
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-5, NO. 6, NOVEMBER 1979

formal derivation of programs," Commun. Ass. Comput. Mach.,
vol. 18, pp. 453-457, Aug. 1975.

[31 A. Silberschatz, "Communication and synchronization in dis-
tributed systems," Dep. Mathematical Sciences, Univ. of Texas
at Dallas, Tech. Rep. 48, Feb. 1979.

[4] E. W. Dijkstra, "Cooperating sequential processes," in Program-
ming Languages, F. Genuys, Ed. New York: Academic, 1968,
pp. 43-112.

[5] E. Coffman et al., "System deadlocks," Computing Surveys,
vol. 3, pp. 67-78, June 1971.

[6] P. Brinch Hansen, "The programming language concurrent
pascal," IEEE Trans. Software Eng., vol. SE-1, pp. 199-207,
June 1975.

[7] N. Wirth, "MODULA: A programming language for modular
multiprogramming," Software Practice and Experience, vol. 7,
pp. 3-35, Jan. 1977.

[8] C. A. R. Hoare, "Monitors: An operating system structuring
concept," Commun. Ass. Comput. Mach., vol. 17, pp. 546-557,
Oct. 1974.

[91 A. Silberschatz, "Dynamic resource management in distributed

operating systems," Dep. Mathematical Sciences, Univ. of Texas
at Dallas, Tech. Rep. 53, May 1979.

[10] K. Jensen and N. Wirth, PASCAL User Manual and Report.
New York: Springer-Verlag, 1976.

Abraham Silberschatz received the Ph.D. de-
gree in computer science from the State Uni-
versity of New York, Stony Brook, in 1976.
He is currently an Associate Professor of

Computer Science at the University of Texas
at DaUas, Richardson, specializing in the area
of concurrent programming. His research
interests are in operating systems, database
systems, distributed systems, and programming
languages.

Exception Handling in CLU
BARBARA H. LISKOV AND ALAN SNYDER

Abstract-For programs to be reliable and fault tolerant, each pro-
gram module must be defined to behave reasonably under a wide
variety of circumstances. An exception handling mechanism supports
the construction of such modules. This paper descnbes an exception
handling mechanism developed as part of the CLU programming lan-
guage. The CLU mechanism is based on a simple model of exception
handling that leads to well-structured programs. It is engineered for
ease of use and enhanced program readability. This paper discusses
the various models of exception handUlng, the syntax and semantics
of the CLU mechanism, and methods of implementing the mechanism
and integrating it in debugging and production environments.

Index Terms-Exception handling, exit mechanisms, procedural ab-
stractions, programming languages, structured programming.

I. INTRODUCTION
R ECENTLY, there has been considerable emphasis on the

Rdevelopment of programming language features that en-
hance the verifiability of programs [5]. While it is desirable
that the task of developing correct programs be simplified as
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much as possible, another important goal of program construc-
tion is that programs behave "reasonably" under a wide range
of circumstances. Such programs have been variously termed
as reliable, robust, or fault tolerant.
In a reliable program, each procedure must be designed to

behave as generally as possible. Its specifications should re-
quire a well-defined response to all possible combinations of
legal inputs (inputs satisfying the type constraints), even when
lower level modules on which this procedure is depending fail.
Of course, different responses will be appropriate in the dif-
ferent cases. Note that even if the software has been verified,
the possibility of hardware failure implies that software
modules may fail, as does the presence of resource constraints.
This paper describes a linguistic mechanism that supports

the construction of reliable software. The mechanism, called
an exception handling mechanism, facilitates communication
of certain information among procedures at different levels.
The mechanism supports the view that different responses are
appropriate in different situations. We assume that for each
procedure there is a set of circumstances in which it will
terminate "normally"; in general, this happens when the input
arguments satisfy certain constraints and the lower level
modules (implemented in both hardware and software) on
which the procedure depends are all working properly. In
other circumstances, the procedure is unable to perform any
action that would lead to normal termination, but instead
must notify some other procedure (for example, the invoking
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procedure) that an exceptional condition (or exception) has
occurred.
For example, suppose search is a procedure that retrieves in-

formation associated with a given identifier in a symbol table.
Search can return this information only if the identifier is
present in the symbol table. The absence of the identifier con-
stitutes an exceptional condition. Other exceptional condi-
tions might also occur, for example, if the symbol table is
implemented using a stack and the module implementing
stacks is not working properly.
In referring to the condition as exceptions rather than errors

we are following Goodenough [2]. The term "exception" is
chosen because, unlike the term "error," it does not imply
that anything is wrong; this connotation is appropriate be-
cause an event that is viewed as an error by one procedure
may not be viewed that way by another. In fact, the term
"exception" indicates that something unusual has occurred,
and even this may be misleading: if the exception handling
mechanism were efficient enough, exceptions might be used
to convey information about normal and usual situations.
For example, the search procedure might terminate nonnally
only if the identifier were a local variable of the current
block and use the exception handling mechanism to convey
extra information about nonlocal variables.
Exception handling mechanisms have been largerly ignored

in programming languages. For a discussion of existing mecha-
nisms, the reader is referred to [2] and [3]. In our opinion,
the existing mechanisms are overly powerful and ill-structured.
For example, in the on-condition mechanism of PL/I, on-
units are associated with invocations dynamically rather than
statically, and global variables must be used to communicate
data between the procedure performing the signal and the on-
unit. Goodenough [2] proposes a new mechanism that is
more constrained and better structured. The mechanism pre-
sented in this paper is still more constrained. We also believe
it to be more conducive to the development of well-structured
programs.
The mechanism we describe facilitates communication of

information that can be used to recover from faults such as
erroneous data and failures of lower level modules. We do
not discuss the methods, e.g., redundancy, that are used for
fault detection and recovery. Mechanisms that are designed
to facilitate fault detection and recovery, e.g., recovery blocks
[8], are complementary to ours, as was noted in [7].
The mechanism we describe has been defined as part of the

CLU programming language [4]. The mechanism is of general
interest because it is constrained and simple. Its design was
based on a tradeoff between simplicity and expressive power;
major design goals were ease of use and program readability.
The mechanism was designed for a sequential language (with-
out coroutines or parallel processes). Otherwise, however,
the mechanism is not dependent on CLU semantics, and could
be incorporated in any procedure oriented language.
In the next section we discuss the main decisions that must

be made in designing an exception handling mechanism and
the exception handling models that result from these decisions;
we also discuss our decisions and our reasons for making them.
In Section III we describe the syntax and semantics of the

CLU exception handling mechanism. In Section IV we dis-
cuss some methods of implementing the mechanism and also
how the mechanism can enhance programmer effectiveness
in a debugging and a production environment. In Section V,
we discuss the expressive power of our mechanism and com-
pare it with some other mechanisms of greater power. Finally,
in Section VI we summarize and evaluate what we have done.

