronized
block to avoid deadlock.

This code is still not cor-
rect, however. Suppose two
threads call setValue(). One
will set the value last, leaving
that value in the object. But
listeners might be notified of
value changes in the opposite
order and will conclude that
the final value of the
ValueHolder object is the
wrong one.

This pattern can be made
to work robustly in Java. Yet
even this very simple and
commonly used design pat-
tern has required some rather
intricate thinking about pos-
sible interleavings.

I speculate that most mul-
tithreaded programs have
such bugs. I speculate further
that the bugs have not
proved to be major handi-
caps only because today’s
architectures and operating

systems deliver modest parallelism.
The cost of context switching is high, so only a tiny

percentage of the possible interleavings of thread instruc-
tions ever occur in practice. I conjecture that most mul-
tithreaded general-purpose applications are so full of
concurrency bugs that—as multicore architectures
become commonplace—these bugs will begin to show
up as system failures.

This paints a bleak scenario for computer vendors:
Their next-generation machines will become widely
known as the ones on which many programs crash.

These same computer vendors advocate more multi-
threaded programming to provide the concurrency that
can exploit the parallelism they would like to sell us.
Intel, for example, has embarked on an active campaign
to get leading computer science academic programs to
put more emphasis on multithreaded programming. If
they succeed, and programmers make more intensive
use of multithreading, the next generation of comput-
ers will become nearly unusable.

FIXING THREADS BY MORE
AGGRESSIVE PRUNING

Several approaches to solving this concurrency prob-
lem share a common feature. Specifically, they preserve
the essential thread model of computation for pro-
grammers, but provide them with more aggressive mech-
anisms for pruning its enormously nondeterministic
behavior.

public class ValueHolder {
private List listeners = new LinkedList();
private int value;
public interface Listener {

public void valueChanged(int newValue);
}
public synchronized void addListener(Listener listener) {

listeners.add(listener);
}
public void setValue(int newValue) {

List copyOfListeners;
synchronized(this) {

value = newValue;
copyOfListeners = new LinkedList(listeners);

}
Iterator i = copyOfListeners.iterator();
while(i.hasNext()) {

((Listener)i.next()).valueChanged(newValue);
}

}
}

Figure 2. A Java implementation of the observer pattern that attempts to be thread safe.

Software engineering processes
Better software engineering processes provide the first

technique. While essential for reliable multithreaded
programs, these processes are not sufficient.

An anecdote from the Ptolemy Project is telling. In
early 2000, my group began developing the Ptolemy II
kernel,6 a modeling environment supporting concurrent
computation models. An early objective was to permit
modification of concurrent programs via a graphical
user interface while those programs
executed. The challenge involved
ensuring that no thread could ever
see an inconsistent view of the pro-
gram structure. The strategy used
Java threads with monitors (http://
ptolemy.eecs.berkeley.edu).

Part of the Ptolemy Project exper-
iment sought to determine whether
we could develop effective software
engineering practices for an academic
research setting. We developed a process that included a
four-level code maturity rating system (red, yellow, green,
and blue), design reviews, code reviews, nightly builds,
regression tests, and automated code coverage metrics.7

We wrote the kernel portion that ensured a consistent
view of the program structure in early 2000, design
reviewed to yellow, and code reviewed to green. The
reviewers included concurrency experts, not just inex-
perienced graduate students.

We wrote regression tests that achieved 100 percent
code coverage. The nightly build and regression tests
ran on a two-processor SMP machine, which exhibited
different thread behavior than the development
machines, which all had a single processor.

The Ptolemy II system itself became widely used, and
every use of the system exercised this code. No prob-
lems were observed until the code deadlocked in April
2004, four years later.

Our relatively rigorous software engineering practice
had identified and fixed many concurrency bugs. But that
a problem as serious as a deadlock could go undetected
for four years despite this practice is alarming. How many
more such problems remain? How long must we test
before we can be sure to have discovered all such prob-
lems? Regrettably, I must conclude that testing might never
reveal all the problems in nontrivial multithreaded code.

