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Scheduling DAG’S for Asynchronous 
Multiprocessor Execution 
Brian A. Malloy, Errol L. Lloyd, and Mary Lou Soffa 

Abstract-A new approach is given for scheduling a sequential 
instruction stream for execution “in parallel” on asynchronous 
multiprocessors. The key idea in our approach is to exploit the 
fine grained parallelism present in the instruction stream. In 
this context, schedules are constructed by a careful balancing 
of execution and communication costs at the level of individual 
instructions, and their data dependencies. Three methods are 
used to evaluate our approach. First, several existing methods 
are extended to the fine grained situation considered here. Our 
approach is then compared to these methods using both static 
schedule length analyses, and simulated executions of the sched- 
uled code. In each instance, our method is found to provide 
significantly shorter schedules. Second, by varying parameters 
such as the speed of the instruction set, and the spedparallelism 
in the interconnection structure, simulation techniques are used to 
examine the effects of various architectural considerations on the 
executions of the schedules. These results show that our approach 
provides significant speedups in a wide-range of situations. Third, 
schedules produced by our approach are executed on a two- 
processor Data General shared memory multiprocessor system. 
These experiments show that there is a strong correlation between 
our simulation results (those parameterized to “model” the Data 
General system), and these actual executions, and thereby serve 
to validate the simulation studies. Together, our results establish 
that fine grained parallelism can be exploited in a substantial 
manner when scheduling a sequential instruction stream for 
execution “in parallel” on asynchronous multiprocessors. 

Index rems- Concurrency, parallelism, multiprocessor, h e  
grained parallelism, schedule, asynchronous. 

I. INTRODUCTION 
VER the past decade or so, changes in technology have 0 provided the possibility for vast increases in computa- 

tional speed and power through the exploitation of parallelism 
in program execution. Indeed, within certain computational 
domains, these technological changes have permitted solutions 
to computation intensive problems such as weather modeling, 
image processing, Monte Carlo simulations and sparse matrix 
problems. An important part of this technology has focused on 
two approaches to parallelizing a sequential instruction stream: 

1) exploiting fine grained parallelism, such as single state- 
ments, for VLIW machines, [8] and 

2) exploiting coarse grained parallelism, such as loops 
and procedures, on vectorizable machines and on asyn- 
chronous multiprocessors. 
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In the first approach, VLIW machines support the concurrent 
execution of multiple instruction streams and perform many 
operations per cycle. VLIW machines however, also employ 
a single control unit, thereby permitting only one branch 
to be executed per cycle. Furthermore, while the VLIW 
architectures perform well on programs dealing with scientific 
applications, their performance can degrade rapidly when 
faced with factors that decrease run-time predictability. [27] In 
particular, although general purpose programs typically have 
an abundance of fine grained parallelism, it is difficult to 
exploit that parallelism on a VLIW machine because general 
purpose programs are much less predictable than scientific 
applications. In the second approach, existing techniques for 
asynchronous multiprocessors produce schedules at the coarse 
grained level. Due to their multiple control units, asynchronous 
multiprocessors have greater flexibility than VLIW machines. 
Unfortunately, it is frequently the case that a program segment 
may be unable to support coarse grained parallelism because it 
does not contain any loops, or because the data dependencies in 
its loops preclude such concurrentization. Thus, asynchronous 
multiprocessors, currently present in many installations, are 
frequently underutilized due to the absence of techniques to 
exploit fine grained parallelism in an asynchronous manner. 

In this paper we offer an alternative approach to the exploita- 
tion of parallelism in programs by combining the fine grained 
approach of the VLIW with the flexibility of the asynchronous 
machine. In so doing, we thereby provide a mechanism by 
which parallelism may be exploited in programs where factors 
are predictable (such as scientific applications), as well as in 
programs with unpredictable factors (such as general purpose 
applications). 

Thus, we focus on exploiting fine grained parallelism to 
schedule a sequential instruction stream for execution on an 
asynchronous multiprocessor system. Recall the processors in 
an asynchronous multiprocessor execute independently and 
that communication is performed explicitly through asyn- 
chronous communication primitives. It follows that sched- 
uling for such systems will necessarily involve packing to- 
gether fine grained operations, including synchronization com- 
mands, for execution on the individual processors. The dif- 
ficulty in such scheduling lies in balancing the desire to 
utilize all of the processors, with the desire to minimize 
the amount of synchronization that is introduced by utilizing 
different processors for operations having data dependen- 
cies. 

We conclude this section by noting that although our work 
is directed toward the parallelization of entire programs, the 
focus of this paper is on the parallelization of straight line 
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code such as that found in a basic block.’ Although early 
studies indicated that basic blocks of programs provide on 
average only two or three instructions that can be executed 
in parallel, [24] compiler techniques such as loop unrolling, 
[7, 261 in-line substitution, [15] code duplication, [12] and 
trace scheduling [9] are now being employed resulting in a 
significant increase in the size of basic blocks (currently, up 
to lo00 instructions). These techniques have, in turn, vastly 
increased the fine grained parallelism present in a basic block. 
Throughout the remainder of this paper we focus exclusively 
on scheduling the instructions of a single basic block for 
execution on asynchronous tightly coupled multiprocessors. 

