Assuring Good Style for Object-Oriented Programs

Karl J. Lieberherr and Tan Holland
Northeastern University, College of Computer Science
Cullinane Hall, 360 Huntington Ave., Boston, MA 02115
lieber@ccs.neu.edu, phone: (617) 373 2077

Abstract

We introduce a simple, programming language independent rule (known in-house as
the Law of Demeter) which encodes the ideas of encapsulation and modularity in an
easy to follow form for the object-oriented programmer. The rule achieves the following
related benefits if code duplication, the number of method arguments and the number
of methods per class are minimized: Easier software maintenance, less coupling between
your methods, better information hiding, methods which are easier to reuse, and easier
correctness proofs using structural induction. We show relationships between the Law and
software engineering techniques, such as coupling control, information hiding, information
restriction, localization of information, narrow interfaces and structural induction. We
discuss two important interpretations of the Law (strong and weak) and we prove that
any object-oriented program can be transformed to satisfy the Law. We express the
Law in several languages which support object-oriented programming, including Flavors,

Smalltalk-80, CLOS, C++ and Eiffel.

Keywords: Object-oriented programming, programming style, design style, software engineer-
ing principles, software maintenance and reusability.

1 Introduction

This paper describes the object-oriented programming style rule called The Law of Demeter.
Along with the ‘goto-rule’ and other programming style rules inherited from the procedural
programming paradigm, many of which still apply, the Law should be part of the programming
knowledge that is considered when implementing object-oriented software. It is a partial re-
sponse to the questions: “When is an object-oriented program written in good style?” | “Is there
some formula or rule which one can follow in order to write good object-oriented programs?”,
“What metrics can we apply to an object-oriented program to determine if it is ‘good’?”, and
“What are the characteristics of good object-oriented programs?”. In addition, it helps to
formalize the existing ideas on these issues that can be found in the literature [KP86] [Sny87].

There are two kinds of style rules for object-oriented programming: rules that constrain the
structure of classes and rules that constrain the implementation of methods. Style rules that
influence the structure of classes have been published elsewhere [Lie88]. The focus of this
paper is on a style rule that restricts how methods are written for a set of class definitions. In
particular, the Law restricts the message-sending statements in method implementations.

Informally, the Law says that any object receiving a message in a given method must be one
of a restricted set of objects. This set of preferred objects includes the method arguments, the

self pseudo-variable, and to the immediate subparts of self. The self object in Smalltalk and
Flavors is called this in C+4 and current in Eiffel.

The Law of Demeter is named after the Demeter System™ | which provides a high-level inter-
face to class-based object-oriented systems, and the Demeter Research Group at Northeastern
University, which develops the system. The Group has applied the Law in the development of
the system itself (formally about fourteen thousand lines of Lisp/Flavors and now about ninety
thousand lines of C++ code) and in the implementation of numerous applications developed
with the system.

Our experience has been that the Law promotes maintainability and comprehensibility of the
software. This is a result of the small method size and the predicable message-passing patterns,
both of which are caused by the application of the Law. In other words, following the Law in
concert with rules such as, minimizing code duplication, minimizing the number of arguments,
and minimizing the number of methods, produces code with a characteristic and manageable
form.

We have also seen that adherence to the Law prevents programmers from encoding details of
the class hierarchy structure in the methods. This is critical to the goal of making the code
robust with respect to changes in the hierarchy structure. These changes occur very frequently
in the early stages of development.

The goal of the Law of Demeter is to organize and reduce the behavioral dependencies between
classes. Informally, one class behaviorally depends on another class when it calls a method
(through a message sent to an object) defined in the other class. The behavioral dependencies
encoded in the methods of an object-oriented program determine the complexity of the pro-
gram’s control flow and the level of coupling between the classes. This paper examines these
relationships and illustrated how the Law impacts their existence.

Some other work describing the Law includes [LHR88] where we presented a proof which states
that any object-oriented program written in bad style can be transformed systematically into
a program obeying the Law of Demeter. The implication of this proof is that the Law of
Demeter does not restrict what a programmer can solve, it only restricts how he or she solves
it. We have also formulated interpretations of the Law for multiple programming languages
[LH89b]. Third party commentary on the Law includes [Boo91, Sak88, Bud91, Gra91]. The
thesis of Casais [Cas90] examines the Law in depth and assesses its favorable impact on the
problem of providing automatic support for rewriting code in response to changes in the class
hierarchy. A slight dissenting voice was raised by Wirfs-Brock et. al [WBW89] who prefer a
function centered approach to object-oriented design rather than the data centered approach
of Demeter.

The examples in this paper are written in the extended notation of the Demeter system.
Section2 describes Demeter and its notation. The sections which follow will define the Law of
Demeter both formally and through examples, examining both practical and theoretical issues.

2 Demeter

The key contribution of the Demeter system is to improve programmer productivity by sev-
eral factors. This is achieved in a number of ways. First, Demeter provides a comprehensive
standard library of utilities. Second, a significant amount of code is generated from the pro-
grammers object-oriented design. Third, Demeter includes a number of tools that automate
common programming practices.