II. THE MODEL

To discuss exception handling we must first introduce some
terminology about programs. The term procedure will be used
to mean program text, either in a higher level language or in
machine language. A procedure implements a procedural ab-
straction, which is a mapping from a set of argument objects
to a set of result objects, possibly modifying some of the argu-
ment objects. A procedure may be invoked (or called) by an
invocation, which is textually part of some procedure; that
procedure is referred to as the caller. Invocation results in
activation of the invoked procedure. An activation may signal
an exception; the invocation that caused the activation raises
that exception. The program text intended to be executed
when an exception is raised is called the handler.
Our model of exception handling involves the communica-

tion of information from the procedure activation that detects
an exceptional condition (the signaler) to some other proce-
dure activation that is prepared to handle an occurrence ofthat
condition (the catcher). In designing this model, we faced
two major questions: 1) which procedure activations may
catch an exception signaled by a procedure activation and 2)
does the signaler continue to exist after signaling. These two
questions are independent and may be addressed separately.

A. Single Versus Multilevel Mechanisms

The obvious candidates' for handling an exception signaled
by some procedure activation are the activations in existence
at the time the signal occurs. We can rule out the signaler
itself, as exceptions are, by definition, conditions that the
signaling procedure is unable to handle. The remaining ques-
tion is whether to allow activations other than the immediate
caller of the signaler to handle the exception.
Our answer to this question is based on the hierarchical pro-

gram design methodology that CLU is intended to support
[4]. As was explained above, each procedure implements a
mapping. The caller of a procedure invokes the procedure
to have the mapping performed; the caller need know only
what the mapping is, and not how the procedure implements
the mapping. Thus, while it is appropriate for the caller to
know about the exceptions signaled by the procedure (and
these are part of the abstraction implemented by that proce-
dure), the caller should know nothing about the exceptions
signaled by procedures used in the implementation of the in-
voked procedure.
The above considerations lead us to allow only the im-

mediate caller of a procedure to handle exceptions signaled

'Levin [3] proposes an additional set of candidates. We will discuss
Levin's work in Section V.
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by that procedure. Of course, the handler in the caller can it-
self signal an exception, but that exception will then be part
of the caller's abstraction.
We believe that the decision to limit handling of exceptions

to the immediate caller is necessary for any well-structured ex-
ception handling mechanism. To maintain intellectual manage-
ability of software, program structures that support under-
standing and verification through local code examination are
needed. In particular, to understand how a procedure is im-
plemented, one should not have to examine implementations
of any other procedures. An understanding of the mappings
performed by invoked procedures is needed, but this under-
standing should be obtained by reading specifications of those
procedures and not their code. This requirement implies that
specifications must describe all exceptions arising from invok-
ing a procedure, including information about exceptions arising
from procedures called at a lower level if the mechanism does
not limit the handling of these exceptions. The point is that
all exceptions that may be raised by a procedure, whether
explicitly or implicitly, must be considered part of that pro-
cedural abstraction. Limiting the handling of exceptions to
just the caller simply ensures that the linguistic constructs
match the proper conceptual view. Note, however, that this
constraint does not prevent the language designer from pro-
viding simplified ways of passing exceptions from one level to
the next where appropriate.
The exception handling mechanism proposed by Good-

enough [21 does impose our constraint on handling excep-
tions. The PL/I mechanism does not, nor does the mechanism
in Mesa [6].

B. Resumption Versus Termination Model

The second question, whether the signaler should continue
to exist after the exception is signaled, involves a tradeoff be-
tween expressive power and the complexity of the semantics.
If the signaler can continue to exist after signaling, then it is
possible that a catcher may fix up the exceptional condition
so that processing of the signaler may be resumed. For this
reason, we refer to this model as the resumption model. The
model in which the signaling activation ceases to exist we
refer to as the ternination model. In this section we assume
that the decision to support a one-level mechanism has been
made, and we therefore limit our analysis to this case.
A one-level resumption model works as follows. Suppose

that there are three procedures P, Q, and R, and that P in-
vokes Q and Q invokes R. If R signals an exception r, then Q
must handle it. Let Hr denote the statements in Q that handle
r (Hr is the handler for r). In the course of handling r, Hr may
signal an exception q, which must be handled by P (since P
is the caller of Q).2 Let Hq denote the statements in P that
handle q (Hq is the handler for q). When Hq terminates, then

21f dynamic binding for exception names is used (as in PL/I), then R
would be required to handle q. Making this assumption leads to a
model at least as complex as the one we are considering. Furthermore,
it is impossible under this assumption for Hr to raise exception in P
without resorting to a multilevel mechanism.

signals q invokes resumes

signals r invokes resumes

R

Fig. 1. Flow of control in the resumption model.

Q is resumed in the middle of Hr; only when Hr terminates
is the execution of R continued. This situation is illustrated
in Fig. 1. Note that information about signals flows upward
one level at a time, while resumption flows downward one
level at a time; multilevel flow is not permitted in either
direction.
The resumption model is most easily understood by viewing

the handler as an implicit procedure parameter of the signaler.
The handler is called by the signaler when the exception it
handles is signaled. The handler procedure is declared in the
calling procedure, and its free variables get their meaning in
the caller's environment, as do any exceptions it signals.3
In the termination model, occurrence of an exception causes

the signaler to terminate. However, different kinds of be-
havior are expected of the called procedure under different
conditions. The view taken is that a procedure may terminate
in one of a number of conditions. One of these is the nornal
condition, while others are exception conditions. In each con-
dition, it may be convenient to return a number of result ob-
jects; these will differ in number and type in the different
conditions.
The resumption model is more complex than the termina-

tion model. This can be appreciated by considering how re-
sumption affects the interrelationships among procedures,
specifications of procedures, and linguistic mechanisms for
exception handling.
The ordinary view of procedures is that, in the absence of

recursion, the calling procedure is dependent on the called
procedure but not vice versa. This view is upheld in the
termination model. However, in the resumption model, the
signaler and caller are mutually dependent: the caller invokes
the signaler to perform some mapping, or satisfy some input/
output relation, but the signaler depends on (the handler in)
the caller to satisfy a similar relation when an exception is
signaled.
Specifications of procedural abstractions in the termination

model consist of a number of clauses, one specifying the be-
havior for the normal case and one for each exception case.
Such clauses also exist in the resumption model, since it is
still possible that the signaler is unable to terminate normally,
for example, because a handler is unable to clear up the prob-