The remainder of this paper is organized as follows. 
In the next section, we provide some specifics on the 
computationallarchitectural model that is assumed in this work, 
along with a precise discussion of scheduling in this context. 
We investigate the complexity of computing a fine grained 
schedule under our model and conclude that the problem is 
NP-complete. We then discuss how several existing coarse 
grained methods can be extended to the fine grained situation 
considered here. In Section 111, we present our approach, the 
Preferred Path Selection algorithm (PPS), for fine grained 
scheduling on asynchronous multiprocessors. The remainder 
of the paper is devoted to evaluating our approach. In Section 
IV, we study the performance of our approach in relation to 
the modified coarse grained methods described in Section 11. 
Here, comparisons are made using both static schedule length 
analyses, and simulated executions of the scheduled code. In 
each instance, our method is found to produce significantly 
shorter schedules. In addition, these results show explicitly that 
the approach scales to at least 16 processors when the commu- 
nication structure provides sufficient parallelism. In Section 
V, further simulation techniques are used to determine the 
performance of the PPS algorithm for varying communication 
speeds and interconnection structure bandwidths, including the 
modeling of the contention in the communication structure. 
We conclude that for fast or moderate communication speeds 
and bandwidths, the PPS algorithm can provide significant 
speedup for dags containing sufficient parallelism. Finally, in 
Section VI, schedules produced by our approach are executed 
on a two-processor Data General AViiON shared memory 
multiprocessor system. [2] These experiments show that there 
is a strong correlation between our simulation results (those 
parameterized to “model” the Data General AViiON system), 
and these actual executions, and thereby serve to validate the 
simulation studies. 

Together, the simulations and actual executions establish 
that fine grained parallelism can indeed be exploited in a 
substantial manner when scheduling a sequential instruction 
stream for execution “in parallel” on asynchronous 
multiprocessors. 

11. MODELS, SCHEDULES AND RELATED WORK 

In this section, we provide some specifics on the computa- 
tionallarchitectural model that is assumed in this work, along 
with a precise discussion of scheduling in this context. 

A basic block is a sequence of instructions for which the only entrance is 
through the first statement of the block, and the only exit is through the last 
statement of the block. 

A. The ComputationaVArchitectural Model 
In order for us to accurately evaluate the quality of the 

schedules that we produce, it is necessary that we be a bit 
more precise about certain aspects of the system that we 
utilize. In particular, we assume a multiprocessor system M 
that consists of p asynchronous identical processors, shared 
global memory modules, and a communication structure that 
allows processors to communicate with other processors or 
with the shared memory. We assume that the multiprocessor 
system includes the standard primitives send and receive, 
which are used for the synchronization of processors. Because 
of the kind of synchronization required here (i.e., based on 
data dependencies), we assume that the send operation does 
not require the invoker to wait until a corresponding receive 
is executed. [6] 

In conjunction with the above system, we employ three 
parameters that, together, describe the “speed” of the ar- 
chitecture. The first is a function Fe(I) that returns the 
number of cycles required to execute instruction I. The second 
is a function F, = Fa + F,, that indicates the number 
of cycles needed for communication of values through the 
interconnection structure. By an interconnection structure or 
communication structure we mean hardware support such as 
memory channels, [ l ]  register channels [ l l ]  or an intercon- 
nection network [ 141 that provides support for communication 
of values. Here, the function Fa is the access time needed to 
traverse the communication structure and F, is the number 
of cycles a processor waits (due to contention) before it 
can access a required value. The third parameter, BW, is 
the bandwidth of the communication structure or the num- 
ber of processors that can simultaneously use the structure. 
Contention occurs when the number of processors vying to 
communicate during a given cycle, exceeds BW. The simulator 
used to obtain a variety of results described in Sections IV and 
V, takes the parameters Fe, F,, and BW as inputs. 

In a portion of what follows, we use an idealized version 
of the above model to isolate the important issues involved 
in fine grained scheduling. In this UECC or uniform execution 
and communication cost model, the following conditions hold: 

1) Fe(I) = 1 for every instruction I, 
2) Fa = 1, 
3) F, = 0, 
4) BW = p ,  
5 )  synchronization primitives Sdi and Rvi can execute in 

The first condition provides for the execution of any operation 
in one cycle, and the second and third conditions allow com- 
munication through the interconnection structure in one cycle. 
The fourth condition allows p processors to communicate 
simultaneously without contention; such throughput might, for 
example, be provided by a crossbar interconnection topology. 
The fifth condition allows one cycle for each processor to 
execute a communication or synchronization primitive. The 
communication primitive Sdi indicates that node i has com- 
pleted execution and the primitive Rvi requires the executing 
processor to wait until node i has completed execution. 

Finally, as is standard practice, [3] we use a directed 
acyclic graph (dag) G = (V, E), to represent the computation 

the same cycle. 
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Fig. 1. A program segmentis pictured in the upper left hand comer with 
acomsponding expression dag to the right of the program segment. To the 
right of the expression dag is the Corresponding task dag consisting of 
nodescontaining numbers to represent the operations in the expressiondagand 
edges to indicate data dependencies between nodes. A scheduleforthe task dag 
is pictured at the bottom of the figure where nodes 1.3, 4 and 6 are assigned 
to list P1 and nodes 2 and 5 are assignedtolist P2. 

performed in a basic block. In such a dag, the nodes correspond 
to computed values, and the acrs indicate data dependencies 
between values. Thus, the children of a node are the values 
used to compute the node. In the discussions that follows, we 
view the dag as shown in Fig. 1, with the root node(s) at the 
top of the figure. Levels in the dag are numbered from the 
bottom up, with the bottom (lowest) level numbered level 1. 

B. Scheduling Dags 
In this section we provide some general information and 

background on the scheduling of dags in the context of 
asynchronous machines. 

We use the following general approach for scheduling dags 
on asynchronous machines. There are four phases. First, each 
node of the dag is assigned to a particular processor. Second, 
for each processor, a list is constructed of the nodes assigned 
to that processor. In these lists, nodes appear in reverse 
topological order (a node must appear in a list before any 
of it’s parents). Furthermore, nodes are inserted into the lists 
in the same order that they appear in the program; thus, if 
statements 1, 2, and 5 are assigned to list P1, then they appear 
in the list in that order. Third, these lists are modified by 
incorporating the required communication primitives. Finally, 
these lists are used to produce a schedule. Of these four phases, 
phase one, the assignment of nodes to processors is the main 
focus of this paper. Phase 2 is straight-forward and is not 
discussed here. The remainder of this section is devoted to a 
discussion of phases 3 and 4. 