There are tantalizingly simple rules for avoiding dead-
lock, however. For example, always acquire locks in the
same order.8 However, this rule is difficult to apply
because no method signature in any widely used pro-
gramming language indicates what locks the method
acquires. We must examine the source code of all meth-
ods called—and all methods that those methods call—
to confidently invoke a method.

Even if we fix this language problem by making locks
part of the method signature, this rule makes it extremely

difficult to implement symmetric accesses, where inter-
actions can originate from either end. And no such fix
gets around the extreme difficulty of reasoning about
mutual exclusion locks. If programmers cannot under-
stand their code, the code will not be reliable.

We might conclude that the problem lies in how Java
realizes threads. Perhaps the synchronized keyword is
not the best pruning tool. Indeed, version 5.0 of Java,
introduced in 2005, added several other mechanisms for

synchronizing threads. These mech-
anisms do enrich the programmer’s
toolkit for pruning nondeterminacy.
But using mechanisms such as sem-
aphores still requires considerable
sophistication, and the result likely
will still be incomprehensible pro-
grams with subtle lurking bugs.

Design patterns
Software engineering process

improvements alone will not do the job. Another help-
ful approach uses vetted design patterns for concurrent
computation.8,9 Indeed, these are an enormous help
when the problem being solved matches one of
the patterns.

However, this approach presents two difficulties. First,
implementation of the patterns, even with careful
instructions, is still subtle and tricky. Programmers will
make errors, and there are no scalable techniques for
automatically checking compliance of implementations
to patterns. Second, combining the patterns can be dif-
ficult. Because their properties are not typically com-
posable, nontrivial programs that require using more
than one pattern are unlikely to be understandable.

Databases are an example of a common use of pat-
terns in concurrent computation, particularly with the
notion of transactions. Transactions support specula-
tive unsynchronized computation on a copy of the data
followed by a commit or abort. A commit occurs when
it can be shown that no conflicts have occurred.

Transactions can be supported on distributed hard-
ware, as is common for databases; in software on
shared-memory machines; or, most interestingly, in hard-
ware on shared-memory machines. In the latter case, the
technique meshes well with the cache consistency pro-
tocols required anyway on these machines.

Although transactions eliminate unintended deadlocks,
despite recent extensions for composability,10 they remain
a highly nondeterministic interaction mechanism. They
are well-suited to intrinsically nondeterminate situations,
where for example multiple actors compete nondeter-
ministically for resources. But they are poorly suited for
building determinate concurrent interactions.

MapReduce11 is a particularly interesting use of patterns
inspired by the higher-order functions found in Lisp and
other functional languages. Google has used this pattern

May 2006 37

Relatively rigorous software

engineering identified and

fixed many concurrency bugs,

but a problem as serious as

a deadlock went undetected.

38 Computer

for large-scale distributed processing of huge data sets.
Whereas most patterns provide fine-grained shared-data
structures with synchronization, MapReduce provides a
framework for the construction of large distributed pro-
grams. The pattern’s parameters are pieces of functional-
ity represented as code rather than as pieces of data.

Experts can encapsulate patterns into libraries as with
the concurrent data structures in Java 5.0 and STAPL in
C++. Although this greatly improves the reliability of
implementations, constraining all concurrent interac-
tions to occur via these libraries
requires some programmer disci-
pline. Folding the capabilities of
these libraries into languages in
which syntax and semantics enforce
these constraints could eventually
lead to more easily constructed con-
current programs.

Higher-order patterns such as
MapReduce offer some particularly
interesting challenges and opportu-
nities for language designers. These
patterns function at the level of
coordination languages rather than more traditional
programming languages. New coordination languages
compatible with established programming languages,
such as Java and C++, are more likely to gain acceptance
than new programming languages that replace estab-
lished ones.