3That is, exception names have static scope.
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lem that led to the exception. In general, specifications have
a termination model form (several termination states are de-
fined) even when the resumption model is in use.
The interdependence between procedures in the resumption

model show up in specifications as extra information. In ad-
dition to the clauses describing different termination states,
it is also necessary to include descriptions of the behavior
expected from the handlers when exceptions are signaled.
Such descriptions are analogous to what must be given for a
procedure taking procedure parameters, since handlers are
implicit procedure parameters, as was discussed earlier.
The complexity of a linguistic mechanism supporting re-

sumption is illustrated by Goodenough's proposal [2], which
is a carefully considered design of a complete mechanism.
Goodenough's design recognizes that to be really useful,
termination must be supported as well as resumption. Three
types of signals are recognized, corresponding to cases where
the signaler may not be resumed, must be resumed, or where
resumption is optional. In case the caller does not resume a
signaler that must or could be resumed, a special ability is
provided to permit the signaler to clean up (i.e., restore some
nonlocal variables to a consistent state) before its activation
is terminated. In addition, a default mechanism is provided
to permit the signaler to handle its own exception in case
the caller does not.
The termination model requires a simpler linguistic mecha-

nism for its support than does the resumption model. Since a
signal terminates the signaler, there is no need for multiple kinds
of signals. Also, special mechanisms for cleaning up are not
needed (the signaler must always clean up before signaling).
Since the termination model is simpler, it is preferable to the

resumption model, provided it supplies adequate expressive
power. We conjecture that the expressive power is adequate:
that situations handled awkwardly by the termination model
and simply by the resumption model are not frequent. We will
discuss this conjecture further in Section V. In the next sec-
tion we discuss the design of an exception handling mechanism
based on the termination model.

III. SYNTAX AND SEMANTICS OF THE
CLU EXCEPTION MECHANISM

In Section II we explained the rationale for our major
decisions.

1) The exceptions signaled by a procedure must be caught
by the immediate caller.
2) Signaling an exception terminates the signaling procedure.
These two decisions lead to a single-level termination model

of computation in which a procedure may terminate in one of
a number of conditions. Thus, instead of a single return path,
each procedure has several return paths. One of these is con-
sidered the normal path, while others are considered excep-
tional. In each case, result objects may be returned; the result
objects may differ in number and type in the different cases.
An exception handling semantics that terminates execution

of the signaling procedure could be incorporated in a pro-
gramming language with no additional mechanism. The

addition to the real result objects a tag that identifies the
reason for termination. Indeed, such a convention is often
adopted as a way of dealing with exceptions in a language
that has no exception handling mechanism. However, this
approach has a major defect: every invocation must be fol-
lowed by a conditional test to determine what the outcome
was. This requirement leads to programs that are difficult
to read, and probably inefficient as well, thus discouraging
programmers from signaling and handling exceptions.
To aid programmers in building reliable software, an excep-

tion handling mechanism must be devised that can be im-
plemented efficiently and that enhances program readability.
In the remainder of this section we describe the CLU excep-
tion handling mechanism, which was developed to satisfy these
goals. The discussion identifies some problems that arise in
designing any such mechanism; the CLU mechanism provides
a possible set of solutions to these problems.

A. Signaling
To provide a convenient method of signaling information

about exceptions, we included directly in CLU the model of
a procedure having many kinds of returns. A CLU procedure,
therefore, can terminate in the normal way by returning and
can terminate in an exceptional condition by signaling. In
each case, result objects, differing in number and type, can
be returned.
The information about the ways in which a procedure may

terminate must be included in its heading. For example, the
procedure performing integer division has the following
heading:

div = proc (x, y: int) returns (int) signals (zero-divide)
which indicates that div may terminate by returning a single
integer (the quotient of the two input arguments) or by sig-
naling zero_divide (which indicates that the second argument
was zero) and retuming no results.
A CLU procedure terminates its execution by performing a

return statement or a signal statement. The return statement
terminates execution normally, while the signal statement
tenninates execution in the named exceptional condition.
For example, the following (fairly useless) procedure deter-
mines the sign of an integer:

sign = proc(x: int) returns (int) signals (zero, neg (int))
if x <0 then signal neg (x)

elseif x = 0 then signal zero
else return (x)
end

end sign

The information in the procedure heading is used to check
that the exception names actually signaled are the correct
ones and that the correct number and types of result objects
are returned in both the normal and exceptional cases. This
information is also used to determine that the exceptions
handled by a calling procedure are named in the heading of
the called procedure, and that, again, the number and types
of result objects are correct in both the normal and excep-

signaling procedure could simply retum, passing back in
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B. Handling Exceptions
In CLU, exceptions arise only from invocations.4 In par-

ticular, all uses of infix and prefix operators in CLU are con-
sidered to be "syntactic sugar" for invocations. For example,
the expression

x+y

is syntactic sugar for the invocation

t$add (x,y)

where t is the type of x. Thus, if x is an integer, x +y is an
invocation of the integer addition operation. This viewpoint
permits exceptions arising from built-in operations and user-
defined procedures to be treated uniformly.5
In this section we discuss how handlers are associated with

invocations. For usability and program readability, it is neces-
sary to permit considerable flexibility in the placement of
handlers. For example, requiring that the text of a handler
be attached to the invocation that raises the exception would
lead to unreadable programs in which expressions were broken
up with handlers. Furthermore, the control flow of a pro-
gram is often affected by the occurrence of an exception (for
example, an end_of file exception will terminate a loop).
Therefore, our mechanism was designed to permit placement
of a handler where the programmer deemed convenient, out
of the main flow when possible to enhance readability, and
altering the control flow when this was desired.
Two major decisions determined the form ofCLU exception

handling statements.
1) Handlers are statically associated with invocations.
2) Handlers may be attached only to statements, not to