In phase 3, note that if two operations A and B are 
connected with an arc in the dag (A being the parent of B), and 
they are assigned to different processors, then communication 
primitives must be inserted. In particular, a send is inserted 
immediately after B, and a receive is inserted immediately 
before A. For example, in Fig. 1, node 3 is the parent of 
node 2 and nodes 3 and 2 are assigned to different lists. 
Ultimately, when producing a schedule, a send is inserted 
immediately after node 2 in list P2 ,  and a receive is inserted 

immediately before node 3 in list P1. For the example in 
Fig, 1, both the send and receive primitives are assigned to 
the same time slot, but this need not necessarily be the case. 
Since the communication primitives are asynchronous, even if 
the send operation occurs in a time slot prior to the receive, 
the processor that executes the send operation may continue 
execution. Of course, if the receive operation occurs in a time 
slot prior to the send operation, then the processor that issued 
the receive must wait until the send is issued. [6] 

In phase 4, a compile-time schedule is produced from the 
lists of operations and communication primitives. This is, of 
course, a schedule which is constructed at compile time. We 
will also refer to a run-time schedule, which is what occurs in 
an actual execution of the compile-time schedule. These two 
kinds of schedules represent the distinction between what we 
can modeupredkt and what actually occurs in a real execution, 
respectively. 

Both kinds of schedules are obtained in the obvious fashion: 
the operations in list i are executed on processor i, and the 
j th  operation in a list executes only after the previous j - 1  
operations of the list have completed. Also, a receive operation 
may execute no earlier then its corresponding send operation 
(which is on anotherprocessor).2 Clearly this means that some 
idle time may exist on the processor executing the receive. For 
example, processor P 2  is idle during time slot 3 in the schedule 
shown in Fig. 1. In the compile-time schedule constructed 
under the UECC model, each operation requires one time unit 
to complete, and send and receive operations can occur in the 
same time unit. The length of schedule S is equal to the latest 
time slot during which a node of G executes. For example, in 
Fig. 1, the length of the schedule is 7. In a run-time schedule, 
the time to execute any particular operation may vary due to 
factors such as contention in the communication structure and 
variances in the actual processor speeds. For example, in Fig. 
2, each of the receive operations required two time units while 
the send operations required one time unit, possibly due to the 
particular implementation of the synchronization operations 
by the multiprocessors. 

Clearly the most desirable approach to the code scheduling 
problem is to produce an assignment that results in an optimal 
compile-time schedule. However, we establish that producing 
such a schedule for our UECC model that includes both 
execution and communication cost is NP-complete, even if 
there are only 2 processors. Recall the UECC model assumes 
a multiprocessor M with p identical processors that execute 

21n an actual execution, this is not exactly what occurs. Rather, if the 
jth operation is a receive, then that receive executes immediately after the 
completion of the j-1st operation. Further executions on that processor are 
suspended until the corresponding send operation executes. This is equivalent 
with respect to time to the “no earlier than the send,” requirement. We use 
that requirement to simplify explanations in later sections. 
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each instruction in one cycle and that a processor can commu- 
nicate with another processor in one cycle. We assume that no 
processor has to wait to communicate with another processor 
and that the p processors can communicate simultaneously. 
Input to M is a dag G = (V, E) where edges in the dag 
represent precedence constraints. Given nodes {U, U} E V and 
edge (ul U) E E, the cost for scheduling U and v on different 
processors is one unit since communication in M is one cycle. 
We assume a cost of 0 if U and v are scheduled on the same 
processor. Formally, as is the usual practice, the problem is 
stated as a decision problem: 
Asynchronous Processor Scheduling (APS): 
Instance: A dag and a value L. 
Question: Does there exist an assignment of the nodes 

of a dag to 2 processors such that the length of 
the synchronized schedule does not exceed L? 

Theorem: Asynchronous Processor Scheduling (APS) is 
NP-complete. (The proof is in the appendix.) 

C. Adapting Existing Scheduling Methods 
Since the Asynchronous Processor Scheduling problem is 

NP-complete, we focus on heuristics for finding “good” as- 
signments/schedules, rather than optimal ones. Our heuristic, 
the Preferred Path Selection algorithm (PPS) is presented in 
Section 111. Sections IV and V are devoted to evaluating 
the scheduling method that we describe in Section 111. One 
aspect of that evaluation is to compare our method to earlier 
methods. Unfortunately, only the Early-Scheduling Method 
[20] is aimed at precisely the problem that we consider 
where communication cost is included as part of the problem. 
Nonetheless, it has been suggested that traditional task sched- 
uling techniques might be extended in natural ways in order to 
exploit fine grained parallelism. Two promising techniques are: 

Critical Path, Most Immediate Successors First 
(CPMISF) [13] 
Internalization Prepass Approach [21] 
Since all three of the above methods are a variation of 

list scheduling we begin with a brief discussion of how list 
scheduling can be used to produce schedules in the situation 
that we study. We then describe each of the above three 
methods and how they may be adapted to the fine grained 
scheduling problem that we consider. 

Traditionally, list scheduling has been used for scheduling 
task systems on synchronous mathines. The idea is as follows: 

Given a priority list L of the nodes of G, the list schedule S 
that corresponds to L can be constructed using the following 
procedure: 

1) Iteratively assign the elements of S to a processor, 
starting at time slot 1 such that during the ith step, L is 
scanned from left to right, and the first ready node not 
yet scheduled is chosen to be executed during available 
time at slot i. 

2) If no ready node is found or there is no available time 
at time slot i, then continue at time slot i + 1. 

In constructing list L, the first two phases of our method are 
accomplished, assignment of nodes to a processor and con- 
struction of a list of nodes to be executed by each processor. 
The versions of list scheduling algorithms can be distinguished 

by the method in which L is obtained. In critical path schedul- 
ing, nodes at the lowest levels of the dag (farthest from a root 
node) are inserted into L first. Since there can be more than 
one node at a given level in the dag, a version of critical path 
scheduling called CPMISF [ 131 (critical pawmost immediate 
successors first) attempts to establish a hierarchy among nodes 
at the same level by assigning a higher priority to those with 
more immediate successors. 