The key ideas behind the Demeter system are to use a more expressive class notation than in
existing object-oriented languages and to take advantage of the added information by providing
many custom-made utilities. These utilities are provided for a specific object-oriented language
like C4++ or Flavors and greatly simplify the programming task.

Examples of utilities Demeter generates or provides generically are: class definitions in a pro-
gramming language, application skeletons, parsers, pretty printers, type checkers, object edi-
tors, re-compilation minimizers, pattern matchers and unifiers. The Demeter system helps the
programmer define the classes (both their structure and functionality) with several support
tools, including a consistency checker (semantic rules and type checking at the design level), a
learning tool which learns class definitions from example object descriptions, an LL(1) corrector
and an application-development plan generator [Lie88] [LR88]. The explanations and examples
presented in this paper are written in the extended Demeter notation which is described below.

One of the primary goals of the Demeter system is to develop an environment that eases the
evolution of a class hierarchy. Such an environment must provide tools for the easy updating of
existing software (the methods or operations defined on the class hierarchy). We are striving to
produce an environment that will let software be ‘grown’ in a continuous fashion. We believe a
continuous-growth environment will lead to a rapid prototyping/system-updating development
cycle.

The primary input to the system is a collection of class definitions. This collection is called
a class dictionary. Classes are described in Demeter using three kinds of class definitions:
construction, alternation, and repetition. The class dictionary shown in Figure 1 partially
defines the structure of a lending library.!

1. A construction class definition is used to build a class from a number of other classes and
1s of the form

class C has parts
partNamey : SCy
partNames : SC»

partNamey, : SC,
end class C

Here C is defined as being made up of n parts (called its instance variable values),
each part has a name (called an instance variable name) followed by a type (called an
instance variable type). This means that for any instance (or member) of class C the name
part N ame; refers to a member of class SC;. The example shown in Figure 1 describes a
library class as consisting of a reference section, a loan section, and a journal section.

We use the following naming convention: instance variable names begin with a lower case

letter and class names begin with an upper case letter.

2. An alternation class definition allows us to express a union type. A class definition of the
form

1We use two notations in the Demeter system. This introductory paper uses the extended notation. A
concise notation based on EBNF is used in later papers of the thesis. The abstract syntax of the concise and
the abstract syntax of the extended notation are identical: only the “syntactic sugar” is changed.

class Library has parts class BooksSec has parts

reference : ReferenceSec refBooks : ListofBooks
loan : LoanSec refCatalog : Catalog
journal : JournalSec end class BooksSec

end class Library

class ListofBooks is list

. repeat {Book}
class Bookldentifier is either end ListofBooks

ISBN or LibraryOfCongress

end class Bookldentifier class Catalog is list

repeat {CatalogEntry}
end Catalog
class ReferenceSec has parts
refBookSec : BooksSec
archive : Archive
end class ReferenceSec

class Book has parts
title : String
author : String
id : Bookldentifier
end class Book
class Archive has parts
archMicrofiche : MicroficheFiles
archDocs : Documents
end class Archive

Figure 1: Library class dictionary

class C is either
Aor B
end class C

states that a member of C is a member of class A or class B (exclusively). For example, the
definition of Bookldentifier in Figure 1, expresses the notion that when somebody refers
to the identifier of a book they are actually referring to its ISBN code or its Library of
Congress code.

3. A repetition class definition is simply a variation of the construction class definition where
all the instance variables have the same type and the programmer does not specify the
number of instance variables involved. The class definition

class C is list
repeat {A}
end C

defines members of C to be lists of zero or more instances of A.

3 Forms of the Law

The Law of Demeter has two basic forms: the object form and the class form. The object form
is the primary form. However, it is not possible to statically check code with respect to the

object form. The two versions of the class form are compile-time checkable approximations.

The two versions of the class form are called the strict form and the mintmization form. The
strict version rigorously restricts the dependencies between classes. However, in practice, it is
difficult to completely adhere to the strict version. These potential ‘law-breaking’ situations
are discussed below. The minimization version is the weakest expression of the Law and is
phrased as a guideline rather than a strict rule. It allows additional dependencies between
classes but asks the object-oriented programmer to minimize them and to document them by
declaring special acquaintance classes.

3.1 Object form

The object version of the Law 1s based on the concept of preferred supplier objects. These are

defined as follows:

Definition : A supplier object to a method M is an object to which a

message is sent in M. The preferred supplier objects to method M are:

e the immediate parts of self or
e the argument objects of M or

e the objects which are either objects created directly in M or objects in

global variables.

The programmer determines the granularity of the phrase “immediate subparts” of self for the
application at hand. For example, the immediate parts of a list class are the elements of the
list. The immediate parts of a “regular” class object are the objects stored in its instance
variables.

In theory, every object i1s a potential supplier to any particular method. When a supplier
object 1s sent a message in a method, the flow of control passes from the method to a method
implemented for the message receiver. However, the presence of dynamic binding and method
overriding in object-oriented programming languages can make i1t difficult to statically deter-
mine how control flows from one method to the next. By restricting the set of supplier objects
we can contain the level of difficulty per method.

