
Assuring Good Style for Object-Oriented ProgramsKarl J. Lieberherr and Ian HollandNortheastern University, College of Computer ScienceCullinane Hall, 360 Huntington Ave., Boston, MA 02115lieber@ccs.neu.edu, phone: (617) 373 2077AbstractWe introduce a simple, programming language independent rule (known in-house asthe Law of Demeter) which encodes the ideas of encapsulation and modularity in aneasy to follow form for the object-oriented programmer. The rule achieves the followingrelated bene�ts if code duplication, the number of method arguments and the numberof methods per class are minimized: Easier software maintenance, less coupling betweenyour methods, better information hiding, methods which are easier to reuse, and easiercorrectness proofs using structural induction. We show relationships between the Law andsoftware engineering techniques, such as coupling control, information hiding, informationrestriction, localization of information, narrow interfaces and structural induction. Wediscuss two important interpretations of the Law (strong and weak) and we prove thatany object-oriented program can be transformed to satisfy the Law. We express theLaw in several languages which support object-oriented programming, including Flavors,Smalltalk-80, CLOS, C++ and Ei�el.Keywords: Object-oriented programming, programming style, design style, software engineer-ing principles, software maintenance and reusability.1 IntroductionThis paper describes the object-oriented programming style rule called The Law of Demeter.Along with the `goto-rule' and other programming style rules inherited from the proceduralprogramming paradigm, many of which still apply, the Law should be part of the programmingknowledge that is considered when implementing object-oriented software. It is a partial re-sponse to the questions: \When is an object-oriented program written in good style?", \Is theresome formula or rule which one can follow in order to write good object-oriented programs?",\What metrics can we apply to an object-oriented program to determine if it is `good'?", and\What are the characteristics of good object-oriented programs?". In addition, it helps toformalize the existing ideas on these issues that can be found in the literature [KP86] [Sny87].There are two kinds of style rules for object-oriented programming: rules that constrain thestructure of classes and rules that constrain the implementation of methods. Style rules thatin
uence the structure of classes have been published elsewhere [Lie88]. The focus of thispaper is on a style rule that restricts how methods are written for a set of class de�nitions. Inparticular, the Law restricts the message-sending statements in method implementations.Informally, the Law says that any object receiving a message in a given method must be oneof a restricted set of objects. This set of preferred objects includes the method arguments, the1

self pseudo-variable, and to the immediate subparts of self. The self object in Smalltalk andFlavors is called this in C++ and current in Ei�el.The Law of Demeter is named after the Demeter SystemTM , which provides a high-level inter-face to class-based object-oriented systems, and the Demeter Research Group at NortheasternUniversity, which develops the system. The Group has applied the Law in the development ofthe system itself (formally about fourteen thousand lines of Lisp/Flavors and now about ninetythousand lines of C++ code) and in the implementation of numerous applications developedwith the system.Our experience has been that the Law promotes maintainability and comprehensibility of thesoftware. This is a result of the small method size and the predicable message-passing patterns,both of which are caused by the application of the Law. In other words, following the Law inconcert with rules such as, minimizing code duplication, minimizing the number of arguments,and minimizing the number of methods, produces code with a characteristic and manageableform.We have also seen that adherence to the Law prevents programmers from encoding details ofthe class hierarchy structure in the methods. This is critical to the goal of making the coderobust with respect to changes in the hierarchy structure. These changes occur very frequentlyin the early stages of development.The goal of the Law of Demeter is to organize and reduce the behavioral dependencies betweenclasses. Informally, one class behaviorally depends on another class when it calls a method(through a message sent to an object) de�ned in the other class. The behavioral dependenciesencoded in the methods of an object-oriented program determine the complexity of the pro-gram's control
ow and the level of coupling between the classes. This paper examines theserelationships and illustrated how the Law impacts their existence.Some other work describing the Law includes [LHR88] where we presented a proof which statesthat any object-oriented program written in bad style can be transformed systematically intoa program obeying the Law of Demeter. The implication of this proof is that the Law ofDemeter does not restrict what a programmer can solve, it only restricts how he or she solvesit. We have also formulated interpretations of the Law for multiple programming languages[LH89b]. Third party commentary on the Law includes [Boo91, Sak88, Bud91, Gra91]. Thethesis of Casais [Cas90] examines the Law in depth and assesses its favorable impact on theproblem of providing automatic support for rewriting code in response to changes in the classhierarchy. A slight dissenting voice was raised by Wirfs-Brock et. al [WBW89] who prefer afunction centered approach to object-oriented design rather than the data centered approachof Demeter.The examples in this paper are written in the extended notation of the Demeter system.Section2 describes Demeter and its notation. The sections which follow will de�ne the Law ofDemeter both formally and through examples, examining both practical and theoretical issues.2 DemeterThe key contribution of the Demeter system is to improve programmer productivity by sev-eral factors. This is achieved in a number of ways. First, Demeter provides a comprehensivestandard library of utilities. Second, a signi�cant amount of code is generated from the pro-grammers object-oriented design. Third, Demeter includes a number of tools that automatecommon programming practices. 2