To adapt list scheduling in general, and CPMISF in par- 
ticular, to an asynchronous model, communication primitives 
must be inserted in an appropriate fashion to accomplish phase 
three of our method. We view the “schedule” produced by 
a list scheduling algorithm (such as CP/MISF) as merely an 
assignment of operations to processors in a particular order. 
Using these assignments, each node in S is examined to 
determine if its successor(s) in the dag is scheduled on the 
same processor. If a node in S has a successor assigned 
to a different processor, then communication primitives are 
inserted in the appropriate lists. 

The Early-Scheduling Method [20] represents an attempt 
to include communication cost in the determination of the 
schedule. The algorithm maintains a list E containing unsched- 
uled nodes that are ready for execution (eligible nodes), and 
sequences SI through sp.  Sequence si contains the nodes that 
are already assigned to processor Pi. The algorithm proceeds 
iteratively as follows: 

1) For each node z E E and each processor Pi E P = 
{ P I ,  . . . , Pp} calculate the finish time of z on Pi in- 
cluding insertion of communication primitives if needed. 

2) Let f be the earliest finish time of a node z from 
1). Create set A containing all possible assignments of 
eligible nodes to processors having finish time f .  

3) Choose a node randomly from set A and assign it to 
sequences si. 

After all of the nodes in the dag have been assigned to a 
sequence si, sequence si is mapped to processor Pi. As in the 
other list scheduling approaches, communication primitives are 
inserted into si to produce an actual schedule. 

The third method that we consider is the Internalization 
Prepass Approach, [2 11, [23] which processes program graphs 
which represent computation as dataflow graphs. This ap- 
proach was not designed for scheduling dags (graphs whose 
nodes represent operations) but rather for graphs whose nodes 
represent structures contained in a program written in a func- 
tional language. We modify the Internalization Prepass Ap- 
proach so that the nodes of the graph are operations and 
include it as a comparison with the PPS approach. The Inter- 
nalization Prepass Approach attempts to minimize communi- 
cation cost by internalizing (executing on the same processor) 
nodes along the critical path. [21] The algorithm maintains 
a list of blocks that initially contains 1 node per block and a 
table DeltaCPL [il j ]  that represents the decrease in the critical 
path length obtained by merging blocks i and j. Blocks that 
will result in a decrease in the critical path length are merged 
until further mergers cannot reduce the critical path length. In 
computing the critical path length, all nodes in the same block 
are sequentialized since they will be assigned to the same 
processor. After the intemalization prepass, the approach uses 
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a modified priority list scheduling algorithm to assign nodes to 
processors with the modification that when a node is assigned 
to a processor, all other nodes in the same block are assigned 
to the same processor. 

111. THE PREFERRED PATH SELECTION 
ALGORITHM-AN INTEGRATED APPROACH 

In this section, we describe our algorithm for the scheduling 
of program dags on an asynchronous multiprocessor. Actually, 
based on the discussion in the previous section, we limit the 
discussion here to “phase 1”-that is, to the assignment of 
each node to some processor. Throughout this paper, we use 
the term PPS to refer both to the entire algorithm and more 
particularly, to this first step. Typically, the meaning will be 
clear from the context. 

As noted earlier, the key idea in assigning nodes to pro- 
cessors, is to exploit the fine grained parallelism present in 
the instruction stream by a careful balancing of execution and 
communication costs at the level of individual instructions, and 
in consideration of their data dependencies. Thus the algorithm 
that we present incorporates the dag structure, as well as 
communication costs in its computation of a schedule. In 
particular, the algorithm attempts to minimize communication 
costs by locating a path Li in the dag and assigning all of 
the nodes on the path to the same processor P. Such a path, 
by definition, represents a series of data dependencies, and by 
scheduling the entire path for execution on a single processor, 
the need for synchronization among the nodes on this path is 
eliminated. Further, we attempt to maximize these savings in 
communication costs, by insuring that in the construction of 
Li for execution on processor P: 1) that nodes with a parent 
unassigned or assigned to P, are preferred over those with 
a parent assigned to a processor other than P ;  and 2)  that 
Li is maximal (i.e., it cannot be extended). The complete 
algorithm is given in Fig. 3; an input of a dag G = (V, E )  
and a multiprocessor with P processors is assumed. 

To illustrate the manner in which the PPS algorithm assigns 
nodes to processors, we use it to schedule the dag shown in 
Fig. 4 on two processors. Here, the initial value of IC is 3, 
since node 1 is at level 3 and is unassigned. BestNode is also 
node 1 since it has no parent. In the first iteration of the inner 
While loop, node 1 is assigned to PI. In the next iteration of 
this inner While loop, a child of node 1, say node 2, is chosen 
as BestNode and is assigned to Pl. In the next iteration of 
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TABLE I 
PERFORMANCE EVALUATION (p = 2 PROCESSORS) 

Dudnag la7 
Whctstm 137 
m 190 
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d 

Fig. 5.  A dag with a chain. 

compile-time schedule results-namely that the PPS algorithm 
is able to scale to 16 processors. 

A. Compile-Time Schedule Comparisons 
In this section, we compare the lengths of compile-time 

schedules produced by each of the methods: CP/MISF, 
Early-Scheduling Method, Internalization Prepass and PPS 
algorithms. In addition, a Random assignment algorithm is 
included to serve as a ''control" for the comparison of the 
heuristics. This algorithm, assigns the nodes of a dag to pro- 
cessors in a random fashion. The details of the implementation 
are straight-forward and are left to the reader. 

Finally, we note that in this section, all of the comparisons 
were done using the UECC model. Results were obtained for 
2 ,3 ,4 ,8 ,  and 16 processors. In each instance, the results show 
that the PPS algorithm performs significantly better than any 
of the other methods. 

