
498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 5. MAY 1994

Scheduling DAG’S for Asynchronous
Multiprocessor Execution
Brian A. Malloy, Errol L. Lloyd, and Mary Lou Soffa

Abstract-A new approach is given for scheduling a sequential
instruction stream for execution “in parallel” on asynchronous
multiprocessors. The key idea in our approach is to exploit the
fine grained parallelism present in the instruction stream. In
this context, schedules are constructed by a careful balancing
of execution and communication costs at the level of individual
instructions, and their data dependencies. Three methods are
used to evaluate our approach. First, several existing methods
are extended to the fine grained situation considered here. Our
approach is then compared to these methods using both static
schedule length analyses, and simulated executions of the sched-
uled code. In each instance, our method is found to provide
significantly shorter schedules. Second, by varying parameters
such as the speed of the instruction set, and the spedparallelism
in the interconnection structure, simulation techniques are used to
examine the effects of various architectural considerations on the
executions of the schedules. These results show that our approach
provides significant speedups in a wide-range of situations. Third,
schedules produced by our approach are executed on a two-
processor Data General shared memory multiprocessor system.
These experiments show that there is a strong correlation between
our simulation results (those parameterized to “model” the Data
General system), and these actual executions, and thereby serve
to validate the simulation studies. Together, our results establish
that fine grained parallelism can be exploited in a substantial
manner when scheduling a sequential instruction stream for
execution “in parallel” on asynchronous multiprocessors.

Index rems- Concurrency, parallelism, multiprocessor, h e
grained parallelism, schedule, asynchronous.

I. INTRODUCTION
VER the past decade or so, changes in technology have 0 provided the possibility for vast increases in computa-

tional speed and power through the exploitation of parallelism
in program execution. Indeed, within certain computational
domains, these technological changes have permitted solutions
to computation intensive problems such as weather modeling,
image processing, Monte Carlo simulations and sparse matrix
problems. An important part of this technology has focused on
two approaches to parallelizing a sequential instruction stream:

1) exploiting fine grained parallelism, such as single state-
ments, for VLIW machines, [8] and

2) exploiting coarse grained parallelism, such as loops
and procedures, on vectorizable machines and on asyn-
chronous multiprocessors.

Manuscript received May 26, 1992; revised May 13, 1993.
B.A. Malloy is with the Department of Computer Science, Clemson

University, Clemson, SC 29634, USA. E-mail: malloy@cs. clemson. edu.
E. L. Lloyd is with the Department of Information and Computer Sciences,

University of Delaware, Newark, DE 19716, USA. E-mail: elloyd@dewey.
udel.edu.

M.L. Soffa is with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260, USA. E-mail: soffa@cs.pitt.edu.

IEEE Log Number 9216779.

In the first approach, VLIW machines support the concurrent
execution of multiple instruction streams and perform many
operations per cycle. VLIW machines however, also employ
a single control unit, thereby permitting only one branch
to be executed per cycle. Furthermore, while the VLIW
architectures perform well on programs dealing with scientific
applications, their performance can degrade rapidly when
faced with factors that decrease run-time predictability. [27] In
particular, although general purpose programs typically have
an abundance of fine grained parallelism, it is difficult to
exploit that parallelism on a VLIW machine because general
purpose programs are much less predictable than scientific
applications. In the second approach, existing techniques for
asynchronous multiprocessors produce schedules at the coarse
grained level. Due to their multiple control units, asynchronous
multiprocessors have greater flexibility than VLIW machines.
Unfortunately, it is frequently the case that a program segment
may be unable to support coarse grained parallelism because it
does not contain any loops, or because the data dependencies in
its loops preclude such concurrentization. Thus, asynchronous
multiprocessors, currently present in many installations, are
frequently underutilized due to the absence of techniques to
exploit fine grained parallelism in an asynchronous manner.

In this paper we offer an alternative approach to the exploita-
tion of parallelism in programs by combining the fine grained
approach of the VLIW with the flexibility of the asynchronous
machine. In so doing, we thereby provide a mechanism by
which parallelism may be exploited in programs where factors
are predictable (such as scientific applications), as well as in
programs with unpredictable factors (such as general purpose
applications).

Thus, we focus on exploiting fine grained parallelism to
schedule a sequential instruction stream for execution on an
asynchronous multiprocessor system. Recall the processors in
an asynchronous multiprocessor execute independently and
that communication is performed explicitly through asyn-
chronous communication primitives. It follows that sched-
uling for such systems will necessarily involve packing to-
gether fine grained operations, including synchronization com-
mands, for execution on the individual processors. The dif-
ficulty in such scheduling lies in balancing the desire to
utilize all of the processors, with the desire to minimize
the amount of synchronization that is introduced by utilizing
different processors for operations having data dependen-
cies.

We conclude this section by noting that although our work
is directed toward the parallelization of entire programs, the
focus of this paper is on the parallelization of straight line

1045-9219/94$04.00 0 1994 IEEE

http://udel.edu
mailto:soffa@cs.pitt.edu

MALLOY et al.: SCHEDULING DAG’S 499

code such as that found in a basic block.’ Although early
studies indicated that basic blocks of programs provide on
average only two or three instructions that can be executed
in parallel, [24] compiler techniques such as loop unrolling,
[7, 261 in-line substitution, [15] code duplication, [12] and
trace scheduling [9] are now being employed resulting in a
significant increase in the size of basic blocks (currently, up
to lo00 instructions). These techniques have, in turn, vastly
increased the fine grained parallelism present in a basic block.
Throughout the remainder of this paper we focus exclusively
on scheduling the instructions of a single basic block for
execution on asynchronous tightly coupled multiprocessors.

The remainder of this paper is organized as follows.
In the next section, we provide some specifics on the
computationallarchitectural model that is assumed in this work,
along with a precise discussion of scheduling in this context.
We investigate the complexity of computing a fine grained
schedule under our model and conclude that the problem is
NP-complete. We then discuss how several existing coarse
grained methods can be extended to the fine grained situation
considered here. In Section 111, we present our approach, the
Preferred Path Selection algorithm (PPS), for fine grained
scheduling on asynchronous multiprocessors. The remainder
of the paper is devoted to evaluating our approach. In Section
IV, we study the performance of our approach in relation to
the modified coarse grained methods described in Section 11.
Here, comparisons are made using both static schedule length
analyses, and simulated executions of the scheduled code. In
each instance, our method is found to produce significantly
shorter schedules. In addition, these results show explicitly that
the approach scales to at least 16 processors when the commu-
nication structure provides sufficient parallelism. In Section
V, further simulation techniques are used to determine the
performance of the PPS algorithm for varying communication
speeds and interconnection structure bandwidths, including the
modeling of the contention in the communication structure.
We conclude that for fast or moderate communication speeds
and bandwidths, the PPS algorithm can provide significant
speedup for dags containing sufficient parallelism. Finally, in
Section VI, schedules produced by our approach are executed
on a two-processor Data General AViiON shared memory
multiprocessor system. [2] These experiments show that there
is a strong correlation between our simulation results (those
parameterized to “model” the Data General AViiON system),
and these actual executions, and thereby serve to validate the
simulation studies.