Definition : Object version of the Law of Demeter: Every supplier object

to a method must be a preferred supplier.

The object form expresses the spirit of the basic law and serves as a conceptual guideline
for the programmer to approximate. While the object version of the Law expresses what is
really wanted, it is hard to enforce at compile-time [LHR88]. The object version serves as an
additional guide whenever the strict class version of the Law accepts a program which appears
to be in bad style or when the strict class version of the Law rejects a program which appears
to be in good style.

Client. Method M is a client of method f attached to class C if inside M message f
is sent to an object of class C or to C. If f is specialized in one or more subclasses
then M is only a client of f attached to the highest class in the hierarchy. Method M

is a client of class C if it is a client of some method attached to C.

Supplier. If M is a client of class C then C is a supplier to M. Informally, a supplier

class to a method is a class whose methods are called in the method.

Acquaintance class. A class C1is an acquaintance class of method M attached to

class C2, if C1 is a supplier to M and C1 is not

¢ the same as C2
e a class used in the declaration of an argument of M

o a class used in the declaration of an instance variable of C2

Preferred-acquaintance class. A preferred-acquaintance class of method M is
either a class of objects created directly in M or a class used in the declaration of a

global variable used in M.

Preferred-supplier class. Class B is called a preferred supplier to method M
(attached to class C) if B is a supplier to M and one of the following conditions
holds:

o B is used in the declaration of an instance variable of C or

e B is used in the declaration of an argument of M, including C and its super-

classes, or

e B is a preferred acquaintance class of M.

Preferred supplier classes

Acquaintance classes
[

Instance variable
and
argument classes

[

Preferred acquaintance
classes

Supplier classes

Table 1:

3.2 Class form

The class form’s versions are expressed in terms of classes and can be supported by a compile-
time law-enforcement tool. Paralleling the object form, the strict version is based on the notion
of preferred supplier which is defined in table 1.

Figure 2 shows five examples of massages being sent to objects and of preferred-supplier classes.
To send a message f to object s, we use the C++ notation (s — f() is the same as “send s the
message f')’. In Figure 2 class B is a preferred supplier to method M and M is a preferred client
of B. The *;’ is the comment character which starts a comment line.

class C has parts class C has parts
s: B : none
implements interface implements interface
M() : Ident M() : Ident
{calls s — f()} ; newObject is a new B instance
; Ident is M's return type {calls newObject — f()}
end class C end class C
Case 1: Instance variable class. Case 4: Newly created object class.
class C has parts class C has parts
; none ; none
implements interface implements interface
M(s : B) : Ident M() : Ident
{calls s — f()} {calls s — f()}
end class C end class C
Case 2: Argument class. Case 5: Global class. s is global of type B.

class B has parts

; none
implements interface
M() : Ident

{calls self — ()}
. in C4+4+ self is called this
end class B

Case 3: Argument class (self).

In each case, class B is a preferred supplier to M

Figure 2: Examples of preferred suppliers.

As before, every class in an object-oriented program is a potential supplier of any method.
However, it is best to limit the suppliers to a method to a small set of preferred classes. To
define these preferred suppliers we introduce the concept of an acquaintance class of a method
([Sak88], [HB77]). A precise definition of an acquaintance relies on a class version of the
supplier concept. Informally, a method’s supplier class is a class whose methods are called in

the method.

The definitions make a distinction between the classes associated with the declaration of the
method and the classes used in the body of the method. The former includes the class where
the method is attached, its superclasses, the classes used in the declarations of the instance
variables and the classes used to declare the arguments of the method. In some sense, these are
an ‘automatic’ consequence of the method declaration. They can be easily derived from the
code and shown by a browser. All other supplier classes to the method are introduced in the
body of the method. They can only be determined by a careful reading of the implementation.
This second set of classes are the acquaintance classes. To show these classes within a code
browser would require a complete symbol table of the program.

The set of acquaintance classes are further partitioned into a preferred acquaintance subset and
it’s complement. A method’s preferred acquaintance class is either a class of objects created
directly in the method (by calling the acquaintance class’s constructor) or a class used to
declare a global variable used in the method.

Given these definitions, the strict version of the Law of Demeter’s class form says:

Definition : Strict form of the Law of Demeter : Every supplier class to a

method must be a preferred supplier.

There are several benefits which result from applying the strict version of the Law’s class form.
For example, if the interface of class A changes, then only the preferred-client methods of class
A and its subclasses require modification (provided that the changes required in the preferred
client methods do not change the interfaces of those classes). A class’s interface can change in
many ways. For example, the programmer might modify an interface by changing an argument
or return type, by changing the name of a method, or by adding or deleting a method. A
class’s preferred-client methods are usually a small subset of all the methods in a program; this
reduces the set of methods that need to be modified. This benefit clearly shows that the Law
of Demeter limits the repercussions of change.