The key ideas behind the Demeter system are to use a more expressive class notation than inexisting object-oriented languages and to take advantage of the added information by providingmany custom-made utilities. These utilities are provided for a speci�c object-oriented languagelike C++ or Flavors and greatly simplify the programming task.Examples of utilities Demeter generates or provides generically are: class de�nitions in a pro-gramming language, application skeletons, parsers, pretty printers, type checkers, object edi-tors, re-compilation minimizers, pattern matchers and uni�ers. The Demeter system helps theprogrammer de�ne the classes (both their structure and functionality) with several supporttools, including a consistency checker (semantic rules and type checking at the design level), alearning tool which learns class de�nitions from example object descriptions, an LL(1) correctorand an application-development plan generator [Lie88] [LR88]. The explanations and examplespresented in this paper are written in the extended Demeter notation which is described below.One of the primary goals of the Demeter system is to develop an environment that eases theevolution of a class hierarchy. Such an environment must provide tools for the easy updating ofexisting software (the methods or operations de�ned on the class hierarchy). We are striving toproduce an environment that will let software be `grown' in a continuous fashion. We believe acontinuous-growth environment will lead to a rapid prototyping/system-updating developmentcycle.The primary input to the system is a collection of class de�nitions. This collection is calleda class dictionary. Classes are described in Demeter using three kinds of class de�nitions:construction, alternation, and repetition. The class dictionary shown in Figure 1 partiallyde�nes the structure of a lending library.11. A construction class de�nition is used to build a class from a number of other classes andis of the formclass C has partspartName1 : SC1partName2 : SC2...partNamen : SCnend class CHere C is de�ned as being made up of n parts (called its instance variable values),each part has a name (called an instance variable name) followed by a type (called aninstance variable type). This means that for any instance (or member) of class C the namepartNamei refers to a member of class SCi. The example shown in Figure 1 describes alibrary class as consisting of a reference section, a loan section, and a journal section.We use the following naming convention: instance variable names begin with a lower caseletter and class names begin with an upper case letter.2. An alternation class de�nition allows us to express a union type. A class de�nition of theform1We use two notations in the Demeter system. This introductory paper uses the extended notation. Aconcise notation based on EBNF is used in later papers of the thesis. The abstract syntax of the concise andthe abstract syntax of the extended notation are identical: only the \syntactic sugar" is changed.3

class Library has partsreference : ReferenceSecloan : LoanSecjournal : JournalSecend class Libraryclass BookIdenti�er is eitherISBN or LibraryOfCongressend class BookIdenti�erclass ReferenceSec has partsrefBookSec : BooksSecarchive : Archiveend class ReferenceSecclass Archive has partsarchMicro�che : Micro�cheFilesarchDocs : Documentsend class Archive
class BooksSec has partsrefBooks : ListofBooksrefCatalog : Catalogend class BooksSecclass ListofBooks is listrepeat fBookgend ListofBooksclass Catalog is listrepeat fCatalogEntrygend Catalogclass Book has partstitle : Stringauthor : Stringid : BookIdenti�erend class BookFigure 1: Library class dictionaryclass C is eitherA or Bend class Cstates that a member of C is a member of class A or class B (exclusively). For example, thede�nition of BookIdenti�er in Figure 1, expresses the notion that when somebody refersto the identi�er of a book they are actually referring to its ISBN code or its Library ofCongress code.3. A repetition class de�nition is simply a variation of the construction class de�nition whereall the instance variables have the same type and the programmer does not specify thenumber of instance variables involved. The class de�nitionclass C is listrepeat fAgend Cde�nes members of C to be lists of zero or more instances of A.3 Forms of the LawThe Law of Demeter has two basic forms: the object form and the class form. The object formis the primary form. However, it is not possible to statically check code with respect to the4

object form. The two versions of the class form are compile-time checkable approximations.The two versions of the class form are called the strict form and the minimization form. Thestrict version rigorously restricts the dependencies between classes. However, in practice, it isdi�cult to completely adhere to the strict version. These potential `law-breaking' situationsare discussed below. The minimization version is the weakest expression of the Law and isphrased as a guideline rather than a strict rule. It allows additional dependencies betweenclasses but asks the object-oriented programmer to minimize them and to document them bydeclaring special acquaintance classes.3.1 Object formThe object version of the Law is based on the concept of preferred supplier objects. These arede�ned as follows:De�nition : A supplier object to a method M is an object to which amessage is sent in M. The preferred supplier objects to method M are:� the immediate parts of self or� the argument objects of M or� the objects which are either objects created directly in M or objects inglobal variables.The programmer determines the granularity of the phrase \immediate subparts" of self for theapplication at hand. For example, the immediate parts of a list class are the elements of thelist. The immediate parts of a \regular" class object are the objects stored in its instancevariables.In theory, every object is a potential supplier to any particular method. When a supplierobject is sent a message in a method, the
ow of control passes from the method to a methodimplemented for the message receiver. However, the presence of dynamic binding and methodoverriding in object-oriented programming languages can make it di�cult to statically deter-mine how control
ows from one method to the next. By restricting the set of supplier objectswe can contain the level of di�culty per method.De�nition : Object version of the Law of Demeter: Every supplier objectto a method must be a preferred supplier.The object form expresses the spirit of the basic law and serves as a conceptual guidelinefor the programmer to approximate. While the object version of the Law expresses what isreally wanted, it is hard to enforce at compile-time [LHR88]. The object version serves as anadditional guide whenever the strict class version of the Law accepts a program which appearsto be in bad style or when the strict class version of the Law rejects a program which appearsto be in good style. 5