The results of the evaluations on two processors are sum- 
marized in Table 1 (the results for 3, 4, 8, and 16 processors 
are similar and may be be found in [16]). For example, 
Sample is a program whose corresponding dag contains 10 
nodes as shown in Fig. 4. Applying CPMISF to Sample 
resulted in a compile-time schedule of length 11, while Early, 
Prepass and Random produce schedule lengths of 9,12, and 13 
respectively. Applying the PPS algorithm to Sample resulted 
in a schedule of length 7 as shown in Fig. 4. 

To fully evaluate the heuristics, their performance was 
examined using a variety of dags as input, including dags 
having long or wide topologies, duplication of similar patterns, 
those having theoretical interest as well as those of practical 
application. The number of nodes in the dags ranges from 
10 to 203. In addition to program Sample discussed above, 
Table I contains seven other test programs. The programs 
Fibonacci and Mat Mult were obtained by using loop unrolling 
to compute the first ten Fibonacci numbers and to multiply 
two 3 x 3 matrices. The program F'yramid is an example 
of a grid. [19] FlT is a program whose dag is a complete 
binary tree and Dual Dag is a program whose dag contains 
duplicate components. Finally, the whetstone program was 

obtained by unrolling loops in four of the Whetstone modules 
and Livermore is a program containing the first 20 iterations 
of the first kernel of the Livemore loops. [18] 

From Table I, it is clear that in almost every instance, 
our PPS algorithm produces significantly shorter schedules 
than any of the other methods. We believe that this superior 
performance of the PPS algorithm can be attributed primarily 
to its focus on minimizing communication costs, while the 
earlier algorithms (all based on list scheduling) attempt to 
minimize processor idle time exclusively. To accomplish this, 
the earlier algorithms focus primarily on executing nodes at the 
lowest level first. Unfortunately, this strategy can schedule on 
different processors, nodes that are all connected to a single 
successor. Such a situation obviously requires a great deal 
of communication and therefore a longer schedule. A further 
advantage of the PPS algorithm is that it incorporates the struc- 
ture of the dag in computing the preferred path and by assign- 
ing the entire path to a processor, the PPS approach maintains a 
globalview of the dag in its computation of a schedule. The ear- 
lier list scheduling algorithms utilize a much more localview, 
in examining primarily, nodes on a single level to decide which 
to schedule next. For example, the earlier algorithms may quite 
easily assign the nodes of Fig. 4 in the following manner: 
nodes 4, 6, 9, 2, and 8 to processor 1 and 5, 7, 10, 3, and 1 to 
processor 2. By assigning nodes 4 and 5, 6, and 7, 9, and 10, 
and 2 and 3, to different processors, communication between 
processors 1 and 2 is required, resulting in a schedule of length 
11. For the PPS algorithm, nodes along the longest path are 
assigned to the same processor (for example nodes 1, 2 and 
4) and communication is not required for any of these nodes. 

The Internalization Prepass Approach produces excellent 
results when applied to graphs that result from functional 
programs, [21] since they typically produce long chains of 
computations. However, the results in Table I indicate that the 
Internalization Prepass Approach does not perform as well as 
the PPS algorithm when applied to expression dags. This is 
primarily due to the fact that the Prepass algorithm is only 
able to internalize or merge a low percentage of the nodes that 
occur in expression dags, in particular, those that lie along a 
chain such as nodes 1, 2, 3, and 4 in Fig. 5. To demonstrate 
the merging of nodes, recall that the algorithm utilizes a table, 
DeltaCPL [i,j], that represents the decrease in critical path 
length that will result when nodes i and j are merged. [23] 
DeltaCPL can be initialized with the loop, DeltaCPL [i,j] := 
origCPL-newCPL, for all i # j ;  the algorithm then merges 
pairs of nodes with a positive DeltaCPL entry until all entries 
are negative. Since one unit is required for node execution and 
one unit for communication, the critical path in Fig. 5 is 1, 
2, 3, 4 with length 7. If nodes 1, 2, and 3 are merged, the 
critical path length reduces to 5 since the path (1, 2, 3, 4) has 
length 5 and the path (1, 2, 3, 5) also has length 5, where 
nodes 2 and 3 must be executed on the same processor as 1. 
No further merging is possible. For the dags in Table I, a low 
percentage of nodes were merged and thus the Internalization 
Prepass Approach gave results nearly identical to the other 
local-view algorithms. For example, the Prepass merged none 
of the nodes in Whetstone. 

We conclude this section by noting that the PPS algorithm 
is able to provide speedup, not only for two processors (Table 
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Fiboorci 

hUMult  
Dual- 
twhaaon 
FFr 

lLiwmae 

No.& Speedup Speedup E &e. canponcnts p=8 p 1 6  
20 130 1 1.00 1.00 
36 I 2 5  1 1.89 1.89 

120 I 2 3  9 3.53 SA5 
107 1.43 2 1.98 1.98 
131 1W 13 2.14 3.26 
127 0.99 1 6.13 8.64 
203 130 2o 634 9.67 

linear speedup if each component contains the same number 
of nodes and is assigned to a different processor. The PPS 
algorithm was able to provide good speedup on 2 processors 
for programs that contain 2 or more connected components, as 
can be seen from Table I for Mat Mult, Dual Dag, Whetstone 
and Livermore. When the dag contains a single connected 
component and has an average indegree larger than 1.25, the 
PPS algorithm was not able to provide significant speedup 
such as with the Fibonacci and pyramid dags. 

B. Simulation Results For Run-time Schedules 

In the previous section we evaluated the various methods by 
comparing the lengths of the compile-time schedules they pro- 
duced. While we believe that these comparisons provide a very 
good indication of the relative quality of the corresponding 
run-time schedules, it is true that the compile-time schedules 
provide only a lower bound on the lengths of the run-time 
schedules for the given assignment of nodes to processors. 
Further, there is no reason to believe that among the heuristics 
that we consider, one would be any more or less affected 
than another by runtime factors such as contention in the 
communication structure or the speed of the structure. 