Using the Law can also control the complexity of programming. For example, a programmer
reading a method needs to be aware of only the functionality of the method’s preferred supplier
classes. These preferred suppliers are usually a small subset of the set all the classes in the
application and furthermore, they are “closely related” to the class to which the method is
attached. This relationship makes it easier to remember those classes and their functionality.

The second class version is more lenient than the strict form because it allows some non-
preferred supplier classes. In practice, it makes sense to allow some of these other acquaintance
classes. However, we suggest that the programmer clearly document the violations in order to
recover the Law’s benefits. Acquaintance classes are typically used for three reasons:

e Stability: If a class is stable and/or if its interface will be kept upwardly compatible, it
malkes sense to use it as an acquaintance class in all methods. The programmer specifies
such “global” acquaintance classes separately and they are included in the acquaintance
classes of all methods.

e FEfficiency: The programmer might need to directly access instance variables of certain
other classes to increase run-time efficiency. In C++4 terminology, these are classes of
which the method is a friend function.

e Object construction.

The permissive minimization version of the Law of Demeter is stated as follows:

Definition : Minimization form of Law of Demeter: Minimize the number

of acquaintance classes of each method.

We can count the number of acquaintance classes for all methods to assess the level of confor-
mance of a program to the Law. If a class appears as an acquaintance class of several methods,
it 1s counted as many times as it appears.

If a statically typed language like C++4 or Eiffel is extended with a facility to declare acquain-
tance classes, the compiler can be modified in a straightforward way to check adherence to
the minimization version in the following sense: Each supplier that 1s an acquaintance class
must be explicitly declared in the list of the method’s acquaintance classes. To easily check
the Law at compile time or even at design time, the programmer must provide the following
documentation for each method:

1. the types of each of the arguments and the result

2. the acquaintance classes.

The documentation gives programmers reading the method a list of the types they must know
about to understand the method. The compiler can check the completeness of each method’s
documentation by examining the messages sent in the method and the classes of the objects
created directly by the method.

4 Principles

The motivation behind the Law of Demeter is to ensure that the software is as modular as
possible. The Law effectively reduces the occurrences of certain nested message sends (function
calls) and simplifies the methods.

The Law of Demeter has many implications for widely known software engineering principles.
Our contribution is to condense many of the proven principles of software design into a single
statement that can be easily followed by object-oriented programmers and easily checked at
compile-time.

Principles covered by the Law include:

e Coupling control. It is a well-known principle of software design to have minimal coupling
between abstractions (like procedures, modules, methods) [EW88]. The coupling can be
along several links. An important link for methods is the “uses” link (or call/return
link) that is established when one method calls another method. The Law of Demeter
effectively reduces the methods the programmer can call inside a given method and
therefore limits the coupling of methods with respect to the “uses” relation. The Law
therefore facilitates reusability of methods and raises the software’s level of abstraction.

e Information hiding. The Law of Demeter enforces one kind of information hiding: struc-
ture hiding. In general, the Law prevents a method from directly retrieving a subpart of
an object which lies deep in that object’s “part-of” hierarchy. Instead, the programmer
must use intermediate methods to traverse the “part-of” hierarchy in controlled small

steps [LG86].

In some object-oriented systems, the programmer can protect some of the instance vari-
ables or methods of a class from outside access by making them private. This important
feature complements the Law to increase modularity but is orthogonal to it. The Law
promotes the 1dea that the instance variables and methods which are public should be
used in a restricted way.

e Information restriction. Our work is related to the work by Parnas et al. [PCW85]
[PCW86] on the modular structure of complex systems. To reduce the cost of software
changes in their operational flight program for the A-TE aircraft they restricted the
use of modules that provide information that is subject to change. We take this point
of view seriously in our object-oriented programming and assume that any class could
change. Therefore, we restrict the use of message sends (function calls) by the Law
of Demeter. Information restriction complements information hiding: Instead of hiding
certain methods, they are made public but their use is restricted. Information restriction
does not offer the same level of protection as information hiding. However, when hiding
it 1s not feasible, restriction offers a level of protection.

o Localization of information.? Many software engineering textbooks stress the importance
of localizing information. The Law of Demeter focuses on localizing class information.
When programmers study a method they only have to be aware of types which are very
closely related to the class to which the method is attached. They can effectively be
ignorant (and independent) of the rest of the system. As the saying goes, ‘ignorance
is bliss’. This important aspect of the Law helps reduce programming complexity. In
addition, the Law also controls the visibility of message names. Programmers can only
use message names in the interfaces of the preferred-supplier classes to a given method.

e Structural induction. The Law of Demeter is related to the fundamental thesis of Deno-
tational Semantics. That is, “The meaning of a phrase is a function of the meanings of
its immediate constituents”. This goes back to Frege’s work on the principle of composi-
tionality in his Begriffsschrift [Hei67]. The main motivation behind the compositionality
principle 1s that it facilitates structural induction proofs.

5 Example

This section shows how to apply the Law of Demeter to a program that violates both the strict
and the minimization versions of the Law’s class form. For this example, we use the classes
defined by the class dictionary fragment for a library shown in Figure 3.