A common compromise extends established pro-
gramming languages with annotations or a few selected
keywords to support concurrent computation. This
compromise admits the reuse of significant portions of
legacy code when concurrency is not an issue, but
requires rewriting to expose concurrency. For example,
Split-C12 and Cilk13—both C-like languages supporting
multithreading—follow this strategy.

A related approach combines language extensions
with constraints that limit the expressiveness of estab-
lished languages to get more consistent and predictable
behavior. For example, Guava14 constrains Java so that
it cannot access unsynchronized objects from multiple
threads. It further makes explicit the distinction between
locks that ensure the integrity of read data and locks
that enable safe modification of the data.

These language changes prune away considerable non-
determinacy without sacrificing much performance, but
they still have deadlock risk.

Other techniques
Promises, also called futures, provide another approach

that puts more emphasis on the avoidance of deadlock, as
seen in the E programming language (www.erights.org/).
Here, instead of blocking access to shared data, programs
proceed with a proxy of the data they expect to get even-
tually, using the proxy as if it were the data itself.

Yet another approach leaves the programming lan-
guages and mechanisms for expressing concurrency
unchanged, instead introducing formal program analy-
sis to identify potential concurrency bugs in multi-
threaded programs. This is done, for example, in the
Intel thread checker and can help considerably by reveal-
ing program behaviors difficult for a human to spot.
Similarly, less formal techniques, such as performance
debuggers, can also help, making it easier for program-
mers to sort through the vast nondeterminacy of pro-

gram behaviors.
Although promising, applying both

the formal and informal techniques
still requires considerable expertise,
and the techniques also suffer from
scalability limitations.

All these techniques prune away
some of the threads’ nondeterminacy.
However, they all still result in non-
deterministic programs. For applica-
tions with intrinsic nondeterminacy,
such as servers, concurrent database
accesses, or competition for resources,

this is appropriate. But achieving deterministic aims
through nondeterministic means remains difficult.

Achieving deterministic concurrent computation
requires approaching the problem differently. Instead
of starting with a highly nondeterministic mechanism
like threads and relying on the programmer to prune
that nondeterminacy, we should start with determinis-
tic, composable mechanisms and introduce nondeter-
minism only where needed.

ALTERNATIVES TO THREADS
Consider again the simple observer pattern shown in

Figures 1 and 2, which is not so easy to implement using
threads.

Rendezvous director
Now, consider Figure 3, which shows the observer pat-

tern implemented in Ptolemy II’s Rendezvous domain.6

The box at the upper left, labeled Rendezvous director,
provides an annotation specifying that this diagram rep-
resents a CSP-like concurrent program, in which each
component, represented by an icon, is a process, and
communication is by rendezvous. The system specifies
the processes themselves using ordinary Java code, so
this framework is properly viewed as a coordination lan-
guage, which happens to have a visual syntax.

Reo15 inspired the Ptolemy II implementation of this
rendezvous domain, which includes a Merge block that
specifies a conditional rendezvous. In the diagram, the
block specifies that either of the two Value Producers can
rendezvous with both the Value Consumer and Observer.
That is, two possible three-way rendezvous interactions
can occur, repeatedly and in nondeterministic order.

Promises, also called futures,

provide another approach

that puts more emphasis on

the avoidance of deadlock,

as seen in the

E programming language.

Once the icons’ meanings become clear, the diagram
expresses the observer pattern. Everything about the pro-
gram is deterministic except the explicitly nondetermin-
istic interaction specified by the Merge block. Were that
block absent, the program would specify deterministic
interactions between deterministic processes. Deadlock
is provably absent—in this case, the lack of cycles in the
diagram ensures no deadlock. The multiway rendezvous
ensures that the Value consumer and Observer see new
values in the same order. The observer pattern becomes
trivial, as it should be.

PN director
Now that the trivial programming problem is truly

trivial, we can start to consider interesting elaborations.
We can replace the Rendezvous director in Figure 3 with
a “PN director” that realizes the Kahn process networks
(PN) model of concurrency.16 In this model, each icon
again represents a process, but instead of rendezvous-
based interactions, the processes communicate via mes-
sage passing with conceptually unbounded FIFO queues
and blocking reads.