Nonetheless, it seems appropriate to test these observations 
by comparing run-time schedules. Thus, in this section we 
simulate the executions of schedules produced by the various 
methods, on architectures differing in communication speed 
and bandwidth. As noted in section 2, this is achieved by 
supplying the three parameters, Fe (I), F,, and BW, to a simu- 
lator that we constructed using the process oriented simulation 
language Simcal. [ 171 

In the simulations of this section, the values established 
by Sarkar [22] are used to describe the execution times for 
simple operations (Fe (I)) and the time needed to communicate 
a value (F,). In particular, a table of cost values is utilized to 
define the value of the function Fe(IJ )  for each instruction IJ . 
To describe the access time via the communication structure, 
we let Fa = 2*k*s. We consider three situations, depending 
on values for k of 0.0, 0.125 and 1 which correspond to 
fast, medium and slow access times respectively. Examples 
of such communication structures are channels for providing 
a fast communication structure, a crossbar or omega network 
providing a medium speed structure and a unibus providing 
a slow structure. The parameter s describes the size of the 
data value being transferred and for fine grained scheduling is 
assumed to be 4 bytes. 

As in previous work, [5], [251 we use various bandwidths 
(BW) to model the contention in the communication structure. 
A value of 1 for BW describes a worst case communication 
structure that allows only one request to be accepted per cycle; 
a value of fi describes a multistage network such as that pro- 
posed by Lang [ 141; and finally, a value of p describes the best 
case bandwidth where p requests can be accepted per cycle. 

The results of these simulation studies again show that 
in comparison with the other methods, the PPS approach 
produces significantly better schedules. [ 161 We omit these 
results since they are similar in nature to those of the previous 
section and present the simulation results for the PPS algorithm 
in Table 111 and IV. These tables illustrate the speedup obtained 
by executing the run-time schedules for Mat Mult and FFT on 
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TABLE III 
SPEEDUP FOR PPS ALGORITHM-MAT MULT 

2, 3, 4, 8 and 16 processors using a fast, medium and slow 
communication structure with a bandwidth of 1, Jir and p. 

In analyzing the results shown in Tables I11 and IV, recall 
from Table 11, that the dag for Mat Mult contains nine 
connected components, and that the dag for FFT contains a 
small average indegree and therefore few data dependencies. 
The results in Tables I11 and IV demonstrate that a good 
speedup can be achieved for these two programs using a fast 
communication structure. Using a medium speed structure, 
good speedup is also achieved if the bandwidth is fi or 
p. However, if the bandwidth is the worst case value of 1, 
representative of a unibus structure, the performance can de- 
grade with increasing number of processors due to contention 
in the communication structure. For the Mat Mult program 
executed on a multiprocessor with a medium speed unibus 
structure, the results in Table I11 show that speedup increases 
form 1.58 on 2 processors to 1.92 on 3 processors, to 2.04 
on 4 processors and to 2.40 on 8 processors. Speed up on 16 
processors decreases from that achieved on 8 processors, from 
2.40 to 2.18. This phenomenon whereby speedup “levels off’ 
or decreases as the number of processors is increased from 
8 to 16 can be observed in Tables I11 and IV for all cases 
where the bandwidth is 1. Thus, for a unibus communication 
structure, increasing the number of processors can produce 
more contention and a longer run-time schedule. 

v. PERFORMANCE OF THE PPS ALGORITHM 
ON A DATA GENERAL MULTIPROCESSOR 

As noted earlier, the PPS algorithm was implemented on a 
Data General AViiON shared memory multiprocessor system 
[2] equipped with a unibus communication structure and 
two identical processors. The send and receive primitives 
were implemented using spin-lock operations on unix shared 
variables [4]. In order to compare the results of these actual 
executions, with corresponding simulation results, we first 
conducted a series of experiments to determine the average 
cost of the send and receive primitives and the cost of using the 
unibus communication structure. These experiments revealed 
that a send primitive requires approximately the same time to 
execute as a floating point multiplication, and that a receive 
primitive requires approximately twice as long as a floating 
point multiplication (provided, of course, that the receive does 
not have to wait). These values were utilized in setting the 
parameter F, for the simulation studies described below. 

The result summarized in Table V indicate a strong correla- 
tion between the simulation results and the actual executions 
on the Data General multiprocessor. In Table V, the first 

TABLE IV 
SPEEDUP FOR PPS ALGOmm-FFr 

TABLE V 
COMPARISON OF SJhlULATION WITH ACTUAL EXECUTION 

I PYnmi I 102 I 113 I 0.90 I 0.43 I 0.67 I 0.65 I 
336 
311 
411 
506 
643 

column lists the programs used in the experiments, the next 
three columns report the results of the simulations and the 
last three columns report the results of the actual executions. 
For the simulations, the second and third columns express the 
number of cycles required to execute the test program on 1 and 
2 processors respectively. For the actual executions, the fifth 
and sixth columns express the number of seconds required to 
execute the test program 10,OOO times; these experiments were 
conducted 1000 times and the results reported are the averages. 
As a particular instance, note that the simulation indicates 
that 54 cycles are required to execute the sequential code, 
and that 60 cycles are required to execute the schedule for 2 
processors with a resulting speedup of 0.90 over the sequential 
execution.A speedup of less than one indicates that the parallel 
execution took longer than the sequential execution assuming 
machines with the same architectural configuration. For the 
actual execution of the Fibonacci program on the Data General 
multiprocessor, an average of 0.23 seconds were required for 
loo00 iterations using 1 processor and 0.25 seconds were 
required for 1OOOO iterations using 2 processors producing 
a speedup of 0.88 over the sequential execution. 

The similarities in speedup between the simulation and 
actual execution results are established by comparing columns 
4 and 7. with the exception of the Pyramid and Livermore 
programs, the difference between these speedups is never more 
than 0.25. This is a remarkably small difference, and certainly 
validates the use of the simulation approach in most instances. 