expressions.
Static association means that the handler associated with

a particular exception condition that may be raised by a
particular invocation can be determined by static analysis
of the program text. This decision not only enhances pro-
gram readability, but makes possible a more efficient imple-
mentation of the exception handling mechanism.
The decision to attach handlers only to statements and not

expressions was made to simplify the mechanism. When a
handler attached to an expression terminates, unless an ex-
plicit return, signal, or exit (see Section III-C) is performed,
it must provide a value to be used as the value of the expres-
sion. By allowing handlers to be attached only to statements,
we avoid providing a mechanism for substituting new values
for expressions. We believe that the need to substitute a value
for an expression is not great. In any case, the effect of attach-
ing handlers to expressions can be obtained by breaking up
complex expressions into sequences of assignment statements.
Handlers are placed in CLU programs by means of the ex-

cept statement, which has the form

4Except for the special exception failure (described in Section 1II-D),
which may be signaled at any point by the underlying implementation
of CLU.
sThe viewpoint does not require that a built-in operation be im-

plemented by a closed routine; in-line code is perfectly permissible
and consistent.

statement except handler list end

This statement has the following interpretation: the statement
raises all the exceptions raised by the invocations it textually
contains, excluding those handled by embedded except state-
ments. The handler list will handle some subset (possibly all)
of these exceptions. The except statement as a whole raises
all the exceptions of the statement that are not handled by
the handler list plus any exceptions raised by the handler list.
Thus, when an exception is raised by an invocation, control
goes to the innermost handler that handles that exception
and is part of an except statement containing the invocation
in its statement part.
Each handler in the handler list names one or more excep-

tions to be handled, followed by a list of statements (called
the handler body) describing what to do. Permitting several
exceptions to be named in the same handler avoids code
duplication when the exceptions are all handled in the same
way.
Several different forms are available for handlers depending

on whether the named exceptions have associated result ob-
jects and whether those objects are used in the handler body.
To handle one or more exceptions with no associated ob-
jects, the exception names are simply listed. For example,

when underflow, zero_divide: body

will handle exceptions named underflow and zero-divide,
neither of which has any associated result objects.
To handle exceptions with result objects that are to be

used in the handler body, names must be associated with
the objects. Again a list of exception names is given, but it
is followed by declarations of local variables to name the
result objects, for example,

when el, e2 (s: string, i: int): body

The scope of the declarations is the handler body. All of the
named exceptions must return objects of the types listed in
the declaration, in the order stated. When the handler is
executed, these objects are bound to the declared variables
and the body is executed. (This binding is similar to the
binding of actual arguments to formal arguments that occurs
when procedures are invoked. However, a return or signal
in the handler body, rather than terminating just the handler,
will instead terminate the entire enclosing procedure.)
To handle exceptions with result objects when the objects

are not used in the handler body, the list of exception names
is followed by (*) as shown below:

when neg, underflow (*): body

There need be no agreement between the number and types
of result objects associated with the exceptions in this form;
for example, the neg exception had a single argument, while
underflow had none. This form encourages a programming
style in which a procedure returns all possibly useful informa-
tion when signaling; if this information is not needed in the
calling procedure, it can easily be ignored.

If the programmer wishes to handle all remaining exceptions
without listing their names, one of the following two forms
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can be used as the last handler in an except statement. The
form

others: body

is used when information about exception names and result
objects is not important. If information about the exception
name is desired, the form

others (e_name: string): body

may be used. Here the name of the exception is given to the
handler body as a string.
The handler body may contain any legal CLU statement.

If the handler body returns or signals, then the containing
procedure will be terminated as discussed in Section III-A.
The handler body may also be terminated by an exit (see
next section) or because an invocation within it raises an

exception that is not handled within the handler body. Other-
wise, when the handler body is finished, the next statement
following the except statement in the normal flow will be
executed.
The example below illustrates the association of handlers

with exceptions:

begin % start of inner block
SI except

when zero: S2
end

end % end of inner block
except

when zero: S3
others: S4
end

If zero is raised by an invocation in Sl, it will be handled by
S2, not S3. However, if zero is raised by an invocation in S2,
it will be handled by 53. All other exceptions raised in SI and
S2 will be handled by S4.

C. Exits and the Placement ofHandlers
Our intention in defining the except statement is to permit

the programmer to position handlers as is convenient. There
are two constraints on the placement of handlers.

1) The handler must be placed on the statement whose
execution is to be terminated if the handler body terminates
without returning or signaling.
2) Suppose that an exception named e is raised by two in-

vocations, and we wish to handle the occurrences of e dif-
ferently. We do not permit multiple handlers to be provided
for e in a single except statement. (This rule holds even if
the invocations raising e provide different numbers or types
of result objects; we do not allow such information to be used
in selecting a handler.) Therefore, the two handlers must be
in two except statements, each situated such that only one of
the invocations raising e is in its scope.

These two constraints may conffict. For example, suppose

that within a statement, S, the procedure sign, mentioned
earlier, is invoked at two different points. Suppose also that
the programmer wishes to handle the neg exception signaled

begin % beginning of S
a := sign(x)
except when neg(a: int):

Si
exit done

end
b := sign(y)
except when neg(a: int):

S2
exit done

end

end Z%end of S
except when done:

end
Fig. 2. Example illustrating use of the exit mechanism.

by sign in a different manner for each of the two invocations,
but in each case wishes execution to then continue with the
statement following S. The first constraint would require that
both handlers be placed on S, so that the execution of S would
be terminated when the exceptions are raised. However, the
second constraint requires that at least one handler be placed
within S to resolve the ambiguous association between the
invocations and the handlers.
We resolve this conflict in CLU by the addition of an exit

mechanism, similar to those proposed by Zahn [9] and Boch-
mann [1]. The handlers are placed near the invocations. They
terminate by exiting to a handler attached to the statement S.
For example, one could handle the neg exceptions as shown
in Fig. 2.
The exit statement can be used anywhere within a CLU pro-

cedure; its use is not restricted to handler bodies. The exit
statement is similar to the signal statement, except that while
the signal statement signals the condition to the calling pro-
cedure activation, the exit statement directly raises the condi-
tion so that it can be handled in the same procedure activation.
The exit statement can specify a number of result objects to
be passed to the handler.
We chose to have separate mechanisms for exits and excep-