In the original PN model, the blocking reads ensure
that every network defines a deterministic computation.
In this case, the Merge block explicitly merges streams
nondeterministically. Augmenting the PN model with
such explicit nondeterminism is common for embedded
software applications.17

The PN implementation has all the cited advantages
of the implementation in Figure 3, with the added prop-
erty that the Observer need not keep up with the Value
consumer. Notifications can be queued for later pro-
cessing. In a thread-based implementation, we will
unlikely ever get to the point of asking such questions
because the programmer effort to get any form of the
observer pattern correct is so excessive.

SR director
A third implementation would elaborate on the nature

of the nondeterminism that the nondeterministic merge
represents. The implementation could use the principles
of synchronous languages18 to ensure fairness. In
Ptolemy II, the same model can be implemented with an
SR (synchronous/ reactive) director, which implements
a synchronous model related to Esterel, SIGNAL, and
Lustre. The last of these has been used successfully to
design highly concurrent, safety-critical software for air-
craft-control applications. Using threads for such appli-
cations would not be wise.

DE director
A fourth implementation would focus on the timing of

nondeterministic events. In Ptolemy II, a similar model
using the DE (discrete events) director would provide a
timed specification with rigorous semantics related to
that of hardware description languages such as VHDL

and Verilog and to network modeling frameworks such
as Opnet Modeler.

Judicious nondeterminism
In all four cases—rendezvous, PN, SR, and DE—we

started with an interaction mechanism that was deter-
ministic in how it performed the computation, although
in the first three cases it was not deterministic in the
sense of timing. These designs judiciously introduce non-
determinism exactly where needed. This style of design
differs from the threads style, which starts with a wildly
nondeterministic interaction mechanism and attempts
to prune away undesired nondeterminism.

The implementation shown in Figure 3 and the PN
version both use Java threads. However, the program-
mer’s model does not use threads. Compared to all the
techniques described in the previous sections, this is
closest to MapReduce, which has a similar flavor of
streaming data through computations. But unlike
MapReduce, it receives support from a rigorous coor-
dination language sufficiently expressive to describe a
wide range of interactions. Four distinct coordination
languages are mentioned here, with rendezvous, PN,
SR, and DE semantics.

This established style of concurrency, in which data
flows through components, has been called “actor-ori-
ented.”19 These architectures can take many forms. Unix
pipes resemble PN, although they are more limited in
that they do not support cyclic graphs. Message pass-
ing packages like MPI and OpenMP include facilities
for implementing rendezvous and PN, but in a less struc-
tured context that emphasizes expressiveness rather than
determinacy. A naive user of such packages can easily
encounter unexpected nondeterminacy.

Languages such as Erlang make message-passing con-
currency an integral part of a general-purpose language.
Languages such as Ada make rendezvous an integral
part. Functional languages and single-assignment lan-
guages also emphasize deterministic computations, but
they are less explicitly concurrent, so controlling and
exploiting concurrency can be more challenging. Data-

May 2006 39

Rendezvous director

Value producer 1

Value producer 2
Value consumer

Observer

Merge

Figure 3. Observer pattern implemented in a rendezvous-based

coordination language with a visual syntax.Two possible

three-way rendezvous interactions can occur, repeatedly and

in nondeterministic order.

40 Computer

parallel languages also emphasize determinate interac-
tions, but require low-level rewrites of software.

All these approaches offer pieces of the solution. But
it seems unlikely that any one will become mainstream.

CHALLENGES AND OPPORTUNITIES
Threads continue to dominate the concurrent pro-

gramming landscape despite the existence of alterna-
tives. Many obstacles prevent these alternatives from
taking root, probably the most important being that the
very notion of programming, and the core abstractions
of computation, are deeply rooted in the sequential par-
adigm to which most widely used programming lan-
guages adhere. Syntactically, threads provide either a
minor extension to these languages, as in Java, or just an
external library. Semantically, they thoroughly disrupt
the languages’ essential determinism.