Client. Method M is a client of method f attached to class C if inside M message fis sent to an object of class C or to C. If f is specialized in one or more subclassesthen M is only a client of f attached to the highest class in the hierarchy. Method Mis a client of class C if it is a client of some method attached to C.Supplier. If M is a client of class C then C is a supplier to M. Informally, a supplierclass to a method is a class whose methods are called in the method.Acquaintance class. A class C1 is an acquaintance class of method M attached toclass C2, if C1 is a supplier to M and C1 is not� the same as C2� a class used in the declaration of an argument of M� a class used in the declaration of an instance variable of C2Preferred-acquaintance class. A preferred-acquaintance class of method M iseither a class of objects created directly in M or a class used in the declaration of aglobal variable used in M.Preferred-supplier class. Class B is called a preferred supplier to method M(attached to class C) if B is a supplier to M and one of the following conditionsholds:� B is used in the declaration of an instance variable of C or� B is used in the declaration of an argument of M, including C and its super-classes, or� B is a preferred acquaintance class of M.
Table 1:6

3.2 Class formThe class form's versions are expressed in terms of classes and can be supported by a compile-time law-enforcement tool. Paralleling the object form, the strict version is based on the notionof preferred supplier which is de�ned in table 1.Figure 2 shows �ve examples of massages being sent to objects and of preferred-supplier classes.To send a message f to object s, we use the C++ notation (s ! f() is the same as \send s themessage f')'. In Figure 2 class B is a preferred supplier to method M and M is a preferred clientof B. The `;' is the comment character which starts a comment line.class C has partss : Bimplements interfaceM() : Identfcalls s ! f()g; Ident is M's return typeend class CCase 1: Instance variable class.class C has parts; noneimplements interfaceM(s : B) : Identfcalls s ! f()gend class CCase 2: Argument class.class B has parts; noneimplements interfaceM() : Identfcalls self ! f()g; in C++ self is called thisend class BCase 3: Argument class (self).

class C has parts; noneimplements interfaceM() : Ident; newObject is a new B instancefcalls newObject ! f()gend class CCase 4: Newly created object class.class C has parts; noneimplements interfaceM() : Identfcalls s ! f()gend class CCase 5: Global class. s is global of type B.
In each case, class B is a preferred supplier to MFigure 2: Examples of preferred suppliers.As before, every class in an object-oriented program is a potential supplier of any method.However, it is best to limit the suppliers to a method to a small set of preferred classes. Tode�ne these preferred suppliers we introduce the concept of an acquaintance class of a method([Sak88], [HB77]). A precise de�nition of an acquaintance relies on a class version of thesupplier concept. Informally, a method's supplier class is a class whose methods are called in7

the method.The de�nitions make a distinction between the classes associated with the declaration of themethod and the classes used in the body of the method. The former includes the class wherethe method is attached, its superclasses, the classes used in the declarations of the instancevariables and the classes used to declare the arguments of the method. In some sense, these arean `automatic' consequence of the method declaration. They can be easily derived from thecode and shown by a browser. All other supplier classes to the method are introduced in thebody of the method. They can only be determined by a careful reading of the implementation.This second set of classes are the acquaintance classes. To show these classes within a codebrowser would require a complete symbol table of the program.The set of acquaintance classes are further partitioned into a preferred acquaintance subset andit's complement. A method's preferred acquaintance class is either a class of objects createddirectly in the method (by calling the acquaintance class's constructor) or a class used todeclare a global variable used in the method.Given these de�nitions, the strict version of the Law of Demeter's class form says:De�nition : Strict form of the Law of Demeter : Every supplier class to amethod must be a preferred supplier.There are several bene�ts which result from applying the strict version of the Law's class form.For example, if the interface of class A changes, then only the preferred-client methods of classA and its subclasses require modi�cation (provided that the changes required in the preferredclient methods do not change the interfaces of those classes). A class's interface can change inmany ways. For example, the programmer might modify an interface by changing an argumentor return type, by changing the name of a method, or by adding or deleting a method. Aclass's preferred-client methods are usually a small subset of all the methods in a program; thisreduces the set of methods that need to be modi�ed. This bene�t clearly shows that the Lawof Demeter limits the repercussions of change.Using the Law can also control the complexity of programming. For example, a programmerreading a method needs to be aware of only the functionality of the method's preferred supplierclasses. These preferred suppliers are usually a small subset of the set all the classes in theapplication and furthermore, they are \closely related" to the class to which the method isattached. This relationship makes it easier to remember those classes and their functionality.The second class version is more lenient than the strict form because it allows some non-preferred supplier classes. In practice, it makes sense to allow some of these other acquaintanceclasses. However, we suggest that the programmer clearly document the violations in order torecover the Law's bene�ts. Acquaintance classes are typically used for three reasons:� Stability: If a class is stable and/or if its interface will be kept upwardly compatible, itmakes sense to use it as an acquaintance class in all methods. The programmer speci�essuch \global" acquaintance classes separately and they are included in the acquaintanceclasses of all methods.� E�ciency: The programmer might need to directly access instance variables of certainother classes to increase run-time e�ciency. In C++ terminology, these are classes ofwhich the method is a friend function.� Object construction. 8