tions (rather than using the signal statement for both exits
and exceptions) because the two mechanisms capture different
programmer intentions and thus naturally have different re-
strictions on their use. The intent of an exit is a local transfer
of control. Thus, we require that exits be handled in the
same procedure activation where they are raised. Further-
more, we require that exits be handled by a when arm (not
an others arm), and if there are result objects, these must be
accepted as arguments by the handler. The justification for
these requirements is that exit names and result objects (un-
like exception names and result objects) are under the con-
trol of the programmer of the procedure, and therefore
should be chosen to mean something within that procedure.
The exit mechanism meshes nicely with the exception

handling mechanism. In fact, the signal statement can be
viewed simply as terminating a procedure invocation and
exiting to the appropriate handler in the caller.
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D. Uncaught Exceptions
Now we address the question of what happens if a proce-

dure provides no handler for an exception raised by some
contained invocation. One possibility is to consider the pro-
cedure to be illegal; checking for unhandled exceptions can
be performed at compile-time. This approach is taken by
Goodenough [2].
We have taken another approach. We felt it was unrealistic

to require the programmer to provide handlers in situations
where no meaningful action can be taken. Such situations
will occur when a used abstraction is not working properly.
For example, consider the statement

if - stack$empty(s) then

x stack$pop(s)

end

Here the programmer invokes the pop operation for stacks
only when the stack is nonempty. Now suppose that never-
theless stack underflow occurs. This situation is unlikely to
arise in a debugged or verified program (but see Section IV).
If it does arise, it indicates that the stack abstraction is not
behaving correctly. Often there is no appropriate action for
this procedure to take other than to report the fact to its
caller. Since almost every abstraction can potentially behave
incorrectly or in a way not expected by its caller, procedures
must always be prepared to handle such cases. However,
the action taken is almost always the same, and to require
explicit handling of such cases would load every procedure
with uninteresting code.
To facilitate reporting of failures and to relieve the pro-

grammer of the burden of handling such errors, CLU has one
language-defmed exception, named failure. Failure has one
associated result object, a string that may contain some in-
formation about the cause of the failure. Every procedure
can potentially signal failure; therefore failure is implicitly
an exception of every procedure and may not be listed in the
procedure heading explicitly. Failure may be signaled ex-
plicitly, however, in the usual way:

signal failure ("reason is . . . ")
The most common way that failure is signaled, however, is

by an uncaught exception being automatically turned into a
failure exception. For example, procedure nonzero

nonzero = proc (x: int) returns (int)
return (sign (x))

except
when neg (y: int): return(y)
end

end nonzero

does not catch exception zero signaled by sign. If this excep-
tion is signaled, the invocation of nonzero will be terminated
with the exception

failure ("unhandled exception: zero")

The effect is equivalent to attaching a handler to the proce-

dure body, e.g.,

nonzero = ...

except
others(s: string): signal failure (

."unhandled exception: "11 s)
end

end nonzero

Here the symbol 11 is string concatenation.
A common case in which an exception will not be handled

is when the unhandled exception is failure. Note that in this
case it is the string argument of failure (rather than the string
"failure") that is of interest. Therefore, this string is retained
when failure is passed up to the next level. This effect is equiv-
alent to attaching to the procedure body the handler

except
when failure (s: string): signal failure (s)
end

Sometimes before signaling failure some cleaning up is
needed. In this case, the others or when form is used ex-
plicitly, and after cleaning up, failure is signaled explicitly.

E. Example

We now present an example demonstrating the use of ex-
ception handlers. We will write a procedure, sum_stream,
which reads in a sequence of signed decimal integers from a
character stream and returns the sum of those integers. The
input stream is viewed as containing a sequence of fields
separated by spaces and newlines; each field must consist of
a nonempty sequence of digits, optionally preceded by a
single minus sign. Summ_stream has the form

sum_stream = proc (s: stream) returns (int)
signals (overflow,

unrepresentable_integer (string),
bad format (string))

end sum_stream

Sum_stream will signal overflow if the sum of the numbers or
an intermediate sum is outside the implemented range of in-
tegers. Unrepresentable integer will be signaled if the stream
contains an individual number that is outside the implemented
range of integers. Bad_format will be signaled if the stream
contains a field that is not an integer.
An implementation of sum_stream is presented in Fig. 3.

It consists of a simple loop that accumulates the sum, using a
procedure get-number to remove the next integer from the
stream. Get number will signal end_of file if the stream
contains no more fields, in which case sum_stream will return
the accumulated sum. Get_number will also signal bad_for-
mat or unrepresentable_integer if an invalid field is encoun-
tered; these exceptions are passed upward by sum_stream.
The overflow handler in sum_stream catches exceptions sig-
naled by the int$add procedure, which is invoked using the
infix + notation. We have placed the exception handlers on
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sum_stream = proc (s: stream) returns (int)
signals (overflow,

unrepresentablejnteger (string),
bad-format (string))

sum: int := 0
while true do

sum := sum + get-number (s)
end

except
when end_of_file:

return (sum)
when unrepresentablejnteger (f: string).

signal unrepresentableinteger (f)
when badformat (f: string):

signal bad-format (f)
when overflow:

signal overflow
end

end sum-stream
Fig. 3. The sumstream procedure.

get-number - proc (s: stream) returns (int)
signals (end_of_file,

unrepresentableinteger (string),
bad-format (string))

field: string := getfield (s)
except when end_offile:

signal end_of_file
end

return (s2i (field))
except
when unrepresentableinteger:

signal unrepresentableinteger (field)
when bad jormat, invalid_character (*):

signal badformat (field)
end

end get-number
Fig. 4. The get_number procedure.