Together, the simulations and actual executions establish
that fine grained parallelism can indeed be exploited in a
substantial manner when scheduling a sequential instruction
stream for execution “in parallel” on asynchronous
multiprocessors.

11. MODELS, SCHEDULES AND RELATED WORK

In this section, we provide some specifics on the computa-
tionallarchitectural model that is assumed in this work, along
with a precise discussion of scheduling in this context.

A basic block is a sequence of instructions for which the only entrance is
through the first statement of the block, and the only exit is through the last
statement of the block.

A. The ComputationaVArchitectural Model
In order for us to accurately evaluate the quality of the

schedules that we produce, it is necessary that we be a bit
more precise about certain aspects of the system that we
utilize. In particular, we assume a multiprocessor system M
that consists of p asynchronous identical processors, shared
global memory modules, and a communication structure that
allows processors to communicate with other processors or
with the shared memory. We assume that the multiprocessor
system includes the standard primitives send and receive,
which are used for the synchronization of processors. Because
of the kind of synchronization required here (i.e., based on
data dependencies), we assume that the send operation does
not require the invoker to wait until a corresponding receive
is executed. [6]

In conjunction with the above system, we employ three
parameters that, together, describe the “speed” of the ar-
chitecture. The first is a function Fe(I) that returns the
number of cycles required to execute instruction I. The second
is a function F, = Fa + F,, that indicates the number
of cycles needed for communication of values through the
interconnection structure. By an interconnection structure or
communication structure we mean hardware support such as
memory channels, [l] register channels [l l] or an intercon-
nection network [141 that provides support for communication
of values. Here, the function Fa is the access time needed to
traverse the communication structure and F, is the number
of cycles a processor waits (due to contention) before it
can access a required value. The third parameter, BW, is
the bandwidth of the communication structure or the num-
ber of processors that can simultaneously use the structure.
Contention occurs when the number of processors vying to
communicate during a given cycle, exceeds BW. The simulator
used to obtain a variety of results described in Sections IV and
V, takes the parameters Fe, F,, and BW as inputs.

In a portion of what follows, we use an idealized version
of the above model to isolate the important issues involved
in fine grained scheduling. In this UECC or uniform execution
and communication cost model, the following conditions hold:

1) Fe(I) = 1 for every instruction I,
2) Fa = 1,
3) F, = 0,
4) BW = p ,
5) synchronization primitives Sdi and Rvi can execute in

The first condition provides for the execution of any operation
in one cycle, and the second and third conditions allow com-
munication through the interconnection structure in one cycle.
The fourth condition allows p processors to communicate
simultaneously without contention; such throughput might, for
example, be provided by a crossbar interconnection topology.
The fifth condition allows one cycle for each processor to
execute a communication or synchronization primitive. The
communication primitive Sdi indicates that node i has com-
pleted execution and the primitive Rvi requires the executing
processor to wait until node i has completed execution.

Finally, as is standard practice, [3] we use a directed
acyclic graph (dag) G = (V, E), to represent the computation

the same cycle.

500

PI

E?

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. 5, MAY 1994

1 Rvl R v ~ 3 Sd, 4 4 RVS R v 5 6

2 Sdl R v 3 R v 3 5 M5

l)A=O

2) B- 1

3)C= A + B

4) x i c

S)Yr c/2

6) Z = X Y

0 1

Tnnc 1 2 3 4 5 6 7

P2 1-1
Fig. 1. A program segmentis pictured in the upper left hand comer with
acomsponding expression dag to the right of the program segment. To the
right of the expression dag is the Corresponding task dag consisting of
nodescontaining numbers to represent the operations in the expressiondagand
edges to indicate data dependencies between nodes. A scheduleforthe task dag
is pictured at the bottom of the figure where nodes 1.3, 4 and 6 are assigned
to list P1 and nodes 2 and 5 are assignedtolist P2.

performed in a basic block. In such a dag, the nodes correspond
to computed values, and the acrs indicate data dependencies
between values. Thus, the children of a node are the values
used to compute the node. In the discussions that follows, we
view the dag as shown in Fig. 1, with the root node(s) at the
top of the figure. Levels in the dag are numbered from the
bottom up, with the bottom (lowest) level numbered level 1.

B. Scheduling Dags
In this section we provide some general information and

background on the scheduling of dags in the context of
asynchronous machines.

We use the following general approach for scheduling dags
on asynchronous machines. There are four phases. First, each
node of the dag is assigned to a particular processor. Second,
for each processor, a list is constructed of the nodes assigned
to that processor. In these lists, nodes appear in reverse
topological order (a node must appear in a list before any
of it’s parents). Furthermore, nodes are inserted into the lists
in the same order that they appear in the program; thus, if
statements 1, 2, and 5 are assigned to list P1, then they appear
in the list in that order. Third, these lists are modified by
incorporating the required communication primitives. Finally,
these lists are used to produce a schedule. Of these four phases,
phase one, the assignment of nodes to processors is the main
focus of this paper. Phase 2 is straight-forward and is not
discussed here. The remainder of this section is devoted to a
discussion of phases 3 and 4.

In phase 3, note that if two operations A and B are
connected with an arc in the dag (A being the parent of B), and
they are assigned to different processors, then communication
primitives must be inserted. In particular, a send is inserted
immediately after B, and a receive is inserted immediately
before A. For example, in Fig. 1, node 3 is the parent of
node 2 and nodes 3 and 2 are assigned to different lists.
Ultimately, when producing a schedule, a send is inserted
immediately after node 2 in list P2 , and a receive is inserted

immediately before node 3 in list P1. For the example in
Fig, 1, both the send and receive primitives are assigned to
the same time slot, but this need not necessarily be the case.
Since the communication primitives are asynchronous, even if
the send operation occurs in a time slot prior to the receive,
the processor that executes the send operation may continue
execution. Of course, if the receive operation occurs in a time
slot prior to the send operation, then the processor that issued
the receive must wait until the send is issued. [6]

In phase 4, a compile-time schedule is produced from the
lists of operations and communication primitives. This is, of
course, a schedule which is constructed at compile time. We
will also refer to a run-time schedule, which is what occurs in
an actual execution of the compile-time schedule. These two
kinds of schedules represent the distinction between what we
can modeupredkt and what actually occurs in a real execution,
respectively.