The permissive minimization version of the Law of Demeter is stated as follows:De�nition : Minimization form of Law of Demeter: Minimize the numberof acquaintance classes of each method.We can count the number of acquaintance classes for all methods to assess the level of confor-mance of a program to the Law. If a class appears as an acquaintance class of several methods,it is counted as many times as it appears.If a statically typed language like C++ or Ei�el is extended with a facility to declare acquain-tance classes, the compiler can be modi�ed in a straightforward way to check adherence tothe minimization version in the following sense: Each supplier that is an acquaintance classmust be explicitly declared in the list of the method's acquaintance classes. To easily checkthe Law at compile time or even at design time, the programmer must provide the followingdocumentation for each method:1. the types of each of the arguments and the result2. the acquaintance classes.The documentation gives programmers reading the method a list of the types they must knowabout to understand the method. The compiler can check the completeness of each method'sdocumentation by examining the messages sent in the method and the classes of the objectscreated directly by the method.4 PrinciplesThe motivation behind the Law of Demeter is to ensure that the software is as modular aspossible. The Law e�ectively reduces the occurrences of certain nested message sends (functioncalls) and simpli�es the methods.The Law of Demeter has many implications for widely known software engineering principles.Our contribution is to condense many of the proven principles of software design into a singlestatement that can be easily followed by object-oriented programmers and easily checked atcompile-time.Principles covered by the Law include:� Coupling control. It is a well-known principle of software design to have minimal couplingbetween abstractions (like procedures, modules, methods) [EW88]. The coupling can bealong several links. An important link for methods is the \uses" link (or call/returnlink) that is established when one method calls another method. The Law of Demetere�ectively reduces the methods the programmer can call inside a given method andtherefore limits the coupling of methods with respect to the \uses" relation. The Lawtherefore facilitates reusability of methods and raises the software's level of abstraction.� Information hiding. The Law of Demeter enforces one kind of information hiding: struc-ture hiding. In general, the Law prevents a method from directly retrieving a subpart ofan object which lies deep in that object's \part-of" hierarchy. Instead, the programmermust use intermediate methods to traverse the \part-of" hierarchy in controlled smallsteps [LG86]. 9

In some object-oriented systems, the programmer can protect some of the instance vari-ables or methods of a class from outside access by making them private. This importantfeature complements the Law to increase modularity but is orthogonal to it. The Lawpromotes the idea that the instance variables and methods which are public should beused in a restricted way.� Information restriction. Our work is related to the work by Parnas et al. [PCW85][PCW86] on the modular structure of complex systems. To reduce the cost of softwarechanges in their operational
ight program for the A-7E aircraft they restricted theuse of modules that provide information that is subject to change. We take this pointof view seriously in our object-oriented programming and assume that any class couldchange. Therefore, we restrict the use of message sends (function calls) by the Lawof Demeter. Information restriction complements information hiding: Instead of hidingcertain methods, they are made public but their use is restricted. Information restrictiondoes not o�er the same level of protection as information hiding. However, when hidingit is not feasible, restriction o�ers a level of protection.� Localization of information.2 Many software engineering textbooks stress the importanceof localizing information. The Law of Demeter focuses on localizing class information.When programmers study a method they only have to be aware of types which are veryclosely related to the class to which the method is attached. They can e�ectively beignorant (and independent) of the rest of the system. As the saying goes, `ignoranceis bliss'. This important aspect of the Law helps reduce programming complexity. Inaddition, the Law also controls the visibility of message names. Programmers can onlyuse message names in the interfaces of the preferred-supplier classes to a given method.� Structural induction. The Law of Demeter is related to the fundamental thesis of Deno-tational Semantics. That is, \The meaning of a phrase is a function of the meanings ofits immediate constituents". This goes back to Frege's work on the principle of composi-tionality in his Begri�sschrift [Hei67]. The main motivation behind the compositionalityprinciple is that it facilitates structural induction proofs.5 ExampleThis section shows how to apply the Law of Demeter to a program that violates both the strictand the minimization versions of the Law's class form. For this example, we use the classesde�ned by the class dictionary fragment for a library shown in Figure 3.The methods of the example are written in C++. However, the text should be comprehensiblefor users of other object-oriented programming languages. In C++ terminology, a method iscalled a `function member' and an instance variable is called a `data member'. In the followingC++ code, the types of data members and function member arguments are pointer types toclasses.The fragment of a C++ program in Figure 4 searches the reference section for a particularbook. (To keep the example small, we use direct access to instance variables instead of usingaccess methods.) The searchBadStyle function attached to ReferenceSec passes the message on toits book (BooksSec), micro�che (Micro�cheFiles) and document sections (Documents).This function breaks the Law of Demeter. The �rst message marked /**/ sends the messagearchMicro�che to archive which returns an object of type Micro�cheFiles. The method next sends2Peter Wegner pointed out this aspect of the Law.10