the while statement for readability; they could also have been
placed directly on the assignment statement.
The procedure get_number is presented in Fig. 4. It calls

a procedure get_field to obtain the next field in the stream
and then uses s2i to convert the returned string to an integer.
S2i has the following form:

s2i = proc (s: string) returns (int)
signals (invalid_character (char),

bad_ format,
unrepresentable integer)

end s2i

S2i will signal invalid_character if the string s contains a char-
acter other than a digit or a minus sign. Bad_format will be
signaled if s contains a minus sign following a digit, more than
one minus sign, or no digits. Unrepresentable integer will be
signaled if s represents an integer that is outside the imple-
mented range of integers. Get_number handles the excep-

tions signaled by get-field and s2i and signals them upward in
terms that are meaningful to its callers. Although some of the
names may be unchanged, the meanings of the exceptions (and
even the number of arguments) are different in the two levels.
Note the use of the (*) form in the handler for the bad_format
and invalid_character exceptions since the signal arguments
are not used.
The get_field procedure is presented in Fig. 5. It uses the

following operation of the stream data type:

getc = proc (s: stream) returns (char) sipals (end_of le)

end getc

The stream$getc operation retums the next character from the
stream and signals end offile if the stream is empty. Note
that if endof file is signaled when a field is being accumu-
lated, then that field is returned. Otherwise, get-field signals
end_ of_file.
Programming of the procedures in Figs. 3-5 would be
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get-field - proc (s: stream) returns (string) signals (end_.offile)
field: string :- "

begin 2 delimits scope of outermost end_of.file handler
c: char := streamlgetc (s)
% search for field
while c = ' 'cor c = 'n'do

c := streamlgetc (s)
end

2 accumulate field
while c -= '' cand c -- n' do

field :- stringSappend (field, c)
c := streamlgetc (s)

except when end_ofjile-
return (field)
end

end
end

except when endcofjfile:
signal end_ofJile

end
return (field)
end getJfield

Fig. 5. The get_ field procedure.

simplified if the mechanism permitted implicit upward propa-
gation of exceptions. This would permit arms of the form

when unrepresentable_integer (f: string):
signal unrepresentable integer (f)

to be omitted from the program text. As we gain experience
in using the mechanism, we will learn how to modify it to
enhance its convenience.

F. On Disabling Exceptions
One question that naturally arises about an exception

handling mechanism is whether exceptions can be disabled.
By disabling exceptions two kinds of savings can (potentially)
be realized: the time spent detecting the occurrence of the ex-
ception can be saved, and the space used for the handlers and
the information used to find the handlers can be saved. How-
ever, it is unacceptable if the result of disabling exceptions is
that errors still occur, but are simply not recognized. There-
fore, we do not believe that providing a means for programmer
disabling of exceptions is consistent with encouraging good
programming practice, and no such mechanism has been
provided in CLU.
The situation still arises, however, in which it is possible to

guarantee that the exception cannot occur, and it is desirable
to take advantage of that guarantee to generate more efficient
code. Looked at in this way, disabling of exceptions is seen
as a kind of program optimization technique, since program
optimization makes use of properties detected from program.
analysis to control the generation of code. There are two
ways in which such properties can be detected. First, the
combination of in-line substitution followed by analysis
across module boundaries can result in more efficient code.
For example, consider

if -stack$empty(s) then x := stack$pop(s) ...

where s is a stack. If both empty and pop are expanded in-
line, the result will be code roughly like

if s.size >0 % body of empty
then % body of pop

if s.size >0 then ..

Conventional techniques like redundant expression elimina-
tion and dead code removal can then be used to improve the
code.
Alternatively, it would be fruitful to integrate the activities

of a program verification system with the compiler. Then,
for example, a verifier might prove of the user of s that pop
is never called if s is empty. This assertion could then be
used later to control the compilation of both the program
using s, and the program implementing the stack module.

IV. IMPLEMENTATION, DEBUGGING, AND DIAGNOSTICS
In this section we discuss some implementation issues.

First we sketch some methods for implementing the excep-
tion handlhng mechanism. Then we discuss how the mecha-
nism can be incorporated in a debugging environment and in
a production environment.

A. Implementation
There are several possible methods of implementing the

exception handling mechanism. As usual, tradeoffs must
be made between efficiency of space and time. We believe
the following are appropriate criteria for an implementation:

1) normal case execution efficiency should not be impaired
at all;
2) exceptions should be handled reasonably quickly, but

not necessarily as fast as possible;
3) use of space should be reasonably efficient.
The tradeoff to be made is the speed with which exceptions

are handled versus the space required for code or data used to
locate handlers.
The implementation of signaling an exception involves the

following actions:
1) discarding the activation record of the signaling acti-

vation (but saving the result objects associated with the
exception),
2) locating the appropriate handler in the calling procedure,
3) adjusting the caller's activation record to reflect the pos-

sible termination ofexecution of expressions and statements,
4) copying the result objects into the caller's activation

record,
5) transferring control to the handler.
Actions 3) and 5) are equivalent to a goto from the invoca-

tion to the handler. Actions 1) and 4) are similar to those
occurring in normal procedure returns. Because the associa-
tion between invocations and handlers is static, the compiler
can provide the information needed to perform actions 2) and
3). Below we sketch two methods of providing this informa-
tion; these methods differ considerably in their performance
characteristics.
The first method, called the branch table method, is to fol-

low each invocation with a branch table containing one entry
for each exception that can be raised by the invocation. The
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Code for invocation p( ) of p - proc ( ) returns ( ) signals (el, e2)

call p
el-handler
e2_handler
failure-handler

; branch table

... ; normal return here

sizel ; new activation record size
......... ; other information about the handler

el-handler: ... ; code for el handler
Fig. 6. Sketch of code generated by the branch table method.

invocation of a procedure whose heading lists n exceptions
will have a branch table of n + 1 entries; the first n entries
correspond to the exceptions listed in the heading, while the
last entry is for failure. Each entry contains the location of
a handler for the corresponding exception.
Using this method, return and signal are easy to implement:

return transfers control to the location following the branch
table, while signal transfers control to the location stored in
the branch table entry for the exception being signaled. The
information needed to adjust the caller's activation record
could be stored with the handler, as could information about
whether to discard the retumed objects and whether this is
an others handler; for example, this information could be
stored in a table placed just before the first instruction of the
handler. An example is given in Fig. 6 of the code generated
by this method.
The branch table method provides for efficient signaling of

exceptions, but at a considerable cost in space, since every

invocation must be followed by a branch table (all invoca-
tions may at least signal failure). A second method, the
handler table method, is the one used by the current CLU
implementation. This method trades off some speed for
space, and was designed under the assumption that there are

many fewer handlers than invocations, which is consistent
with our experience in using the mechanism.
The handler table method works as follows. Rather than

build a branch table per invocation, the compiler builds a

single table for each procedure. This table contains an entry
for each handler in the procedure. An entry contains the
following information: 1) a list of the exceptions handled
by the handler (a null list can be used to indicate an others

handler), 2) a pair of values defining the scope of the handler,
that is, the object code corresponding to the statement to
which the handler is attached, 3) the location of the code of
the handler, 4) the new activation record size, and 5) an in-
dicator of whether the returned objects are used in the handler.
The scope and exceptions list together permit candidate
handlers to be located: only an invocation occurring within
the scope and raising an exception named in the exception
list can possibly be handled by the handler (for an others
handler, only the scope matters).
In this method, a return statement is implemented just as

it would be in a language without exception handling. A sig-
nal statement requires searching the handler table to find
entries for candidate handlers; if several candidates exist,

the one with the smallest scope is selected. Placing the entries
in the table in the (linear) order in which the corresponding
handlers appear in the source text guarantees that the first
candidate found is the handler to use. Unhandled exceptions
can be recognized either by the absence of candidates or by
storing one additional entry at the end of the handler table
for this case.