Both kinds of schedules are obtained in the obvious fashion:
the operations in list i are executed on processor i, and the
j th operation in a list executes only after the previous j - 1
operations of the list have completed. Also, a receive operation
may execute no earlier then its corresponding send operation
(which is on anotherprocessor).2 Clearly this means that some
idle time may exist on the processor executing the receive. For
example, processor P 2 is idle during time slot 3 in the schedule
shown in Fig. 1. In the compile-time schedule constructed
under the UECC model, each operation requires one time unit
to complete, and send and receive operations can occur in the
same time unit. The length of schedule S is equal to the latest
time slot during which a node of G executes. For example, in
Fig. 1, the length of the schedule is 7. In a run-time schedule,
the time to execute any particular operation may vary due to
factors such as contention in the communication structure and
variances in the actual processor speeds. For example, in Fig.
2, each of the receive operations required two time units while
the send operations required one time unit, possibly due to the
particular implementation of the synchronization operations
by the multiprocessors.

Clearly the most desirable approach to the code scheduling
problem is to produce an assignment that results in an optimal
compile-time schedule. However, we establish that producing
such a schedule for our UECC model that includes both
execution and communication cost is NP-complete, even if
there are only 2 processors. Recall the UECC model assumes
a multiprocessor M with p identical processors that execute

21n an actual execution, this is not exactly what occurs. Rather, if the
jth operation is a receive, then that receive executes immediately after the
completion of the j-1st operation. Further executions on that processor are
suspended until the corresponding send operation executes. This is equivalent
with respect to time to the “no earlier than the send,” requirement. We use
that requirement to simplify explanations in later sections.

MALLOY et al.: SCHEDULING DAG’S 50 1

each instruction in one cycle and that a processor can commu-
nicate with another processor in one cycle. We assume that no
processor has to wait to communicate with another processor
and that the p processors can communicate simultaneously.
Input to M is a dag G = (V, E) where edges in the dag
represent precedence constraints. Given nodes {U, U} E V and
edge (ul U) E E, the cost for scheduling U and v on different
processors is one unit since communication in M is one cycle.
We assume a cost of 0 if U and v are scheduled on the same
processor. Formally, as is the usual practice, the problem is
stated as a decision problem:
Asynchronous Processor Scheduling (APS):
Instance: A dag and a value L.
Question: Does there exist an assignment of the nodes

of a dag to 2 processors such that the length of
the synchronized schedule does not exceed L?

Theorem: Asynchronous Processor Scheduling (APS) is
NP-complete. (The proof is in the appendix.)

C. Adapting Existing Scheduling Methods
Since the Asynchronous Processor Scheduling problem is

NP-complete, we focus on heuristics for finding “good” as-
signments/schedules, rather than optimal ones. Our heuristic,
the Preferred Path Selection algorithm (PPS) is presented in
Section 111. Sections IV and V are devoted to evaluating
the scheduling method that we describe in Section 111. One
aspect of that evaluation is to compare our method to earlier
methods. Unfortunately, only the Early-Scheduling Method
[20] is aimed at precisely the problem that we consider
where communication cost is included as part of the problem.
Nonetheless, it has been suggested that traditional task sched-
uling techniques might be extended in natural ways in order to
exploit fine grained parallelism. Two promising techniques are:

Critical Path, Most Immediate Successors First
(CPMISF) [13]
Internalization Prepass Approach [21]
Since all three of the above methods are a variation of

list scheduling we begin with a brief discussion of how list
scheduling can be used to produce schedules in the situation
that we study. We then describe each of the above three
methods and how they may be adapted to the fine grained
scheduling problem that we consider.

Traditionally, list scheduling has been used for scheduling
task systems on synchronous mathines. The idea is as follows:

Given a priority list L of the nodes of G, the list schedule S
that corresponds to L can be constructed using the following
procedure:

1) Iteratively assign the elements of S to a processor,
starting at time slot 1 such that during the ith step, L is
scanned from left to right, and the first ready node not
yet scheduled is chosen to be executed during available
time at slot i.

2) If no ready node is found or there is no available time
at time slot i, then continue at time slot i + 1.

In constructing list L, the first two phases of our method are
accomplished, assignment of nodes to a processor and con-
struction of a list of nodes to be executed by each processor.
The versions of list scheduling algorithms can be distinguished

by the method in which L is obtained. In critical path schedul-
ing, nodes at the lowest levels of the dag (farthest from a root
node) are inserted into L first. Since there can be more than
one node at a given level in the dag, a version of critical path
scheduling called CPMISF [131 (critical pawmost immediate
successors first) attempts to establish a hierarchy among nodes
at the same level by assigning a higher priority to those with
more immediate successors.

To adapt list scheduling in general, and CPMISF in par-
ticular, to an asynchronous model, communication primitives
must be inserted in an appropriate fashion to accomplish phase
three of our method. We view the “schedule” produced by
a list scheduling algorithm (such as CP/MISF) as merely an
assignment of operations to processors in a particular order.
Using these assignments, each node in S is examined to
determine if its successor(s) in the dag is scheduled on the
same processor. If a node in S has a successor assigned
to a different processor, then communication primitives are
inserted in the appropriate lists.

The Early-Scheduling Method [20] represents an attempt
to include communication cost in the determination of the
schedule. The algorithm maintains a list E containing unsched-
uled nodes that are ready for execution (eligible nodes), and
sequences SI through sp. Sequence si contains the nodes that
are already assigned to processor Pi. The algorithm proceeds
iteratively as follows:

1) For each node z E E and each processor Pi E P =
{ P I , . . . , Pp} calculate the finish time of z on Pi in-
cluding insertion of communication primitives if needed.

2) Let f be the earliest finish time of a node z from
1). Create set A containing all possible assignments of
eligible nodes to processors having finish time f .

3) Choose a node randomly from set A and assign it to
sequences si.

After all of the nodes in the dag have been assigned to a
sequence si, sequence si is mapped to processor Pi. As in the
other list scheduling approaches, communication primitives are
inserted into si to produce an actual schedule.