class Library has partsreference : ReferenceSecloan : LoanSecjournal : JournalSecend class Libraryclass BookIdenti�er is eitherISBN or LibraryOfCongressend class BookIdenti�erclass ReferenceSec has partsrefBookSec : BooksSecarchive : Archiveend class ReferenceSecclass Archive has partsarchMicro�che : Micro�cheFilesarchDocs : Documentsend class Archive
class Micro�cheFiles has parts...end class Micro�cheFilesclass Documents has parts...end class Documentsclass BooksSec has parts...end class BooksSec

Figure 3: Library revisitedthis returned object the search message. However, Micro�cheFiles is not an instance variable orargument type of class ReferenceSec.Because the structure of each classes is clearly de�ned by the class dictionary, the programmermight be tempted to accept the method searchBadStyle in Figure 4 as a reasonable solution.But consider a change to the class dictionary. Assume the library installs new technology andreplaces the micro�che and document sections of the archive with CD-ROMs or Video-Discs:class Archive has partscdRomArch : CDRomFileend class Archiveclass CDRomFile has partscdCSystem : ComputerSystemdiscs : CDRomDiscsend class CDRomFileThe programmer now has to search all of the methods, including the searchBadStyle method,for references to an archive with micro�che �les. It would be easier to limit the modi�cationsonly to those methods which are attached to class Archive. This is accomplished by rewritingthe methods in good style resulting in searchGoodStyle functions attached to ReferenceSec andArchive.Using good style also reduces the coupling respect to the \uses" relation: In the original11

class ReferenceSec fpublic:Archive* archive;BookSec* refBookSec;boolean searchBadStyle(Book* book) freturn(refBookSec ! search(book) k/**/ archive ! archMicro�che ! search(book) k/**/ archive ! archDocs ! search(book));gboolean searchGoodStyle(Book* book) freturn(refBookSec ! search(book) karchive ! searchGoodStyle(book));gg;class Archive fpublic:Micro�cheFiles* archMicro�che;Documents* archDocs;boolean searchGoodStyle(Book* book) freturn(archMicro�che ! search(book) karchDocs ! search(book));gg; class Micro�cheFiles fpublic:boolean search(Book* book)f...gg;class Documents fpublic:boolean search(Book* book)f...gg;class Book f....g;Figure 4: C++ fragment to search the reference section.
12

version, ReferenceSec was coupled with BooksSec, Archive, Micro�cheFiles and Documents, but nowit is coupled only with BooksSec and Archive.Another way to examine the e�ects of using the Law is to translate a program, in both goodand bad style, into a dependency graph. In the graphs, the nodes of the graph are classes. Anedge from class A to class B has an integer label which indicates how many calls are written inthe text of the functions of A to the functions of B. If a label is omitted from an edge, it meansthat its value is 1. Access to an instance variable is interpreted as a call to read the instancevariable. Figure 5a shows the graph for the program which violates the Law of Demeter; Figure5b shows the graph for the one that follows the Law.
Figure 5: Dependency graph representation6 Valid violationsThe Law of Demeter is intended to act as a guideline, not as an absolute restriction. Theminimization version of the Law's class form gives programmers a choice of how strongly theywant to follow the Law: The more non-preferred acquaintance classes used, the weaker theadherence to the strict version. In some situations, the cost of obeying the strict version of theLaw may be greater than the bene�ts. However, when programmers willingly violate the Law,they take on the responsibility of declaring the required acquaintance classes. This is criticaldocumentation for future maintenance of the software.As an example of where the cost of applying the Law is higher than its bene�ts, consider thefollowing prototypical method which is in bad style, coded in both Flavors and C++:Flavors:(defmethod (C :M) (p)(.... (send (send p :F1) :F2)))C++:void C::M(D* p)f ...; p ! F1() ! F2(); ... g;where p is an instance of class A and F1 returns a subpart of p. If the immediate compositionof A changes the method M may have to change also because of F1.13