Regrettably, programmers seem more governed by
syntax than semantics. The alternatives to threads that
have taken root, like MPI and OpenMP, share this same
key feature. They make no syntactic change to lan-
guages. Alternatives that replace these languages with
entirely new syntax, such as Erlang or Ada, have not
taken root, and probably will not. Even languages with
minor syntactic modifications to established languages,
like Split-C or Cilk, remain esoteric.

The message is clear. We should not replace estab-
lished languages. We should instead build on them.
However, building on them using only libraries is unsat-

isfactory. Libraries offer little structure, no pattern
enforcement, and few composable properties.

Coordination languages
The right answer can be found in coordination lan-

guages, also called composition languages, which intro-
duce new syntax. That syntax, however, serves purposes
orthogonal to those of established programming lan-
guages.

Whereas a general-purpose concurrent language like
Erlang or Ada must include syntax for mundane oper-
ations such as arithmetic expressions, a coordination
language need not specify anything more than coordi-
nation. Given this, the syntax can be noticeably distinct.

The program shown in Figure 3 uses a visual syntax to
specify actor-oriented coordination. Although here a visual
syntax serves only pedagogical purposes, conceivably such
visual syntaxes eventually will be made scalable and effec-
tive, as certain parts of UML have been for object-oriented
programming. If not, we can easily envision scalable tex-
tual syntaxes that specify the same structure.

Coordination languages themselves have been around
for a long time.20 They too have failed to take root. One
reason for this is that their acceptance amounts to capit-
ulation on one key front: homogeneity. A prevailing
undercurrent in programming languages research is that
any worthy programming language must be general pur-
pose. It must be, at a minimum, sufficiently expressive
to express its own compiler. Adherents to the language
view as traitors any of their colleagues seduced by
another language.

A key development, however, has broken the ice.
UML—properly viewed as a family of languages, each
with a visual syntax—is routinely combined with C++
and Java. Programmers have begun accepting the use of
more than one language, especially when the disjoint
languages provide complementary features. The pro-
gram in Figure 3 follows this spirit in that it diagram-
matically specifies a large-grained structure quite
orthogonal to fine-grained computation.

Concurrency models with stronger determinism than
threads, such as Kahn process networks, CSP, and
dataflow, have also been available for some time. Some
have led to programming languages, such as Occam,
and some have led to domain-specific frameworks such
as YAPI.17 Most, however, have principally been used
to build elaborate process calculi, and they have not had
much effect on mainstream programming. I believe this
can change if we use these concurrency models to define
coordination languages rather than replacement ones.

Coordination language design
Full of pitfalls, designing good coordination languages

is no easier than designing good general-purpose lan-
guages. For example, programmers can easily be trapped
by the false elegance of a spare set of primitives. In gen-

Rendezvous director

Merge

Barrier

Buffer

Data source 1

Data source 2

Data source 3

Data source 4

Capacity: 1

Commutator Display2

Display1

Figure 4.Two ways to accomplish deterministic interleaving

using rendezvous.The upper model uses nondeterministic

mechanisms to accomplish deterministic aims. In contrast, in

the lower model, well-chosen language primitives enable sim-

ple, direct, deterministic expression of deterministic aims.

eral-purpose languages, we know that seven primitives
are sufficient, as in Turing machines, but no one builds
a serious programming language on these.

Figure 4 shows two implementations of a simple con-
current computation. In the upper program, an adapta-
tion of an example from Farhad Arbab’s work,15 the
system deterministically interleaves successive outputs
from Data source 1 and 2, which appear in alternating
order at the Display block. This is a quite complex, even
puzzling, way to provide this rather simple functionality.

In contrast, Figure 4’s lower program is easily under-
stood. The Commutator block performs a rendezvous
with each of its inputs in top-to-bottom order and thus
accomplishes the same interleaving. Judicious choice of
language primitives enables simple, direct, and deter-
ministic expressions of deterministic aims. The upper
model uses nondeterministic mechanisms, albeit more
expressive ones, to accomplish deterministic aims, mak-
ing it much more obtuse.