The third method that we consider is the Internalization
Prepass Approach, [2 11, [23] which processes program graphs
which represent computation as dataflow graphs. This ap-
proach was not designed for scheduling dags (graphs whose
nodes represent operations) but rather for graphs whose nodes
represent structures contained in a program written in a func-
tional language. We modify the Internalization Prepass Ap-
proach so that the nodes of the graph are operations and
include it as a comparison with the PPS approach. The Inter-
nalization Prepass Approach attempts to minimize communi-
cation cost by internalizing (executing on the same processor)
nodes along the critical path. [21] The algorithm maintains
a list of blocks that initially contains 1 node per block and a
table DeltaCPL [il j] that represents the decrease in the critical
path length obtained by merging blocks i and j. Blocks that
will result in a decrease in the critical path length are merged
until further mergers cannot reduce the critical path length. In
computing the critical path length, all nodes in the same block
are sequentialized since they will be assigned to the same
processor. After the intemalization prepass, the approach uses

502 lEEE TRANSACTlONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

pi

ThenDons=ThK -
Ehe U3m unassigned child of BestNode with at least one

Tbcn BesNode : = such M unasagned child dBrstNodc
EIae BesNGde :=any unassigned child of BestNodc:

oihcr psrenc lssigned U) Pi

i:=imodp+ I;

Fig. 3. The Preferred Path Selection algorithm (PPS).

4 5 6 2 R Y 7 3 1

7 sd7 9 10 8

a modified priority list scheduling algorithm to assign nodes to
processors with the modification that when a node is assigned
to a processor, all other nodes in the same block are assigned
to the same processor.

111. THE PREFERRED PATH SELECTION
ALGORITHM-AN INTEGRATED APPROACH

In this section, we describe our algorithm for the scheduling
of program dags on an asynchronous multiprocessor. Actually,
based on the discussion in the previous section, we limit the
discussion here to “phase 1”-that is, to the assignment of
each node to some processor. Throughout this paper, we use
the term PPS to refer both to the entire algorithm and more
particularly, to this first step. Typically, the meaning will be
clear from the context.

As noted earlier, the key idea in assigning nodes to pro-
cessors, is to exploit the fine grained parallelism present in
the instruction stream by a careful balancing of execution and
communication costs at the level of individual instructions, and
in consideration of their data dependencies. Thus the algorithm
that we present incorporates the dag structure, as well as
communication costs in its computation of a schedule. In
particular, the algorithm attempts to minimize communication
costs by locating a path Li in the dag and assigning all of
the nodes on the path to the same processor P. Such a path,
by definition, represents a series of data dependencies, and by
scheduling the entire path for execution on a single processor,
the need for synchronization among the nodes on this path is
eliminated. Further, we attempt to maximize these savings in
communication costs, by insuring that in the construction of
Li for execution on processor P: 1) that nodes with a parent
unassigned or assigned to P, are preferred over those with
a parent assigned to a processor other than P ; and 2) that
Li is maximal (i.e., it cannot be extended). The complete
algorithm is given in Fig. 3; an input of a dag G = (V, E)
and a multiprocessor with P processors is assumed.

To illustrate the manner in which the PPS algorithm assigns
nodes to processors, we use it to schedule the dag shown in
Fig. 4 on two processors. Here, the initial value of IC is 3,
since node 1 is at level 3 and is unassigned. BestNode is also
node 1 since it has no parent. In the first iteration of the inner
While loop, node 1 is assigned to PI. In the next iteration of
this inner While loop, a child of node 1, say node 2, is chosen
as BestNode and is assigned to Pl. In the next iteration of

MALLOY et al.: SCHEDULING DAG'S 503

TABLE I
PERFORMANCE EVALUATION (p = 2 PROCESSORS)

Dudnag la7
Whctstm 137
m 190
Livmnac 203

I 4"'1"ars
139

8\
d

Fig. 5. A dag with a chain.

compile-time schedule results-namely that the PPS algorithm
is able to scale to 16 processors.

A. Compile-Time Schedule Comparisons
In this section, we compare the lengths of compile-time

schedules produced by each of the methods: CP/MISF,
Early-Scheduling Method, Internalization Prepass and PPS
algorithms. In addition, a Random assignment algorithm is
included to serve as a ''control" for the comparison of the
heuristics. This algorithm, assigns the nodes of a dag to pro-
cessors in a random fashion. The details of the implementation
are straight-forward and are left to the reader.

Finally, we note that in this section, all of the comparisons
were done using the UECC model. Results were obtained for
2 ,3 ,4 ,8 , and 16 processors. In each instance, the results show
that the PPS algorithm performs significantly better than any
of the other methods.

The results of the evaluations on two processors are sum-
marized in Table 1 (the results for 3, 4, 8, and 16 processors
are similar and may be be found in [16]). For example,
Sample is a program whose corresponding dag contains 10
nodes as shown in Fig. 4. Applying CPMISF to Sample
resulted in a compile-time schedule of length 11, while Early,
Prepass and Random produce schedule lengths of 9,12, and 13
respectively. Applying the PPS algorithm to Sample resulted
in a schedule of length 7 as shown in Fig. 4.

To fully evaluate the heuristics, their performance was
examined using a variety of dags as input, including dags
having long or wide topologies, duplication of similar patterns,
those having theoretical interest as well as those of practical
application. The number of nodes in the dags ranges from
10 to 203. In addition to program Sample discussed above,
Table I contains seven other test programs. The programs
Fibonacci and Mat Mult were obtained by using loop unrolling
to compute the first ten Fibonacci numbers and to multiply
two 3 x 3 matrices. The program F'yramid is an example
of a grid. [19] FlT is a program whose dag is a complete
binary tree and Dual Dag is a program whose dag contains
duplicate components. Finally, the whetstone program was

obtained by unrolling loops in four of the Whetstone modules
and Livermore is a program containing the first 20 iterations
of the first kernel of the Livemore loops. [18]

From Table I, it is clear that in almost every instance,
our PPS algorithm produces significantly shorter schedules
than any of the other methods. We believe that this superior
performance of the PPS algorithm can be attributed primarily
to its focus on minimizing communication costs, while the
earlier algorithms (all based on list scheduling) attempt to
minimize processor idle time exclusively. To accomplish this,
the earlier algorithms focus primarily on executing nodes at the
lowest level first. Unfortunately, this strategy can schedule on
different processors, nodes that are all connected to a single
successor. Such a situation obviously requires a great deal
of communication and therefore a longer schedule. A further
advantage of the PPS algorithm is that it incorporates the struc-
ture of the dag in computing the preferred path and by assign-
ing the entire path to a processor, the PPS approach maintains a
globalview of the dag in its computation of a schedule. The ear-
lier list scheduling algorithms utilize a much more localview,
in examining primarily, nodes on a single level to decide which
to schedule next. For example, the earlier algorithms may quite
easily assign the nodes of Fig. 4 in the following manner:
nodes 4, 6, 9, 2, and 8 to processor 1 and 5, 7, 10, 3, and 1 to
processor 2. By assigning nodes 4 and 5, 6, and 7, 9, and 10,
and 2 and 3, to different processors, communication between
processors 1 and 2 is required, resulting in a schedule of length
11. For the PPS algorithm, nodes along the longest path are
assigned to the same processor (for example nodes 1, 2 and
4) and communication is not required for any of these nodes.