There are two situations when it is reasonable to leave the above as it is:� F1 is intended to serve as a \black box" and the programmer knows only about thetypes of its arguments and the return type. In this case, the maintainer of F1 has theresponsibility to ensure that any updates to F1 are upwardly compatible so programmersof the function are not penalized for using it.� If run-time e�ciency is important to the application, the use of mechanisms such as theC++ friend function feature may be necessary. Friend functions should be used carefully,since whenever the private members of a class change, the friend functions of the classmay also require change.Consider another example that shows where the costs of using the Law might outweigh itsbene�ts. For an application which solves di�erential equations the class dictionary may havethe following de�nitions:class ComplexNumber has partsrealPart : RealimaginaryPart : Realend class ComplexNumberFlavors:(defmethod (Vector :R) (c :ComplexNumber)(.... (send (send c :realPart) :project self) ...))C++:void Vector::R(ComplexNumber* c)f ...; c ! realPart ! project(this); ... gThe method R is in the same form as M in the previous example and is in bad style for the samereason. The question here is whether it is important to hide the structure of complex numbersand to rewrite the method. In this application, where the concept of a complex number is wellde�ned and well understood, it is unnecessary to rewrite the method so that the Law is obeyed.In general, if the application concepts are well de�ned and the classes which implement thoseconcepts are stable, in the sense that they are very unlikely to change, then such violations asthe above are acceptable.Our experience has been that writing programs which follow the Law of Demeter decreasesthe occurrences of nested message sending and decreases the complexity of the methods, but itincreases the number of methods. The increase in methods is related to the problem outlinedin [LG86] which is that there can be too many operations in a type. In this case the abstractionmay be less comprehensible, and implementation and maintenance are more di�cult. Theremight also be an increase in the number of arguments passed to some methods.One way of correcting this problem is to organize all the methods associated with a particularfunctional (or algorithmic) task into \Modula-2 like" module structures as outlined in [LR88].The functional abstraction is no longer a method but a module which will hide the lower-levelmethods. 14

7 Conforming to the LawGiven a method which does not satisfy the Law, how can a programmer transform it so that itconforms to the Law? In [LHR88] we described an algorithm to transform any object-orientedprogram into an equivalent program which satis�es the Law. In other words, we showed thatwe can translate any object-oriented program into a \normal form" which satis�es the Law'sstrict version.There are other, less automatic, ways to achieve this goal which may help to derive morereadable or intuitive code. These also may help to minimize the number of arguments passedto methods and the amount of code duplication. Two such techniques are called lifting andpushing.To explain these techniques, we need a preliminary de�nition. We say that class B is a part-class of class A, if B is the class of one of A's instance variables or B is a part-class of a classof one of A's instance variables.Consider the method:Flavors:(defmethod (C :M) ()(send (send self ':m1) ':m2))C++:void C::M()fthis ! m1() ! m2();gand T is the class of the object returned by m1. T is not a preferred supplier class of M. Wedistinguish two cases:1. T is a part-class of C.2. C is a part-class of T.Lifting. This technique is applicable in the �rst case (T is a part-class of C). The idea isto make m1 return an object of an instance variable or argument class of C and adjust m2accordingly. Method m2 is lifted up in the class hierarchy, from being attached to class T tobeing attached to an instance variable class of C.For example, suppose a program is needed to parse an input using a grammar. A grammaris made up of a list of rules (productions) indexed by rule name. A fragment of the parseapplication is shown in Figure 6. This program fragment uses one acquaintance class (classBody in the method parse for Grammar).The problem with the fragment is that method lookUp of Grammar returns an object of class Bodywhich is not an instance variable class of Grammar. To transform the �rst method into goodstyle, we must make the lookUp method return an instance of Rule and then adjust parseDetails.Figure 7 shows the modi�ed version. The improved program fragment uses no acquaintanceclass.But this lifting approach does not always work, consider Figure 8. This program fragment usesone acquaintance class (class Rule in method parse of Grammar). Here, we cannot transform the�rst method into good style by lifting the return type of the lookUp method.Pushing. This technique is applicable in cases 1 and 2 (i.e. T is a part class of C and Cis a part class of T respectively). The second case is slightly more complicated as it involves15

class Grammar is listrepeat fRulegend Grammarclass Rule has partsbody : Bodyend class Rule Flavors:(defmethod (Grammar :parse) (ruleName :type Symbol)(send (send self ':lookUp ruleName) ':parseDetails))(defmethod (Grammar :lookUp) (ruleName :type Symbol)... (send (send rule ':lookUp ruleName) ':getBody))(defmethod (Body :parseDetails) ()...)C++:void Grammar::parse(Symbol* ruleName)fthis ! lookUp(ruleName) ! parseDetails();gBody* Grammar::lookUp(Symbol* ruleName)f...return rule ! lookUp(ruleName) ! getBody();gvoid Body::parseDetails()f ...g
Figure 6: Example code that violates the Law of Demeter