Coordination languages must develop scalability and
modularity features analogous to those in established
languages. Ptolemy II, for example, provides a sophisti-
cated, modern type system at the coordination-language
level. Moreover, it offers a preliminary form of inheri-
tance and polymorphism adapted from object-oriented
techniques.19 A huge opportunity exists in adapting the
concept of higher-order functions to coordination lan-
guages, which would enable constructs like MapReduce
at the coordination-language level.

A more challenging, long-term opportunity would
adapt the theory of computation to provide better foun-
dations for concurrent computations. Although
researchers have made considerable progress in this
direction, much more must be done. In addition to the
sequential computation modeled as functions mapping
bit sequences into bit sequences, a corresponding con-
current model21 that, instead of a function

f : B** → B**

(see the “Nondeterminism and Threads” sidebar) gives
concurrent computation as a function

f : (T → B**) → (T → B**)

with T a partially or totally ordered set of tags, where
the ordering can represent time, causality, or more
abstract dependency relations. A computation viewed in
this way maps an evolving bit pattern into an evolving bit
pattern. This basic formulation has been shown to be
adaptable to many concurrent computation models.

A chieving concurrency in software is difficult.
However, much of this difficulty arises from the
abstractions for concurrency we have chosen.

Threads provide the dominant method in use today for
general-purpose computing. But nontrivial multithreaded
programs are incomprehensible to humans. Design pat-
terns, better granularity of atomicity, improved lan-
guages, and formal methods can improve the
programming model. These techniques, however, merely
chip away at the unnecessarily enormous nondetermin-
ism of the threading model, which remains intrinsically
intractable.

If we expect concurrent programming to become
mainstream, and if we demand reliability and pre-
dictability from programs, we must discard threads as
a programming model. We can construct concurrent
programming models that are much more predictable
and understandable than threads based on a simple prin-
ciple: Deterministic ends should be accomplished with
deterministic means. Nondeterminism should be judi-
ciously and carefully introduced where needed, and it
should be explicit in programs. This principle seems
obvious, yet threads do not accomplish it. They must be
relegated to the engine room of computing, to be suf-
fered only by expert technology providers. ■

Acknowledgments

I acknowledge the thought-provoking comments and
suggestions from Joe Buck (Synopsys), Mike Burrows
(Google), Stephen Edwards (Columbia), Jim Larus
(Microsoft), Sandeep Shukla (Virginia Tech), and Mark
Miller.

References
1. H. Sutter and J. Larus, “Software and the Concurrency Rev-

olution,” ACM Queue, vol. 3, no. 7, 2005, pp. 54-62.
2. M. Creeger, “Multicore CPUs for the Masses,” ACM Queue,

vol. 3, no. 7, 2005, pp. 63-64.
3. U. Banerjee et al., “Automatic Program Parallelization,” Proc.

IEEE, vol. 81, no. 2, 1993, pp. 211-243.
4. W. Pugh, “Fixing the Java Memory Model,” Proc. Conf. Java

Grande, ACM Press, 1999, pp. 89-98.
5. E. Gamma et al., Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1994.
6. J. Eker et al., “Taming Heterogeneity—The Ptolemy

Approach,” Proc. IEEE, vol. 91, no. 2, 2003, pp. 127-144.
7. H.J. Reekie et al., Software Practice in the Ptolemy Project,

tech. report series GSRC-TR-1999-01, Gigascale Semicon-
ductor Research Center, Univ. of California, Berkeley, Apr.
1999.

8. D. Lea, Concurrent Programming in Java: Design Principles
and Patterns, Addison-Wesley, 1997.

9. D.C. Schmidt et al., Pattern-Oriented Software Architecture—
Patterns for Concurrent and Networked Objects, Wiley, 2000.