The Internalization Prepass Approach produces excellent
results when applied to graphs that result from functional
programs, [21] since they typically produce long chains of
computations. However, the results in Table I indicate that the
Internalization Prepass Approach does not perform as well as
the PPS algorithm when applied to expression dags. This is
primarily due to the fact that the Prepass algorithm is only
able to internalize or merge a low percentage of the nodes that
occur in expression dags, in particular, those that lie along a
chain such as nodes 1, 2, 3, and 4 in Fig. 5. To demonstrate
the merging of nodes, recall that the algorithm utilizes a table,
DeltaCPL [i,j], that represents the decrease in critical path
length that will result when nodes i and j are merged. [23]
DeltaCPL can be initialized with the loop, DeltaCPL [i,j] :=
origCPL-newCPL, for all i # j ; the algorithm then merges
pairs of nodes with a positive DeltaCPL entry until all entries
are negative. Since one unit is required for node execution and
one unit for communication, the critical path in Fig. 5 is 1,
2, 3, 4 with length 7. If nodes 1, 2, and 3 are merged, the
critical path length reduces to 5 since the path (1, 2, 3, 4) has
length 5 and the path (1, 2, 3, 5) also has length 5, where
nodes 2 and 3 must be executed on the same processor as 1.
No further merging is possible. For the dags in Table I, a low
percentage of nodes were merged and thus the Internalization
Prepass Approach gave results nearly identical to the other
local-view algorithms. For example, the Prepass merged none
of the nodes in Whetstone.

We conclude this section by noting that the PPS algorithm
is able to provide speedup, not only for two processors (Table

SO4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

Fiboorci

hUMult
Dual-
twhaaon
FFr

lLiwmae

No.& Speedup Speedup E &e. canponcnts p=8 p 1 6
20 130 1 1.00 1.00
36 I 2 5 1 1.89 1.89

120 I 2 3 9 3.53 SA5
107 1.43 2 1.98 1.98
131 1W 13 2.14 3.26
127 0.99 1 6.13 8.64
203 130 2o 634 9.67

linear speedup if each component contains the same number
of nodes and is assigned to a different processor. The PPS
algorithm was able to provide good speedup on 2 processors
for programs that contain 2 or more connected components, as
can be seen from Table I for Mat Mult, Dual Dag, Whetstone
and Livermore. When the dag contains a single connected
component and has an average indegree larger than 1.25, the
PPS algorithm was not able to provide significant speedup
such as with the Fibonacci and pyramid dags.

B. Simulation Results For Run-time Schedules

In the previous section we evaluated the various methods by
comparing the lengths of the compile-time schedules they pro-
duced. While we believe that these comparisons provide a very
good indication of the relative quality of the corresponding
run-time schedules, it is true that the compile-time schedules
provide only a lower bound on the lengths of the run-time
schedules for the given assignment of nodes to processors.
Further, there is no reason to believe that among the heuristics
that we consider, one would be any more or less affected
than another by runtime factors such as contention in the
communication structure or the speed of the structure.

Nonetheless, it seems appropriate to test these observations
by comparing run-time schedules. Thus, in this section we
simulate the executions of schedules produced by the various
methods, on architectures differing in communication speed
and bandwidth. As noted in section 2, this is achieved by
supplying the three parameters, Fe (I), F,, and BW, to a simu-
lator that we constructed using the process oriented simulation
language Simcal. [171

In the simulations of this section, the values established
by Sarkar [22] are used to describe the execution times for
simple operations (Fe (I)) and the time needed to communicate
a value (F,). In particular, a table of cost values is utilized to
define the value of the function Fe(IJ) for each instruction IJ .
To describe the access time via the communication structure,
we let Fa = 2*k*s. We consider three situations, depending
on values for k of 0.0, 0.125 and 1 which correspond to
fast, medium and slow access times respectively. Examples
of such communication structures are channels for providing
a fast communication structure, a crossbar or omega network
providing a medium speed structure and a unibus providing
a slow structure. The parameter s describes the size of the
data value being transferred and for fine grained scheduling is
assumed to be 4 bytes.

As in previous work, [5], [251 we use various bandwidths
(BW) to model the contention in the communication structure.
A value of 1 for BW describes a worst case communication
structure that allows only one request to be accepted per cycle;
a value of fi describes a multistage network such as that pro-
posed by Lang [141; and finally, a value of p describes the best
case bandwidth where p requests can be accepted per cycle.

The results of these simulation studies again show that
in comparison with the other methods, the PPS approach
produces significantly better schedules. [161 We omit these
results since they are similar in nature to those of the previous
section and present the simulation results for the PPS algorithm
in Table 111 and IV. These tables illustrate the speedup obtained
by executing the run-time schedules for Mat Mult and FFT on

MALLOY et al.: SCHEDULING DAG’S 505

TABLE III
SPEEDUP FOR PPS ALGORITHM-MAT MULT

2, 3, 4, 8 and 16 processors using a fast, medium and slow
communication structure with a bandwidth of 1, Jir and p.

In analyzing the results shown in Tables I11 and IV, recall
from Table 11, that the dag for Mat Mult contains nine
connected components, and that the dag for FFT contains a
small average indegree and therefore few data dependencies.
The results in Tables I11 and IV demonstrate that a good
speedup can be achieved for these two programs using a fast
communication structure. Using a medium speed structure,
good speedup is also achieved if the bandwidth is fi or
p. However, if the bandwidth is the worst case value of 1,
representative of a unibus structure, the performance can de-
grade with increasing number of processors due to contention
in the communication structure. For the Mat Mult program
executed on a multiprocessor with a medium speed unibus
structure, the results in Table I11 show that speedup increases
form 1.58 on 2 processors to 1.92 on 3 processors, to 2.04
on 4 processors and to 2.40 on 8 processors. Speed up on 16
processors decreases from that achieved on 8 processors, from
2.40 to 2.18. This phenomenon whereby speedup “levels off’
or decreases as the number of processors is increased from
8 to 16 can be observed in Tables I11 and IV for all cases
where the bandwidth is 1. Thus, for a unibus communication
structure, increasing the number of processors can produce
more contention and a longer run-time schedule.

v. PERFORMANCE OF THE PPS ALGORITHM
ON A DATA GENERAL MULTIPROCESSOR

As noted earlier, the PPS algorithm was implemented on a
Data General AViiON shared memory multiprocessor system
[2] equipped with a unibus communication structure and
two identical processors. The send and receive primitives
were implemented using spin-lock operations on unix shared
variables [4]. In order to compare the results of these actual
executions, with corresponding simulation results, we first
conducted a series of experiments to determine the average
cost of the send and receive primitives and the cost of using the
unibus communication structure. These experiments revealed
that a send primitive requires approximately the same time to
execute as a floating point multiplication, and that a receive
primitive requires approximately twice as long as a floating
point multiplication (provided, of course, that the receive does
not have to wait). These values were utilized in setting the
parameter F, for the simulation studies described below.