16

Flavors(defmethod (Grammar :parse) (ruleName :type Symbol)(send (send self ':lookUp ruleName) ':parseDetails))(defmethod (Grammar :lookUp) (ruleName :type Symbol)... (send rule ':lookUp ruleName))(defmethod (Rule :parseDetails) ()..(send self ':getBody) ...)C++:void Grammar::lookUp(Symbol* ruleName)fthis ! lookUp(ruleName) ! parseDetails();gRule* Grammar::lookUp(Symbol* ruleName)f...return rule ! lookUp(ruleName);gvoid Rule::parseDetails()f... this ! getBody(); ...g Figure 7: New parse implementationclass Grammar has partsruleList : RuleListend class Grammarclass RuleList is listrepeat fRulegend RuleListclass Rule has partsruleName : Symbolend class Rule
Flavors(defmethod (Grammar :parse) (ruleName :type Symbol)(send (send-self ':lookUp ruleName) ':parseDetails))(defmethod (Grammar :lookUp) (ruleName :type Symbol); returns object of type Rule...(send ruleList ':lookUp ruleName))(defmethod (RuleList :lookUp) (ruleName :type Symbol)....)(defmethod (Rule :parseDetails) ()....)C++:void Grammar::parse(Symbol* ruleName)fthis ! lookUp(ruleName) ! parseDetails();gRule* Grammar::lookUp(Symbol* ruleName)f ...ruleList! lookUp(ruleName);gvoid RuleList::lookUp(Symbol* ruleName)f ... gvoid Rule::parseDetails()f ... g Figure 8: Law violation that cannot be �xed with the lifting technique.17

traveling up the object hierarchy but the general technique is the same as for the �rst case.The pushing technique is just a variation of the top-down programming technique of pushingthe responsibility for doing the work to a lower level procedure.In the lifting example, a problem arose because the Grammar class has the task of sending theparseDetails message. This task is really the responsibility of class RuleList which knows moreabout Rule details than Grammar. Figure 9 shows an improved design that does not use anyacquaintance classes. This is also the technique used in Figure 4 to write searchGoodStyle.Flavors :(defmethod (Grammar :parse) (ruleName)(send self ':lookUpParse ruleName))(defmethod (Grammar :lookUpParse) (ruleName)(send ruleList ':lookUpParse ruleName))(defmethod (RuleList :lookUpParse) (ruleName)(send (send-self ':lookUp ruleName) ':parseDetails))C++:void Grammar::parse(Symbol* ruleName)fthis ! lookUpParse(ruleName);gvoid Grammar::lookUpParse(Symbol* ruleName)fruleList ! lookUpParse(ruleName);gvoid RuleList::lookUpParse(Symbol* ruleName)fthis ! lookUp(ruleName) ! parseDetails();g
Figure 9: Example transformed with the pushing technique.The redesign has introduced an additional method. If list classes are viewed as stable (forexample, as is the case in Smalltalk), there is no need for the redesign and it is justi�ed to keepthe acquaintance class.8 ConclusionThis paper introduced a simple rule which, when followed, results in the production of struc-tured and maintainable object-oriented software. The rule, called the \Law of Demeter",encodes the ideas of data hiding and encapsulation in an easy to follow form for the object-18

oriented programmer. The resulting code is more robust, allowing individual classes to beredesigned while leaving most of the remaining software intact. Furthermore, by e�ectivelyreducing the e�ects of local changes to a software system, adherence to the Law can reducemany of the headaches of software maintenance.But following the Law exacts a price. The greater the level of interface restriction (a re�nementof hiding), the greater the penalties are in terms of the number of methods, execution speed,number of arguments to methods and sometimes code readability.But in the long term these are not fatal penalties. We have found that packaging the re-lated methods and de�nitions together helps signi�cantly in organizing the increased numberof smaller methods [Lie92]. This facility along with the support of an interactive CASE envi-ronment can erase some of the penalties of following the Law. The Demeter System includes aformalism, and a code generation mechanism, called Propagation Patterns [LXSL91, LHSLX92]which removes most of the programming burden of following the Law. This utility generatesmajor parts of the required code. The execution-speed problem can be countered by usingpreprocessor or compiler technologies like in-line code expansion or code optimization similarto the way tail recursion optimization is done.In the application of the Law throughout the development of the Demeter System the Lawnever prevented us from achieving our algorithmic goals although some the methods needed tobe rewritten. This task was not di�cult and the results were generally more satisfying.Acknowledgements We would like to thank Gar-Lin Lee for her feedback and contributionsduring the development of the ideas in this paper. Thanks also to Jing Na who, along withGar-Lin, tested the practicality of using the Law during the production of some of the Demetersystem software. Mitch Wand was instrumental in initiating the investigation into the weakand strong interpretations. Carl Wolf suggested that the object version of the Law is the oneto be followed conceptually. Special thanks are due to Arthur Riel who was a principal authoron earlier versions of this paper.Members of the CLOS community (Daniel Bobrow, Richard Gabriel, Jim Kempf, Gregor Kicza-les, Alan Snyder, etc.) have participated in the debate and/or formulation of the CLOS versionof the Law.We would like to thank Markku Sakkinen for his interesting paper [Sak88] and his helpful mailmessages about the Law of Demeter. Cindy Brown and Mitch Wand convinced us that weshould use a more readable notation than EBNF and they helped us in designing it. PaulSteckler and Ignacio Silva-Lepe made several contributions to the extended Demeter notation.sectionBibliographic Note Earlier reports on the the work described in this paper have appearedas [LHR88, LH89b, LH89a].References[Boo91] Grady Booch. Object-Oriented Design With Applications. Benjamin/CummingsPublishing Company, Inc., 1991.[Bud91] TimothyBudd. An Introduction to Object-Oriented Programming. Addison Wesley,1991. 19