10. T. Harris et al., “Composable Memory Transactions,” Proc.
ACM Symp. Principles and Practice of Parallel Programming
(PPoPP), ACM Press, 2005, pp. 48-60.

May 2006 41

42 Computer

11. J. Dean and S. Ghemawat, “MapReduce: Simplified Data Pro-
cessing on Large Clusters, Proc. 6th Symp. Operating System
Design and Implementation (OSDI), Usenix Assoc., 2004, pp.
137-150.

12. D.E. Culler et al., “Parallel Programming in Split-C,”
ACM/IEEE Conf. Supercomputing, ACM Press, 1993, pp.
262-273.

13. R.D. Blumofe et al., “Cilk: An Efficient Multithreaded Run-
time System,” Proc. ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming (PPoPP), ACM Press, 1995,
pp. 207-216.

14. D.F. Bacon, R.E. Strom, and A. Tarafdar, “Guava: A Dialect
of Java without Data Races,” ACM SIGPLAN Notices, vol.
35, 2000, pp. 382-400.

15. F. Arbab, “A Behavioral Model for Composition of Software
Components,” L’Object, to appear 2006.

16. G. Kahn and D.B. MacQueen, “Coroutines and Networks of
Parallel Processes,” Information Processing, B. Gilchrist, ed.,
North-Holland Publishing, 1977, pp. 993-998.

17. E.A. de Kock et al., “YAPI: Application Modeling for Signal
Processing Systems,” Proc. 37th Design Automation Conf.
(DAC 00), ACM Press, 2000, pp. 402-405.

18. A. Benveniste and G. Berry, “The Synchronous Approach to
Reactive and Real-Time Systems,” Proc. IEEE, vol. 79, no. 9,
pp. 1270-1282.

19. E.A. Lee and S. Neuendorffer, “Classes and Subclasses in
Actor-Oriented Design,” Proc. ACM/IEEE Conf. Formal
Methods and Models for Codesign (MEMOCODE), 2004;
http://ptolemy.eecs.berkeley.edu/publications/papers/04/
Classes/.

20. G. Papadopoulos and F. Arbab, “Coordination Models and
Languages,” Advances in Computers—The Engineering of
Large Systems, vol. 46, M. Zelkowitz, ed., Academic Press,
1998, pp. 329-400.

21. E.A. Lee and A. Sangiovanni-Vincentelli, “A Framework for
Comparing Models of Computation,” IEEE Trans. Com-
puter-Aided Design of Circuits and Systems, vol. 17, no. 12,
1998, pp. 1217-1229.

Edward A. Lee is a professor, chair of the Electrical Engi-
neering Division, and associate chair of the Electrical Engi-
neering and Computer Science Department at the University
of California, Berkeley. His research interests include
embedded software, concurrency, real-time software, sig-
nal processing, and communications. Lee received a PhD
in electrical engineering and computer sciences from the
University of California, Berkeley. He is a Fellow of the
IEEE. Contact him at eal@eecs.berkeley.edu.

The International Journal of Grid Computing:
Theory, Methods & Applications

New aims and scope – for details, visit
www.elsevier.com/locate/future

Editor-in-Chief
Peter Sloot (sloot@science.uva.nl)

University of Amsterdam, The Netherlands

Associate Editors:
Carl Kesselman

University of Southern California, USA
Hai Zhuge

Chinese Academy of Science, China
Rajkumar Buyya

University of Melbourne, Australia
Marian Bubak

AGH University of Science and Technology Krakow, Poland

For a complete list of the editorial board, new aims and
scope, most downloaded articles, our new online submission

system and subscription information see
www.elsevier.com/locate/future

www.elsevier.com/computerscience

FUTURE GENERATION
COMPUTER SYSTEMS

computer.org/e-News

Available

for FREE

to members.

Be alerted to

• articles and

special issues

• conference

news

• registration

deadlines

Sign Up Today
for the IEEE

Computer
Society’s

e-News

Sign Up Today
for the IEEE

Computer
Society’s

e-News