The result summarized in Table V indicate a strong correla-
tion between the simulation results and the actual executions
on the Data General multiprocessor. In Table V, the first

TABLE IV
SPEEDUP FOR PPS ALGOmm-FFr

TABLE V
COMPARISON OF SJhlULATION WITH ACTUAL EXECUTION

I PYnmi I 102 I 113 I 0.90 I 0.43 I 0.67 I 0.65 I
336
311
411
506
643

column lists the programs used in the experiments, the next
three columns report the results of the simulations and the
last three columns report the results of the actual executions.
For the simulations, the second and third columns express the
number of cycles required to execute the test program on 1 and
2 processors respectively. For the actual executions, the fifth
and sixth columns express the number of seconds required to
execute the test program 10,OOO times; these experiments were
conducted 1000 times and the results reported are the averages.
As a particular instance, note that the simulation indicates
that 54 cycles are required to execute the sequential code,
and that 60 cycles are required to execute the schedule for 2
processors with a resulting speedup of 0.90 over the sequential
execution.A speedup of less than one indicates that the parallel
execution took longer than the sequential execution assuming
machines with the same architectural configuration. For the
actual execution of the Fibonacci program on the Data General
multiprocessor, an average of 0.23 seconds were required for
loo00 iterations using 1 processor and 0.25 seconds were
required for 1OOOO iterations using 2 processors producing
a speedup of 0.88 over the sequential execution.

The similarities in speedup between the simulation and
actual execution results are established by comparing columns
4 and 7. with the exception of the Pyramid and Livermore
programs, the difference between these speedups is never more
than 0.25. This is a remarkably small difference, and certainly
validates the use of the simulation approach in most instances.

In addition to supporting the correlation between the sim-
ulation results and the actual executions on a Data General
Multiprocessor, Table V also supports the conclusion that the
PPS algorithm is able to provide very good speedup for pro-
grams containing sufficient parallelism. Sufficient parallelism
implies that the resulting dag does not contain a large number
of data dependencies (as expressed by the average indegree
for the edges), and has enough nodes to support all or most
of the processors.

506 lEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 5, MAY 1994

TABLE VI
SIMULATIONS FOR 2, 3, 4, 8, AND 16 PROCESSORS USING
PARAMETERS THAT DESCRIBE THE DATA GENERAL AViiON

1.32
1.76
1.65
I .40
1.29
2.56 -

1.47
1.30

1.30
1.62
1.45
1.47
1.28
2.55 -

TABLE VI1
SIMULATIONS FOR 2. 3, 4, 8, AND 16 PROCESSORS USING

F~QUIPPED WITH AN OMEGA TYPE COMMUNICATIONS STRUCTURE
PARAMETERS THAT DESCRIBE A DATA GENERAL MACHINE

Since the Data General AViiON multiprocessor at our
installation is equipped with only two processors, we are not
able to evaluate the performance of the PPS algorithm for
actual executions of schedules using more than two processors.
However, simulations using parameters appropriate to the
Data General machine, produce the results shown in Table
VI for executions on 2, 3, 4, 8, and 1 6 processors. These
results suggest that if the AViiON were to maintain its current
configuration except for the addition of more processors,
no significant speedup would be achieved by using these
additional processors. The main bottleneck in the system is
the unibus communication structure. In fact, an examination
of Table VI reveals the same “leveling off’ effect that was
observed in Tables I11 and IV for the case where a unibus
communication structure is employed. The lack of parallelism
in the unibus communication structure produces a great deal
of contention when accessing memory for loadstores and for
synchronization with unix shared variables.

On the other hand, if the Data General were equipped
with both a larger number of processors, and an omega
type communication structure that permitted &i processors
to communicate simultaneously, then the speedups shown in
Table VI1 could be achieved. These results show that the
addition of the omega network produces significant speedup
using 4 processors for the Mat Mult, Dual Dag, Whetstone,
FFT, and Livermore programs. Of course, increasing the speed
of the communication structure and providing architectural
support for the synchronization primitives [11, [111 would
produce even more dramatic results for increased numbers of
processors.

VI. CONCLUSION

We have provided a new approach for scheduling a se-
quential instruction stream for execution “in parallel” on
asynchronous multiprocessors. The key idea in our approach is
to exploit the fine grained parallelism present in the instruc-
tion stream. In this context, schedules are constructed by a

careful balancing of execution and communication costs at the
level of individual instructions, and their data dependencies.
Our approach was compared using both compile-time and run-
time schedules to methods adapted from existing (primarily,
coarse grained) methods. These comparisons show that our
method provides superior schedules to each of the alternative
methods. In addition, our results support the conclusion that
if the multiprocessor system incorporates a communication
structure that allows fi or more processors to communicate
simultaneously, then a large degree of speedup is achieved on
2 to 16 processors by using the PPS algorithm.

In addition to the compile-time and simulation studies,
the PPS algorithm was implemented on the Data General
AViiON shared memory multiprocessor system. Here, actual
executions of PPS algorithm, generated schedules produce
speedups that closely correspond to those produced in our
simulation studies (those parameterized to “model” the Data
General system). These results are encouraging for the devel-
opment of compile time techniques for scheduling fine-grained
operations.

APPENDIX
A PROOF THAT APS IS NP-COMPLETE

In this appendix we provide the proof of Theorem 1.
Namely, we show that asynchronous processor scheduling
(APS) is NP-complete, even when there are but two proces-
sors. We begin by recalling the definition:
Asynchronous Processor Scheduling (APS):
Instance: A dag and a value L.
Question: Does there exist an assignment of the nodes of

the dag to 2 processors such that the length of the
synchronized schedule does not exceed L?

Throughout this appendix, we use the term schedule to refer
both to an assignment and to its corresponding schedule. The
meaning of the term will be clear from the context.