The methods of the example are written in C++. However, the text should be comprehensible
for users of other object-oriented programming languages. In C+4 terminology, a method is
called a ‘function member’ and an instance variable is called a ‘data member’. In the following
C++ code, the types of data members and function member arguments are pointer types to
classes.

The fragment of a C+4 program in Figure 4 searches the reference section for a particular
book. (To keep the example small, we use direct access to instance variables instead of using
access methods.) The searchBadStyle function attached to ReferenceSec passes the message on to
its book (BooksSec), microfiche (MicroficheFiles) and document sections (Documents).

This function breaks the Law of Demeter. The first message marked /**/ sends the message
archMicrofiche to archive which returns an object of type MicroficheFiles. The method next sends

?Peter Wegner pointed out this aspect of the Law.

10

class Library has parts class MicroficheFiles has parts
reference : ReferenceSec
loan : LoanSec end class MicroficheFiles
journal : JournalSec

end class Library

class Documents has parts

class Bookldentifier is either end class Documents
ISBN or LibraryOfCongress
end class Bookldentifier

class BooksSec has parts

class ReferenceSec has parts end class BooksSec
refBookSec : BooksSec
archive : Archive

end class ReferenceSec

class Archive has parts
archMicrofiche : MicroficheFiles
archDocs : Documents

end class Archive

Figure 3: Library revisited

this returned object the search message. However, MicroficheFiles is not an instance variable or
argument type of class ReferenceSec.

Because the structure of each classes is clearly defined by the class dictionary, the programmer
might be tempted to accept the method searchBadStyle in Figure 4 as a reasonable solution.
But consider a change to the class dictionary. Assume the library installs new technology and
replaces the microfiche and document sections of the archive with CD-ROMs or Video-Discs:

class Archive has parts
cdRomArch : CDRomFile
end class Archive

class CDRomFile has parts
cdCSystem : ComputerSystem
discs : CDRomDiscs

end class CDRomFile

The programmer now has to search all of the methods, including the searchBadStyle method,
for references to an archive with microfiche files. It would be easier to limit the modifications
only to those methods which are attached to class Archive. This is accomplished by rewriting
the methods in good style resulting in searchGoodStyle functions attached to ReferenceSec and
Archive.

Using good style also reduces the coupling respect to the “uses” relation: In the original

11

class ReferenceSec {
public:
Archive* archive;
BookSec* refBookSec;

boolean searchBadStyle(Book* book) {
return
(refBookSec — search(book) ||

/**/ archive — archMicrofiche — search(book) ||

/**/ archive — archDocs — search(book));

}

boolean searchGoodStyle(Book* book) {
return
(refBookSec — search(book) ||
archive — searchGoodStyle(book));
}
b

class Archive {

public:
MicroficheFiles* archMicrofiche;
Documents* archDocs;

boolean searchGoodStyle(Book* book) {
return
(archMicrofiche — search(book) ||
archDocs — search(book));
}

b

class MicroficheFiles {
public:

boolean search(Book* book)
%

class Documents {
public:

boolean search(Book* book)
%

class Book {....};

Figure 4: C4+ fragment to search the reference section.

12

version, ReferenceSec was coupled with BooksSec, Archive, MicroficheFiles and Documents, but now
it 1s coupled only with BooksSec and Archive.

Another way to examine the effects of using the Law is to translate a program, in both good
and bad style, into a dependency graph. In the graphs, the nodes of the graph are classes. An
edge from class A to class B has an integer label which indicates how many calls are written in
the text of the functions of A to the functions of B. If a label is omitted from an edge, it means
that its value 1s 1. Access to an instance variable is interpreted as a call to read the instance
variable. Figure ba shows the graph for the program which violates the Law of Demeter; Figure
5b shows the graph for the one that follows the Law.

- Microfichefiles - Microfichefiles

(@)

Figure 5: Dependency graph representation

._‘e .

6 Valid violations

The Law of Demeter is intended to act as a guideline, not as an absolute restriction. The
minimization version of the Law’s class form gives programmers a choice of how strongly they
want to follow the Law: The more non-preferred acquaintance classes used, the weaker the
adherence to the strict version. In some situations, the cost of obeying the strict version of the
Law may be greater than the benefits. However, when programmers willingly violate the Law,
they take on the responsibility of declaring the required acquaintance classes. This is critical
documentation for future maintenance of the software.

As an example of where the cost of applying the Law is higher than its benefits, consider the
following prototypical method which is in bad style, coded in both Flavors and C++:

Flavors:
(defmethod (C :M) (p)
(... (send (send p :F1) :F2)))

C++:
void C::M(D* p)
{..p—F1() = F20); ... };

where p is an instance of class A and F1 returns a subpart of p. If the immediate composition
of A changes the method M may have to change also because of F1.