B. Debugging and Diagnostics

Our exception handling mechanism is designed explicitly to
provide information that programs, not programmers, can use
to recover from exceptional conditions. However, the mecha-
nism can also mesh smoothly with mechanisms intended to
collect information of interest to programmers. The kind of
behavior desired will differ, however, from a debugging en-
vironment to a production environment.

In an interactive debugging environment it is likely that a
programmer would wish to be informed about the occurrence
of some or all exceptions as they are signaled and be given a
chance to handle them himself or take some other corrective
action. Two possible modes might be useful here. The pro-
grammer may be interested only in signals of failure (es-
pecially those resulting from unhandled exceptions), or he
may in addition name some particular exceptions of interest.
An exception handling mechanism running in such an en-

vironment, before locating a handler, would consult some de-
bugging system information to determine if the current ex-
ception is one that the programmer wishes to know about.
If the exception is of interest to the programmer, then system
routines can be invoked to initiate a dialogue with the pro-
grammer. This dialogue may result in the program being con-
tinued or terminated.

It is worth noting that one argument in favor of the resump-
tion model has been that it integrates debugging with program
execution. The programmer (or actually the system as his
representative) is thought of as the highest level activation,
which will handle all exceptions not otherwise handled and
which may later resume execution of some lower level activa-
tion. Note that this viewpoint allows the programmer to
examine only unhandled exceptions. At any rate, we believe
that it is not productive to try to merge debugging with
ordinary processing, since the requirements in the two cases
are quite different.
In a production environment, there is no programmer
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available to interact with the program. Of course, there may
be an operator present, and a program may attempt to re-
cover by requesting some operator action (e.g., mounting a
tape). This action can be accomplished by ordinary program
structures (e.g., invoking a procedure to print a message on
the operator's console).
When failure occurs in a production environment, there is

still a good chance that program error is responsible. There-
fore, it would be helpful if information about the failing pro-
gram were collected for later examination by a programmer.
This capability can easily be provided. Whenever failure is
signaled, the exception handling mechanism can output in-
formation about each activation before terminating it. In the
case of the first implicit signal of the "unhandled exception"
failure, the mechanism should also provide information about
the activation that signaled the unhandled exception. The
information collected as failure propagates upwards will pro-
vide a trace of the failing program, which should be helpful
for the programmer who determines later what the problem
was. Debugging in a batch environment can be facilitated
similarly, except that information about more exceptions
than just failure may be of interest. Note that in either case
the information being collected is not useful to programs
(since it describes the states of implementations of other
procedures) and therefore need not be made available to
them.

V. EXPRESSIVE POWER

As we stated earlier, the decision to choose a termination
model instead of a resumption model involves a tradeoff be-
tween the expressive power of the exception handling mecha-
nism and its complexity. In our opinion, a more complex
mechanism can be justified only if the additional expressive
power it provides is frequently needed. In this section we ex-
plore this issue by considering examples of problems often
put forth as justifying a resumption model.
The first problem concerns exceptions such as underflow

that are generated by numeric operations. Often when an
operation like multiply signals underflow, the desired action
is to substitute a particular value (e.g., zero) for the result
of the operation and continue the computation. In a resump-
tion model, this behavior can be obtained by resuming the
operation and passing it the value to be retumed.
This behavior is equally easily obtained using a termination

model. Because the multiply operation is not performing any
computation after being resumed (it is merely returning the
value provided), it is acceptable to terminate its activation.
The only problem is for the handler to somehow substitute
the new value for the result of the operation. For simple
examples like

z :=x * y

"substituting" for the result of the invocation of multiply can
be done simply by assigning to z. For more complicated ex-
amples, e.g.,

z -x *y+z

using our mechanism it is necessary to introduce additional
statements and temporary variables. However, such awkward-

ness is not a defect of the termination model but rather a
result of our decision not to allow handlers to be attached to
expressions. If such examples tumed out to be frequent, our
mechanism could be changed to accommodate them.

In fact, resumption is truly useful only in the following situ-
ation: when the exception is signaled, the signaler is in the
middle of a computation that can be completed by performing
additional computation upon receipt of a value from the han-
dler. Resumption permits completion of the computation in
this situation without redoing work already performed.
We can imagine that such a situation could arise during a

numeric computation. If it did, and resumption were not
available, then a default value (or, in the most general case,
a procedure to compute a default value) could be passed as
an extra input of the numeric routine.
This method is clearly not as convenient as using resump-

tion; it becomes unacceptable if there are many default
values or if there is deep nesting of procedures within the
numeric routine, so that even a single default value must be
passed down through many invocations. In our experience,
neither of these characteristics hold for the routines in nu-
meric libraries; on the contrary, default values are almost
never of use, and the nesting is shallow.
The other example often used to support the choice of a

resumption model is that of a storage pool that performs
storage allocation for a number of objects in a program. If
the amount of free storage in the storage pool becomes too
low to satisfy a particular allocation request, it may still be
possible to satisfy the request if some of the objects stored
in the pool can be reorganized to use less storage. Many
objects can be implemented in a number of ways, some that
permit fast execution but use a lot of space and others that
are slower but use less space. The idea would be to start out
using fast representations but switch to more compact rep-
resentations if free storage became too low. Note that this
example is an instance of the general situation, described
above, in which resumption is truly useful.
Levin [31 has designed an exception handling mechanism

that directly supports the desired behavior. In Levin's mecha-
nism, an exception can be associated with an object (the
mechanisms discussed previously associate exceptions only
with invocations). Thus, if the storage pool were unable to
satisfy a request, it could signal an exception associated with
the storage pool object. The mechanism would then allow
all users of the object (in this case, modules that have objects
allocated in the storage pool) to handle the exception. The
handlers would attempt to free storage by reorganizing their
associated objects.
Note that Levin's mechanism is strictly more powerful (in