To show that APS is NP-complete, we note that it is easy to
show that APS E NP, and proceed directly to establishing that
the following NP-complete problem is polynomially reducible
to APS.
3-partition problem [lo] (3-PART):
Input: Multiset A containing 3n integers and an integer bound
B >= 2, where B/4 < ai < B/2 for all a; E A and
C:z,ai = Bn.
Question: Is there a partition of A into n triples of three
elements each such that the sum of the integers in each triple
equals B?3
Given an instance of 3-PART, we construct an instance of
APS that consists of the following:

For each ai in the instance of 3-PART, there is a chain
Ci of 2a, nodes, (i.e., each node except for the end nodes
has a unique parent and a unique child). The first a; nodes
in Ci are red nodes and the second ai nodes are black
nodes. All of the nodes in C; are partition nodes.
There is a chain of 2(B + 3)” nodes. The first B + 3
nodes are black, the second B + 3 nodes are red, the third

3Because the 3-partition problem is strongly NP-complete, a reduction that
is polynomial in the value of the numbers in the 3-partition problem instance
is sufficient for a proof of NP-completeness,

MALLOY et al.: SCHEDULING DAG'S

P1

P2

507

henforcanodes Rv B+3contournodes Sd Rv B+3contournodes ...

6n enforcer nodes B+3 contour nodes Sd Rv B+3contournodes Sd

iniiicates a receive and Sd indicates a send.

B + 3 nodes are black, and so on, alternating colors in
blocks of B + 3 nodes. All of the nodes in this chain are
contour nodes.
There is a set of 6n additional red nodes and a set of
6n additional black nodes. These are enforcer nodes, and
there is an edge from each red enforcer node to each red
partition or contour node. There is an edge from each
black enforcer node to each black partition or contour
node. Intuitively, the enforcer nodes will force all of the
red nodes to execute on one processor and all of the black
nodes to execute on the other processor.
L = 6n + 2(B + 3)" + 2n - 1 = 2Bn + 14n - 1.

Now suppose that there is a solution to the instance of 3-
PART. A solution to APS is as fellows: Completely fill the
first 6n time units of the schedule by placing all of the red
enforcer nodes on one processor, say p l , and all of the black
enforcer nodes on the other processor, pa. Next, schedule all
of the red contour nodes on p l , and all of the black contour
nodes on pa. Note that these contour nodes appear in groups
of B + 3 nodes, with the groups altemating between pl and p2 .

Thus, between successive groups of contour nodes, we insert
a sendreceive pair to synchronize between the last red(b1ack)
node in a group and the first black(red) node in the next group.
The partial schedule constructed to this point is shown in
Figure 6. Clearly, the partition nodes must be scheduled in
the portions where no tasks are currently scheduled. Note that
these unscheduled portions of the schedule occur in blocks
of size B + 3 and alternate between the two processors.
Thus, we schedule the nodes in the C; chains as follows:
Suppose that in the solution to the instance of 3-PART, that
ai, aj and ak form the hth element of that partition. Thus,
ai + aj + a k = B. Then, in the hth unscheduled block on
p l , we schedule the red nodes in C;, Cj and Ck, followed
by three sends (one from the last red node in C; to the
first black node in C;, etc.). And, in the hth unscheduled
block on Pz, we schedule the three corresponding receives,
followed by the black nodes in C;, Cj and C k . Since each
unscheduled block is of length B + 3, and we schedule exactly
B nodes and 3 synchronizations per block, we have a valid
schedule.

Conversely, suppose that there is a solution to the con-
structed instance of APS. We need to show that there also
exists a solution to the instance of 3-PART.

We begin by claiming that the APS schedule must be such
that all of the red nodes are scheduled on one processor and
that all of the black nodes are scheduled on the other processor.
To see that this is the case, assume by way of contradiction
that red nodes are scheduled on both processors. We consider
two cases.

Assume that each processor executes at least one red
contour or partition node. Then, each processor will
contain at least 6n sends and 6n receives to account
for synchronization between the red enforcer nodes
and the red contour and partition nodes. Since there
are 4Bn + 18n nodes altogether, this implies that the
schedule length is at least 2Bn + 15n > L, hence, a
contradiction. Thus, all of the red contour and partition
nodes are scheduled on one processor, and, similarly, all
of the black contour and partition nodes are scheduled
on the other processor.
Assume that each processor executes at least one red
enforcer node. Since from case 1, we know that all of
the red contour and partition nodes are scheduled on one
processor, this means that there are at least 2(B + 3)"
sends and 2(B + 3)" receives between red enforcer
nodes and red contour and partition nodes. Since there
are 4Bn + 18n nodes altogether, this implies that the
schedule length is at least 4Bn + 15n > L, hence,
a contradiction. Thus, all of the red nodes (enforcer,
contour and partition) are scheduled on one processor,
and all of the black nodes are scheduled on the other
Drocessor.

Sinie all of the red nodes are scheduled on one processor,
say p l , and all of black nodes on the other processor (p 2) , it
follows from the precedence constraints that, when considering
only enforcer and contour nodes, the schedule must have the
form shown in Fig. 6. That is, the enforcer nodes are scheduled
in the first 6n time units. In time units 6n + 1 to L, the contour
nodes alternate on the two processors in blocks of B+3 nodes,
with a single sendreceive pair being scheduled between each
block of B + 3 nodes. This means that the partition nodes
(and associated synchronizations) must be scheduled in the
unused portions of the schedule shown in Fig. 6. Note that
these unused portions can accommodate exactly 2(B + 3) .
nodes andor synchronization operations. Since there are 2Bn
partition nodes and since, for each C;, one sendreceive pair
is required between the last red node in C; and the first black
node in C; (for a total of 3n sends and 3n receives), it follows
that there is no idle time in the schedule, nor can any other
synchronization be introduced.

To complete the proof, we consider the first unused block
H2 on p2 and consider which partition nodes could be sched-
uled in that block. Note that since in the instance of 3-PART,
each a; < B/2, there must exist partition nodes scheduled in
H2 from three chains, say Ci , Cj and C k . Could there be nodes
from a fourth chain, say c h ? By way of contradiction, assume
so. Then, since these partition nodes are black, it follows that
all of the red nodes of C;, Cj , Ck and c h must be scheduled
in H I , the first unused block on p l . Further, 4 sends must also

508 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 5, MAY 1994

be scheduled in H I . But, since each ai > B/4, it follows that
the total number of nodes and sends scheduled in H1 exceeds
B + 4. Since H1 is of length B + 3, this is a contradiction.
Thus we have the following.

1) H I , contains all of the red nodes of ci, cj and ck, along
with three sends. It follows that ai + aj + ak + 3 5 B + 3,
hence, ai + aj + ak 5 B.

2) H2 contains black nodes of ci, cj, and ck, along with
three receives, and nothing else. Since the schedule is
known to contain no idle time, it follows that a; + aj +
Uk + 3 >= B + 3, hence ai + aj + U k >= B.

From these, we have that a; + aj + U k = B. Thus, {ai , aj , U k }

is one element of the desired 3-partitions. A complete solution
to 3-PART follows in an inductive fashion.