13

There are two situations when it is reasonable to leave the above as it 1s:

e Il is intended to serve as a “black box” and the programmer knows only about the
types of its arguments and the return type. In this case, the maintainer of F1 has the
responsibility to ensure that any updates to F1 are upwardly compatible so programmers
of the function are not penalized for using it.

e If run-time efficiency is important to the application, the use of mechanisms such as the
C++ friend function feature may be necessary. Friend functions should be used carefully,
since whenever the private members of a class change, the friend functions of the class
may also require change.

Consider another example that shows where the costs of using the Law might outweigh its
benefits. For an application which solves differential equations the class dictionary may have
the following definitions:

class ComplexNumber has parts
realPart : Real
imaginaryPart : Real

end class ComplexNumber

Flavors:

(defmethod (Vector :R) (¢ :ComplexNumber)
(... (send (send c :realPart) :project self) ...))

C++:
void Vector::R(ComplexNumber* c)
{ ..., ¢ — realPart — project(this); ... }

The method R is in the same form as M in the previous example and is in bad style for the same
reason. The question here 1s whether 1t is important to hide the structure of complex numbers
and to rewrite the method. In this application, where the concept of a complex number is well
defined and well understood, it is unnecessary to rewrite the method so that the Law is obeyed.

In general, if the application concepts are well defined and the classes which implement those
concepts are stable, in the sense that they are very unlikely to change, then such violations as
the above are acceptable.

Our experience has been that writing programs which follow the Law of Demeter decreases
the occurrences of nested message sending and decreases the complexity of the methods, but it
increases the number of methods. The increase in methods is related to the problem outlined
in [LG86] which is that there can be too many operations in a type. In this case the abstraction
may be less comprehensible, and implementation and maintenance are more difficult. There
might also be an increase in the number of arguments passed to some methods.

One way of correcting this problem is to organize all the methods associated with a particular
functional (or algorithmic) task into “Modula-2 like” module structures as outlined in [LR88].
The functional abstraction is no longer a method but a module which will hide the lower-level
methods.

14

7 Conforming to the Law

Given a method which does not satisfy the Law, how can a programmer transform it so that it
conforms to the Law? In [LHR88] we described an algorithm to transform any object-oriented
program into an equivalent program which satisfies the Law. In other words, we showed that
we can translate any object-oriented program into a “normal form” which satisfies the Law’s
strict version.

There are other, less automatic, ways to achieve this goal which may help to derive more
readable or intuitive code. These also may help to minimize the number of arguments passed
to methods and the amount of code duplication. Two such techniques are called lifting and
pushing.

To explain these techniques, we need a preliminary definition. We say that class B is a part-
class of class A, if B is the class of one of A’s instance variables or B 1s a part-class of a class
of one of A’s instance variables.

Consider the method:

Flavors:
(defmethod (C :M) ()
(send (send self :m1) :m2))

C++:
void C::M()
{this — m1() — m2();}

and T is the class of the object returned by m1. T is not a preferred supplier class of M. We
distinguish two cases:

1. T is a part-class of C.

2. Cis a part-class of T.

Lifting. This technique is applicable in the first case (T is a part-class of C). The idea is
to make m1 return an object of an instance variable or argument class of C and adjust m2
accordingly. Method m2 is lifted up in the class hierarchy, from being attached to class T to
being attached to an instance variable class of C.

For example, suppose a program is needed to parse an input using a grammar. A grammar
is made up of a list of rules (productions) indexed by rule name. A fragment of the parse
application is shown in Figure 6. This program fragment uses one acquaintance class (class
Body in the method parse for Grammar).

The problem with the fragment is that method lookUp of Grammar returns an object of class Body
which 1s not an instance variable class of Grammar. To transform the first method into good
style, we must make the lookUp method return an instance of Rule and then adjust parseDetails.
Figure 7 shows the modified version. The improved program fragment uses no acquaintance
class.

But this lifting approach does not always work, consider Figure 8. This program fragment uses
one acquaintance class (class Rule in method parse of Grammar). Here, we cannot transform the
first method into good style by lifting the return type of the lookUp method.

Pushing. This technique is applicable in cases 1 and 2 (i.e. T is a part class of C and C
is a part class of T respectively). The second case is slightly more complicated as it involves

15

class Grammar is list Flavors:
repeat {Rule} (defmethod (Grammar :parse) (ruleName :type Symbol)
end Grammar (send (send self ":lookUp ruleName) ':parseDetails))

(defmethod (Grammar :lookUp) (ruleName :type Symbol)

class Rule has parts ... (send (send rule ":lookUp ruleName) ":getBody))

body : Body
end class Rule (defmethod (Body :parseDetails) ()
C++:

void Grammar::parse(Symbol* ruleName)
{this — lookUp(ruleName) — parseDetails();}

Body* Grammar::lookUp(Symbol* ruleName)

{

return rule — lookUp(ruleName) — getBody();

}

void Body::parseDetails()

Coamnar>)
1
Croe D Cooy >

Figure 6: Example code that violates the Law of Demeter

16

Flavors
(defmethod (Grammar :parse) (ruleName :type Symbol)
(send (send self ":lookUp ruleName) ":parseDetails))

(defmethod (Grammar :lookUp) (ruleName :type Symbol)
... (send rule ":lookUp ruleName))