terms of expressive power) than the resumption models we
discussed in Section II, since the users of the storage pool do
not necessarily have any outstanding procedure activations
at the time the exception is signaled. Furthermore, those
objects that are in the middle of being operated upon are
likely to be in an inconsistent state and thus not prepared
for reorganization. Levin's mechanism makes it easy to
inhibit the handling of an exception for objects in an incon-
sistent state.
In CLU, this recovery algorithm could be programmed by
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having the storage pool explicitly maintain a collection of han-
dler procedures to be invoked whenever free storage became
too low.6 The storage pool abstraction provides operations
alloc, to add an object to a pool, and delete, to remove an ob-
ject from a pool. Alloc would have an additional argument:
the handler procedure to invoke if it becomes necessary to
shrink the object being added to the pool. Alloc would add
this procedure to the collection, while delete would remove
from the collection the handler procedure associated with
the object being deleted from the pool.
There is no doubt that the method sketched above is more

complicated and more error prone than what could be done
using Levin's mechanism. However, we believe that the stor-
age pool example is both unusual and a special case. We
doubt the existence of a large number of cases where the
amount of storage freed would make the difference between
successful and unsuccessful execution of a program.
In selecting examples for discussion, we examined those pre-

sented in papers favoring the resumption model [21, [3], and
chose the ones that made the strongest case for resumption.
In both examples, the solutions achieved using resumption
were more natural than those possible without resumption.
However, unless it is shown that such cases arise frequently,
they do not justify the more complex mechanism.

VI. DISCUSSION

In this paper we have discussed exception handling and
described an exception handling mechanism. An exception
handling mechanism is a tool for enhancing program reliability
and fault tolerance. To enhance reliability procedures should
be defined as generally as possible, that is, they should respond
"reasonably" in as many situations as possible. An exception
handling mechanism simplifies the writing of such procedures;
it is primarily a mechanism for generalizing the behavior of
procedures.
In Section II we discussed major decisions that must be

made in designing an exception handling mechanism and the
exception handling models that result from these decisions.
We argued that any well-structured mechanism should be
one-level: only the caller should handle exceptions raised
by the invoked procedure. We further argued that the termin-
ation model, in which the signaling activation terminates, is
better than the resumption model, in which the signaling
activation continues to exist. The termination model is
clearly simpler than the resumption model; we also believe
that it has sufficient expressive power. Note that in our
termination model, a procedure may terminate in one of a
number of conditions (one of which is the so-called "normal"
condition) and may return result objects differing in number
and type for each condition. The ability to return objects
provides a kind of expressive power not found in most other
exception handling mechanisms.
Section III described the syntax and semantics of the CLU

exception handling mechanism, which supports the termina-

6Each procedure would have to be bound to the environment in
which reorganization should be done. Since CLU procedures do not
have free variables, the storage pool would have to maintain these en-
vironment objects also.

tion model. While in Section II we were concerned primarily
with interprocedure control and data flow, in Section III, we
were concerned primarily with intraprocedure control and
data flow. Our goal was to permit the programmer to place
handlers where they are needed, without constraints due to
conflict of exception names. This goal led to the introduc-
tion of an exit mechanism similar to those described by Zahn
[9] and Bochmann [1]. Our design also acknowledged that
many exceptions cannot be handled. These exceptions may
not occur often, but they can potentially occur almost any-
where. The special exception named failure, which is signaled
implicitly for all uncaught exceptions, was introduced to ac-
commodate this situation. We also discussed why disabling
exceptions is not a good idea, and suggested that research in
program optimization techniques may be fruitful in avoiding
the cost of checking for errors that are known not to occur.
In Section IV, we discussed two methods of implementing

the exception handling mechanism, the branch table method
and the handler table method. Both methods process normal
returns as fast as possible; the branch table method also pro-
cesses exceptions as fast as possible, while the handler table
method is somewhat slower, but more space efficient. We also
discussed the integration of the mechanism in debugging and
production environments. The mechanism is defined to com-
municate information that can be used by programs, but this
does not preclude an implementation that produces additional
information for use by programmers.
In Section V, we discussed the expressive power of our ex-

ception handling model. We described two examples com-
monly put forward to justify the resumption model and dis-
cussed how they could be programmed in the termination
model. The termination model solutions were inferior to the
resumption model solutions. However, we believe that the
examples under discussion occur very rarely, so a mechanism
like the resumption model, which eases their programming
at the cost of extra complexity, is not justified.
The CLU exception handling mechanism has been imple-

mented by the handler table method. We have used the
mechanism in writing many CLU programs (for example,
most of the CLU compiler is written in CLU). We are con-
vinced that our programs are better structured than they
would be in the absence of the mechanism. Furthermore,
we have not encountered any situations where a more power-
ful exception handling mechanism (e.g., resumption) was
desired. Thus, our experience so far supports our belief that
the mechanism is a good compromise between expressive
power and simplicity. However, we have not written pro-
grams that attempt to handle the problem of resource con-
straints, a situation where resumption is most likely to be
needed. Further experimentation is needed to reach a final
conclusion on the wisdom of our choices.
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Abstract-An approach to proving paralel programs correct is pre-
sented. The steps are 1) model the paralel program, 2) prove partial
correctness (proper synchronization), and 3) prove the absence of dead-
lock, livelock, and inrmite loops. The parallel program model is based
on KeUler's model. The main contributions of the paper are tech-
niques for proving the absence of deadlock and livelock. A connection
is made between Keler's work and Dijkstra's work with serial non-
deterministic programs. It is shown how a variant function may be
used to prove finite termination, even if the variant function is not
strictly decreasing, and how finite termination can be used to prove
the absence of fivelock. Handling of the finite delay assumption is
also discussed. The ilustrative examples indude one which occurred
in a commercial environment and a classic synchronization problem
solved without the aid of special synchronization primitives.
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Index Terms-Concurrent program, correctness, deadlock, finite
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INTRODUCTION
A N abstract model general enough to capture most notions
A of parallel computation is highly desirable. Three crucial
parts of such a model seem to be as follows:

1) The state must factor into a control part and a data part,
so that such topics as "the number of processes at a given
point in the program" may conveniently be discussed.
2) The atomic actions must be specifiable, for no coarser

level of detail will, in general, suffice for rigorously proving
the correctness of parallel programs.
3) It must be possible to ignore irrelevant details of the

computation including absolute and relative execution timings,
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