ACKNOWLEDGMENT

This work was partially motivated by suggestions from R.
Melhem. The authors wish to thank the referees for their
constructive comments. B. Simons provided this version for
the NP-completeness proof; our original proof, found in [16],
is based on a reduction for 3-SAT. F. Harris implemented the
PPS technique on the Data General machine and obtained the
statistics in Table V. Thanks to M. Smotherman and W. Madi-
son for their insights into the Data General multiprocessor.

REFERENCES

“Parallel MIMD Computation: HEP Supercomputer & Its Applications,”
Scientific Computation Series.
Installing and Managing the DG/UX System, Data General Corporation,
1990.
A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles, Techniques
and Tools . Reading, MA: Addison-Wesley, 1986.
M. J. Bach, The Design of the Unix Operating System. Englewood
Cliffs, NJ: Prentice-Hall, 1986.
Z. Cvetanovic, ‘The effects of problem partitioning, allocation, and
granularity on the performance of multi-processor system,” IEEE Trans.
Comput., vol. C-36, no. 4, Apr. 1987.
A. Dinning, “A survey of synchronization methods for parallel comput-
ers,” Comput., pp. 66-76, July 1989.
J. J. Dongarra and A. R. Jinds, “Unrolling loops in Fortran,” SoJlware
Practice and Experience, pp. 219-226, Mar. 1979.
J. R. Ellis, Bulklog: A Compiler for VLlw Architectures. Cambridge,
MA: MIT Press, 1986.
J. Fisher, “Trace scheduling: A technique for global microcode com-
paction,” ZEEE Trans. Comput., vol. C-30, no. 7, July 1981.
M. R. Garey and D. S. Johnson, Computers and Intractability, A guide
to the Theory of NP-Completness.
R. Gupta, “Employing register channels for the exploitation of instruc-
tion level parallelism,” presented at the Second ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming, Seattle Washington,
Mar. 1990.
W.-C. Hsu, C. N. Fischer, and J. R. Goodman, “On the minimization
of loads/stores in local register allocation,” IEEE Trans. Sofmare Eng.,

H. Kasahara and S. Narita, “Practical multiprocessor scheduling algo-
rithms for efficient parallel processing,” IEEE Trans. Comput., vol. C-33,
no. 11, pp. 1023-1029, Nov. 1984.
T. Lang, “Interconnections between processors and memory modules
using the shuffle-exchange network,” IEEE Trans. Comput., vol. C-25,
no. 5, May 1976.
M. D. MacLaren, “Inline routines in VAXELN Pascal,’’ in Proc. ACM
SIGPLAN Symp. Compiler Construction. vol. 19, no. 6. June 1984.
B. Malloy, E. L. Lloyd and M. L. Soffa, “Fine grained scheduling of
asynchronous multiprocessors in NP-complete,” Tech. Rep. # 89-23,
Dec. 1989.
B. Malloy and M. L. Soffa, “Conversion of simulation processes to
Pascal constructs,” Sofmare-Practice and Experience, vol. 20, no. 2,
pp. 191-207, Feb. 1990.
F. H. McMohan, “FORTRAN CPU performance analysis,” Lawrence
Livermore Laboratories, 1972.

Cambridge, MA: MIT Press, 1985.

San Francisco: Freeman, 1979.

vol. 15, pp. 1252-1260, Oct. 1989.

[19] C. H. Papadimitriou and J. D. Ullman, “A communication-time trade-
off,” Siam J. Computing, vol. 16, no. 4, Aug. 1987.

[20] T. L. Rcdeheffer, “Compiling ordinary programs for executing on
an asynchronous multiprocessor,” Tech. Rep. No. CMU-CS-85-155,
Carnegie Mellon Univ., 1985.

[21] V. Sarkar and J. Hennessy, “Compile time partitioning and scheduling of
parallel programs,” in Sigplan Symp. on Compiler Construction, 1986,

1221 V. Sarkar, “Partitioning and scheduling parallel programs for execution
on multiprocessors.” Tech. Rep. no. CSL-TR-87-328, Standford Univ.,
Apr. 1987.

1231 -, Private Communication, Dec. 8, 1989.
1241 G. S. Tjaden and M. J. Flynn, “Detection and parallel execution of

independent instructions,” IEEE Trans. Comput., vol. 19, no. 10, pp.
889-895, Oct. 1970.

I251 D. Vrsalovic, D. Seiwiorek, Z. Segall. and E. Gehringer, ‘‘Performance
prediction and calibration for a class of multiprocessors,” IEEE Trans.
Compur., vol. 37, no. 11, Nov. 1988.

[26] S . Weiss and J. E. Smith, “A study of scalar compilation techniques for
pipelined supercomputers,” in Second Int. Conf: Architectural Support
jo r Programming Languages and Operating Syst., Oct. 1987.

[27] A. Wolfe and J. Shen, “A variable instruction stream extension to
the VLIW architecture,” in Forth Int. Con& Architectural Support for
Programming Languages and Operating Syst., Apr. 1991, pp. 2-14.

pp. 17-26.

B.A. Malloy received the B.S. degree in mathe-
matics from LaSalle University in Philadelphia, M.
Ed. in counselor education, and M.S. and Ph.D. in
computer science from the University of Pittsburgh.

He is currently an Assistant Professor at Clemson
University. His research interests include program-
ming language design and implementation, imple-
mentation of parallelism, simulation modeling and
software maintenance.

E.L. Lloyd received B.S. degrees in both computer
science and mathematics from the Pennsylvania
State University in 1975, and the S.M. and Ph.D.
degrees in computer science from the Massachusetts
Institute of Technology in 1977 and 1980, respec-
tively.

He is presently an Associate Professor in the
Computer and Information Science Department of
the University of Delaware. Earlier, he had been an
Associate Professor at the University of Pittsburgh
(1980-1988). and served as Program Director for

the Computer and Computation Theory Program at the National Science
Foundation (1988-1989). His research interests are in the design and analysis
of algorithms, with a particular emphasis on approximation algorithms for
NP-hard problems.

Dr. Lloyd has published numerous journal and conference papers. He is a
member of the IEEE Computer Society and the Association for Computing
Machinery.

Dr. Soffa currently
on Programming Lung
ENGINEERING, and Inte
Languages.

M.L. Soffa received the Ph.D. degree in com-
puter science from the University of Pittsburgh in
1977.

Since that time, she has been a faculty member
at the University of Pittsburgh and is currently
a Professor in the Computer Science Department.
Since 1991, she has been also serving as the Dean
of Graduate Studies in Arts and Sciences at Pin. Her
research interests include language implementation,
parallelizing compilers, program analysis, and soft-
ware tools.

serves on the editorial boards of ACM Transactions
ruages and Systems, IEEE TRANSACTIONS ON SOFTWARE
w”aiona1 Journal of Parallel Programming, Computer