[Cas90] Eduardo Casais. Managing class evolution in object-oriented systems. In Den-nis Tsichritzis, editor, Object Management, pages 133{195. Centre UniversitaireD'Informatique, Gen�eve, 1990.[EW88] D. W. Embley and S.N. Wood�eld. Assessing the quality of abstract data typeswritten in Ada. In International Conference on Software Engineering, pages 144{153, Singapore, 1988. IEEE.[Gra91] Ian Graham. Object-oriented methods. Addison-Wesley, 1991.[HB77] Carl Hewitt and H. Baker. Laws for communicating parallel processes. In IFIPCongress Proceedings, pages 987{992. IFIP (International Federation for Informa-tion Processing), August 1977.[Hei67] J.V. Heijenoort. From Frege to G�odel. Harvard University Press, 1967.[KP86] Ted Kaehler and Dave Patterson. A Taste of Smalltalk. Norton, 1986.[LG86] Barbara Liskov and John Guttag. Abstraction and Speci�cation in Program De-velopment. The MIT Electrical Engineering and Computer Science Series. MITPress, McGraw-Hill Book Company, 1986.[LH89a] Karl J. Lieberherr and Ian Holland. Assuring good style for object-oriented pro-grams. IEEE Software, pages 38{48, September 1989.[LH89b] Karl J. Lieberherr and Ian Holland. Formulations and Bene�ts of the Law ofDemeter. SIGPLAN Notices, 24(3):67{78, March 1989.[LHR88] Karl J. Lieberherr, Ian Holland, and Arthur J. Riel. Object-oriented programming:An objective sense of style. In Object-Oriented Programming Systems, Languagesand Applications Conference, in Special Issue of SIGPLAN Notices, pages 323{334, San Diego, CA., September 1988. A short version of this paper appears inIEEE Computer, June 88, Open Channel section, pages 78-79.[LHSLX92] Karl J. Lieberherr, Walter H�ursch, Ignacio Silva-Lepe, and Cun Xiao. Experi-ence with a graph-based propagation pattern programming tool. In InternationalWorkshop on CASE, Montr�eal, Canada, 1992. IEEE Computer Society.[Lie88] Karl Lieberherr. Object-oriented programming with class dictionaries. Journal onLisp and Symbolic Computation, 1(2):185{212, 1988.[Lie92] Karl J. Lieberherr. Component Enhancement: An Adaptive Reusability Mecha-nism for Groups of Collaborating Classes. In J. van Leeuwen, editor, InformationProcessing '92, 12th World Computer Congress, Madrid, Spain, 1992. Elsevier.[LR88] Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of software growththrough parameterized classes. Journal of Object-Oriented Programming, 1(3):8{22, August, September 1988. A shorter version of this paper was presented at the10th International Conference on Software Engineering, Singapore, April 1988,IEEE Press, pages 254-264.[LXSL91] Karl Lieberherr, Cun Xiao, and Ignacio Silva-Lepe. Propagation patterns: Graph-based speci�cations of cooperative behavior. Technical Report NU-CCS-91-14,Northeastern University, September 1991.20

[PCW85] David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modularstructure of complex systems. IEEE Transactions on Software Engineering, SE-11(3):259{266, 1985.[PCW86] David Lorge Parnas, Paul C. Clements, and David M.Weiss. Enhancing reusabilitywith information hiding. In Peter Freeman, editor, Tutorial: Software Reusability,pages 83{90. IEEE Press, 1986.[Sak88] Markku Sakkinen. Comments on \the Law of Demeter" and C++. SIGPLANNotices, 23(12):38{44, December 1988.[Sny87] Alan Snyder. Inheritance and the development of encapsulated software systems.In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-OrientedProgramming, pages 147{164. The MIT Press, 1987.[WBW89] Rebecca Wirfs-Brock and Brian Wilkerson. Object-oriented design: Aresponsibility-driven approach. In Object-Oriented Programming Systems, Lan-guages and Applications Conference, in Special Issue of SIGPLAN Notices, pages71{76, New Orleans, LA, 1989. ACM.

21