In addition to supporting the correlation between the sim- 
ulation results and the actual executions on a Data General 
Multiprocessor, Table V also supports the conclusion that the 
PPS algorithm is able to provide very good speedup for pro- 
grams containing sufficient parallelism. Sufficient parallelism 
implies that the resulting dag does not contain a large number 
of data dependencies (as expressed by the average indegree 
for the edges), and has enough nodes to support all or most 
of the processors. 
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TABLE VI 
SIMULATIONS FOR 2, 3, 4, 8, AND 16 PROCESSORS USING 
PARAMETERS THAT DESCRIBE THE DATA GENERAL AViiON 

1.32 
1.76 
1.65 
I .40 
1.29 
2.56 - 

1.47 
1.30 

1.30 
1.62 
1.45 
1.47 
1.28 
2.55 - 

TABLE VI1 
SIMULATIONS FOR 2. 3, 4, 8, AND 16 PROCESSORS USING 

F~QUIPPED WITH AN OMEGA TYPE COMMUNICATIONS STRUCTURE 
PARAMETERS THAT DESCRIBE A DATA GENERAL MACHINE 

Since the Data General AViiON multiprocessor at our 
installation is equipped with only two processors, we are not 
able to evaluate the performance of the PPS algorithm for 
actual executions of schedules using more than two processors. 
However, simulations using parameters appropriate to the 
Data General machine, produce the results shown in Table 
VI for executions on 2, 3, 4, 8, and 1 6  processors. These 
results suggest that if the AViiON were to maintain its current 
configuration except for the addition of more processors, 
no significant speedup would be achieved by using these 
additional processors. The main bottleneck in the system is 
the unibus communication structure. In fact, an examination 
of Table VI reveals the same “leveling off’ effect that was 
observed in Tables I11 and IV for the case where a unibus 
communication structure is employed. The lack of parallelism 
in the unibus communication structure produces a great deal 
of contention when accessing memory for loadstores and for 
synchronization with unix shared variables. 

On the other hand, if the Data General were equipped 
with both a larger number of processors, and an omega 
type communication structure that permitted &i processors 
to communicate simultaneously, then the speedups shown in 
Table VI1 could be achieved. These results show that the 
addition of the omega network produces significant speedup 
using 4 processors for the Mat Mult, Dual Dag, Whetstone, 
FFT, and Livermore programs. Of course, increasing the speed 
of the communication structure and providing architectural 
support for the synchronization primitives [ 11, [ 111 would 
produce even more dramatic results for increased numbers of 
processors. 

VI. CONCLUSION 

We have provided a new approach for scheduling a se- 
quential instruction stream for execution “in parallel” on 
asynchronous multiprocessors. The key idea in our approach is 
to exploit the fine grained parallelism present in the instruc- 
tion stream. In this context, schedules are constructed by a 

careful balancing of execution and communication costs at the 
level of individual instructions, and their data dependencies. 
Our approach was compared using both compile-time and run- 
time schedules to methods adapted from existing (primarily, 
coarse grained) methods. These comparisons show that our 
method provides superior schedules to each of the alternative 
methods. In addition, our results support the conclusion that 
if the multiprocessor system incorporates a communication 
structure that allows fi or more processors to communicate 
simultaneously, then a large degree of speedup is achieved on 
2 to 16 processors by using the PPS algorithm. 

In addition to the compile-time and simulation studies, 
the PPS algorithm was implemented on the Data General 
AViiON shared memory multiprocessor system. Here, actual 
executions of PPS algorithm, generated schedules produce 
speedups that closely correspond to those produced in our 
simulation studies (those parameterized to “model” the Data 
General system). These results are encouraging for the devel- 
opment of compile time techniques for scheduling fine-grained 
operations. 

APPENDIX 
A PROOF THAT APS IS NP-COMPLETE 

In this appendix we provide the proof of Theorem 1.  
Namely, we show that asynchronous processor scheduling 
(APS) is NP-complete, even when there are but two proces- 
sors. We begin by recalling the definition: 
Asynchronous Processor Scheduling (APS): 
Instance: A dag and a value L. 
Question: Does there exist an assignment of the nodes of 

the dag to 2 processors such that the length of the 
synchronized schedule does not exceed L? 

Throughout this appendix, we use the term schedule to refer 
both to an assignment and to its corresponding schedule. The 
meaning of the term will be clear from the context. 

To show that APS is NP-complete, we note that it is easy to 
show that APS E NP, and proceed directly to establishing that 
the following NP-complete problem is polynomially reducible 
to APS. 
3-partition problem [lo] (3-PART): 
Input: Multiset A containing 3n integers and an integer bound 
B >= 2,  where B/4 < ai < B/2 for all a; E A and 
C:z,ai  = Bn. 
Question: Is there a partition of A into n triples of three 
elements each such that the sum of the integers in each triple 
equals B?3 
Given an instance of 3-PART, we construct an instance of 
APS that consists of the following: 

For each ai in the instance of 3-PART, there is a chain 
Ci of 2a, nodes, (i.e., each node except for the end nodes 
has a unique parent and a unique child). The first a; nodes 
in Ci are red nodes and the second ai nodes are black 
nodes. All of the nodes in C; are partition nodes. 
There is a chain of 2(B + 3)” nodes. The first B + 3 
nodes are black, the second B + 3 nodes are red, the third 

3Because the 3-partition problem is strongly NP-complete, a reduction that 
is polynomial in the value of the numbers in the 3-partition problem instance 
is sufficient for a proof of NP-completeness, 
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henforcanodes Rv B+3contournodes Sd Rv B+3contournodes ... 

6n enforcer nodes B+3 contour nodes Sd Rv B+3contournodes Sd 

iniiicates a receive and Sd indicates a send. 