(defmethod (Rule :parseDetails) ()

: ..(send self ":getBody) ... 1 w

C++:
void Grammar::lookUp(Symbol* ruleName) 2
{this — lookUp(ruleName) — parseDetails();} 1

Rule* Grammar::lookUp(Symbol* ruleName) « Body

{.

return rule — lookUp(ruleName);}

void Rule::parseDetails()
{... this — getBody(); ...}

Figure 7: New parse implementation

Flavors
(defmethod (Grammar :parse) (ruleName :type Symbol)

class Grammar has parts X) .
(send (send-self ":lookUp ruleName) ':parseDetails))

ruleList : RuleList

dcl G
ena class rammar (defmethod (Grammar :lookUp) (ruleName :type Symbol)

: returns object of type Rule

class RuleList is list
repeat {Rule} (send ruleList ":lookUp ruleName))

end RuleList
(defmethod (RuleList :lookUp) (ruleName :type Symbol)

)
class Rule has parts

ruleName : Symbol (defmethod (Rule :parseDetails) ()
end class Rule)

C++:
void Grammar::parse(Symbol* ruleName)
{this — lookUp(ruleName) — parseDetails();}

Rule* Grammar::lookUp(Symbol* ruleName)

{.

ruleList — lookUp(ruleName); 1
}

void RuleList::lookUp(Symbol* ruleName) 1 1

void Rule::parseDetails() @

Figure 8: Law violation that cannot be fixed with the lifting technique.

17

traveling up the object hierarchy but the general technique is the same as for the first case.
The pushing technique is just a variation of the top-down programming technique of pushing
the responsibility for doing the work to a lower level procedure.

In the lifting example, a problem arose because the Grammar class has the task of sending the
parseDetails message. This task is really the responsibility of class Rulelist which knows more
about Rule details than Grammar. Figure 9 shows an improved design that does not use any
acquaintance classes. This is also the technique used in Figure 4 to write searchGoodStyle.

Flavors :
(defmethod (Grammar :parse) (ruleName)
(send self ":lookUpParse ruleName))

(defmethod (Grammar :lookUpParse) (ruleName)
(send ruleList ":lookUpParse ruleName))

(defmethod (RuleList :lookUpParse) (ruleName)
(send (send-self ":lookUp ruleName) ":parseDetails))

C++:
void Grammar::parse(Symbol* ruleName)
{this — lookUpParse(ruleName);}

void Grammar::lookUpParse(Symbol* ruleName)
{ruleList — lookUpParse(ruleName);}

void RuleList::lookUpParse(Symbol* ruleName)
{this — lookUp(ruleName) — parseDetails();}

' C erammar>
* et >3 e O

Figure 9: Example transformed with the pushing technique.

-—

The redesign has introduced an additional method. If list classes are viewed as stable (for
example, as is the case in Smalltalk), there is no need for the redesign and it is justified to keep
the acquaintance class.

8 Conclusion

This paper introduced a simple rule which, when followed, results in the production of struc-
tured and maintainable object-oriented software. The rule, called the “Law of Demeter”,
encodes the ideas of data hiding and encapsulation in an easy to follow form for the object-

18

oriented programmer. The resulting code is more robust, allowing individual classes to be
redesigned while leaving most of the remaining software intact. Furthermore, by effectively
reducing the effects of local changes to a software system, adherence to the Law can reduce
many of the headaches of software maintenance.

But following the Law exacts a price. The greater the level of interface restriction (a refinement
of hiding), the greater the penalties are in terms of the number of methods, execution speed,
number of arguments to methods and sometimes code readability.

But in the long term these are not fatal penalties. We have found that packaging the re-
lated methods and definitions together helps significantly in organizing the increased number
of smaller methods [Lie92]. This facility along with the support of an interactive CASE envi-
ronment can erase some of the penalties of following the Law. The Demeter System includes a
formalism, and a code generation mechanism, called Propagation Patlterns [LXSLI1, LHSLX92]
which removes most of the programming burden of following the Law. This utility generates
major parts of the required code. The execution-speed problem can be countered by using
preprocessor or compiler technologies like in-line code expansion or code optimization similar
to the way tail recursion optimization is done.

In the application of the Law throughout the development of the Demeter System the Law
never prevented us from achieving our algorithmic goals although some the methods needed to
be rewritten. This task was not difficult and the results were generally more satisfying.

Acknowledgements We would like to thank Gar-Lin Lee for her feedback and contributions
during the development of the ideas in this paper. Thanks also to Jing Na who, along with
Gar-Lin, tested the practicality of using the Law during the production of some of the Demeter
system software. Mitch Wand was instrumental in initiating the investigation into the weak
and strong interpretations. Carl Wolf suggested that the object version of the Law is the one
to be followed conceptually. Special thanks are due to Arthur Riel who was a principal author
on earlier versions of this paper.

Members of the CLOS community (Daniel Bobrow, Richard Gabriel, Jim Kempf, Gregor Kicza-
les, Alan Snyder, etc.) have participated in the debate and/or formulation of the CLOS version
of the Law.

We would like to thank Markku Sakkinen for his interesting paper [Sak88] and his helpful mail
messages about the Law of Demeter. Cindy Brown and Mitch Wand convinced us that we
should use a more readable notation than EBNF and they helped us in designing it. Paul
Steckler and Ignacio Silva-Lepe made several contributions to the extended Demeter notation.
sectionBibliographic Note Earlier reports on the the work described in this paper have appeared

as [LHR88, LH89b, LH&9a].

References

[Boo91] Grady Booch. Object-Oriented Design With Applications. Benjamin/Cummings
Publishing Company, Inc., 1991.

[Bud91] Timothy Budd. An Introduction to Object-Oriented Programming. Addison Wesley,
1991.

19

[Cas90]

[EWSS]

[Gradl]
[HB77]

[Hei67]
[KP86]
[LGS6]

[LH&9a]

[LH89b]

[LHRSS]

[LHSLX92]

[Lie88]

[Lie92]

[LR8S]

[LXSL91]

Eduardo Casais. Managing class evolution in object-oriented systems. In Den-
nis Tsichritzis, editor, Object Management, pages 133-195. Centre Universitaire
D’Informatique, Geneéve, 1990.

D. W. Embley and S.N. Woodfield. Assessing the quality of abstract data types
written in Ada. In International Conference on Software Engineering, pages 144—

153, Singapore, 1988. IEEE.
Tan Graham. Object-oriented methods. Addison-Wesley, 1991.

Carl Hewitt and H. Baker. Laws for communicating parallel processes. In [FIP
Congress Proceedings, pages 987-992. IFTP (International Federation for Informa-
tion Processing), August 1977.

J.V. Heijenoort. From Frege to Godel. Harvard University Press, 1967.
Ted Kaehler and Dave Patterson. A Taste of Smalltalk. Norton, 1986.

Barbara Liskov and John Guttag. Abstraction and Specification in Program De-
velopment. The MIT Electrical Engineering and Computer Science Series. MIT
Press, McGraw-Hill Book Company, 1986.

Karl J. Lieberherr and Tan Holland. Assuring good style for object-oriented pro-
grams. [FEFE Software, pages 38-48, September 1989.

Karl J. Lieberherr and Ian Holland. Formulations and Benefits of the Law of
Demeter. SIGPLAN Notices, 24(3):67-78, March 1989.

Karl J. Lieberherr, Ian Holland, and Arthur J. Riel. Object-oriented programming:
An objective sense of style. In Object-Oriented Programming Systems, Languages
and Applications Conference, in Special Issue of SIGPLAN Notices, pages 323—
334, San Diego, CA., September 1988. A short version of this paper appears in
IEEE Computer, June 88, Open Channel section, pages 78-79.

Karl J. Lieberherr, Walter Hursch, Ignacio Silva-Lepe, and Cun Xiao. FExperi-
ence with a graph-based propagation pattern programming tool. In International
Workshop on CASE, Montréal, Canada, 1992. IEEE Computer Society.

Karl Lieberherr. Object-oriented programming with class dictionaries. Journal on
Lisp and Symbolic Computation, 1(2):185-212, 1988.

Karl J. Lieberherr. Component Enhancement: An Adaptive Reusability Mecha-
nism for Groups of Collaborating Classes. In J. van Leeuwen, editor, Information
Processing ’92, 12th World Computer Congress, Madrid, Spain, 1992. Elsevier.

Karl J. Lieberherr and Arthur J. Riel. Demeter: A CASE study of software growth
through parameterized classes. Journal of Object-Oriented Programming, 1(3):8-
22, August, September 1988. A shorter version of this paper was presented at the
10th International Conference on Software Engineering, Singapore, April 1988,
IEEE Press, pages 254-264.

Karl Lieberherr, Cun Xiao, and Ignacio Silva-Lepe. Propagation patterns: Graph-
based specifications of cooperative behavior. Technical Report NU-CCS-91-14,
Northeastern University, September 1991.

20

[PCWS5]

[PCWS6]

[Sak8s]

[Sny87]

[WBWS9]

David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular
structure of complex systems. [EEF Transactions on Software Engineering, SE-

11(3):259-266, 1985.

David Lorge Parnas, Paul C. Clements, and David M. Weiss. Enhancing reusability
with information hiding. In Peter Freeman, editor, Tutorial: Software Reusability,

pages 83-90. IEEE Press, 1986.

Markku Sakkinen. Comments on “the Law of Demeter” and C++. SIGPLAN
Notices, 23(12):38-44, December 1988.

Alan Snyder. Inheritance and the development of encapsulated software systems.
In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-Oriented
Programmang, pages 147-164. The MIT Press, 1987.

Rebecca Wirfs-Brock and Brian Wilkerson. Object-oriented design: A
responsibility-driven approach. In Object-Oriented Programming Systems, Lan-

guages and Applications Conference, in Special Issue of SIGPLAN Notices, pages
71-76, New Orleans, LA, 1989. ACM.

21