B + 3 nodes are black, and so on, alternating colors in 
blocks of B + 3 nodes. All of the nodes in this chain are 
contour nodes. 
There is a set of 6n additional red nodes and a set of 
6n additional black nodes. These are enforcer nodes, and 
there is an edge from each red enforcer node to each red 
partition or contour node. There is an edge from each 
black enforcer node to each black partition or contour 
node. Intuitively, the enforcer nodes will force all of the 
red nodes to execute on one processor and all of the black 
nodes to execute on the other processor. 
L = 6n + 2(B + 3)" + 2n - 1 = 2Bn + 14n - 1. 

Now suppose that there is a solution to the instance of 3- 
PART. A solution to APS is as fellows: Completely fill the 
first 6n time units of the schedule by placing all of the red 
enforcer nodes on one processor, say p l ,  and all of the black 
enforcer nodes on the other processor, pa.  Next, schedule all 
of the red contour nodes on p l ,  and all of the black contour 
nodes on pa.  Note that these contour nodes appear in groups 
of B + 3 nodes, with the groups altemating between pl  and p2 .  

Thus, between successive groups of contour nodes, we insert 
a sendreceive pair to synchronize between the last red(b1ack) 
node in a group and the first black(red) node in the next group. 
The partial schedule constructed to this point is shown in 
Figure 6. Clearly, the partition nodes must be scheduled in 
the portions where no tasks are currently scheduled. Note that 
these unscheduled portions of the schedule occur in blocks 
of size B + 3 and alternate between the two processors. 
Thus, we schedule the nodes in the C; chains as follows: 
Suppose that in the solution to the instance of 3-PART, that 
ai,  aj  and ak form the hth element of that partition. Thus, 
ai + aj + a k  = B. Then, in the hth unscheduled block on 
p l ,  we schedule the red nodes in C;, Cj and Ck, followed 
by three sends (one from the last red node in C; to the 
first black node in C;, etc.). And, in the hth unscheduled 
block on Pz, we schedule the three corresponding receives, 
followed by the black nodes in C;, Cj and C k .  Since each 
unscheduled block is of length B + 3, and we schedule exactly 
B nodes and 3 synchronizations per block, we have a valid 
schedule. 

Conversely, suppose that there is a solution to the con- 
structed instance of APS. We need to show that there also 
exists a solution to the instance of 3-PART. 

We begin by claiming that the APS schedule must be such 
that all of the red nodes are scheduled on one processor and 
that all of the black nodes are scheduled on the other processor. 
To see that this is the case, assume by way of contradiction 
that red nodes are scheduled on both processors. We consider 
two cases. 

Assume that each processor executes at least one red 
contour or partition node. Then, each processor will 
contain at least 6n sends and 6n receives to account 
for synchronization between the red enforcer nodes 
and the red contour and partition nodes. Since there 
are 4Bn + 18n nodes altogether, this implies that the 
schedule length is at least 2Bn + 15n > L, hence, a 
contradiction. Thus, all of the red contour and partition 
nodes are scheduled on one processor, and, similarly, all 
of the black contour and partition nodes are scheduled 
on the other processor. 
Assume that each processor executes at least one red 
enforcer node. Since from case 1, we know that all of 
the red contour and partition nodes are scheduled on one 
processor, this means that there are at least 2(B + 3)" 
sends and 2(B + 3)" receives between red enforcer 
nodes and red contour and partition nodes. Since there 
are 4Bn + 18n nodes altogether, this implies that the 
schedule length is at least 4Bn + 15n > L,  hence, 
a contradiction. Thus, all of the red nodes (enforcer, 
contour and partition) are scheduled on one processor, 
and all of the black nodes are scheduled on the other 
Drocessor. 

Sinie all  of the red nodes are scheduled on one processor, 
say p l ,  and all of black nodes on the other processor ( p 2 ) ,  it 
follows from the precedence constraints that, when considering 
only enforcer and contour nodes, the schedule must have the 
form shown in Fig. 6. That is, the enforcer nodes are scheduled 
in the first 6n time units. In time units 6n + 1 to L, the contour 
nodes alternate on the two processors in blocks of B+3 nodes, 
with a single sendreceive pair being scheduled between each 
block of B + 3 nodes. This means that the partition nodes 
(and associated synchronizations) must be scheduled in the 
unused portions of the schedule shown in Fig. 6. Note that 
these unused portions can accommodate exactly 2(B + 3 ) .  
nodes andor synchronization operations. Since there are 2Bn 
partition nodes and since, for each C;, one sendreceive pair 
is required between the last red node in C; and the first black 
node in C; (for a total of 3n sends and 3n receives), it follows 
that there is no idle time in the schedule, nor can any other 
synchronization be introduced. 

To complete the proof, we consider the first unused block 
H2 on p2 and consider which partition nodes could be sched- 
uled in that block. Note that since in the instance of 3-PART, 
each a; < B/2, there must exist partition nodes scheduled in 
H2 from three chains, say Ci , Cj and C k .  Could there be nodes 
from a fourth chain, say c h ?  By way of contradiction, assume 
so. Then, since these partition nodes are black, it follows that 
all of the red nodes of C;, Cj , Ck and c h  must be scheduled 
in H I ,  the first unused block on p l .  Further, 4 sends must also 
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be scheduled in H I .  But, since each ai > B/4, it follows that 
the total number of nodes and sends scheduled in H1 exceeds 
B + 4. Since H1 is of length B + 3, this is a contradiction. 
Thus we have the following. 

1) H I ,  contains all of the red nodes of ci, cj and ck, along 
with three sends. It follows that ai + aj + ak + 3 5 B + 3, 
hence, ai + aj + ak 5 B. 

2) H2 contains black nodes of ci, cj, and ck, along with 
three receives, and nothing else. Since the schedule is 
known to contain no idle time, it follows that a; + aj + 
Uk + 3 >= B + 3, hence ai + aj  + U k  >= B. 

From these, we have that a; + aj  + U k  = B. Thus, {ai , aj , U k }  

is one element of the desired 3-partitions. A complete solution 
to 3-PART follows in an inductive fashion. 
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