
Generic Programming�David R. MusseryRensselaer Polytechnic InstituteComputer Science DepartmentAmos Eaton HallTroy, New York 12180 Alexander A. StepanovHewlett{Packard LaboratoriesSoftware Technology LaboratoryPost O�ce Box 10490Palo Alto, California 94303{0969AbstractGeneric programming centers around the idea of abstracting from concrete, ef-�cient algorithms to obtain generic algorithms that can be combined with di�erentdata representations to produce a wide variety of useful software. For example, aclass of generic sorting algorithms can be de�ned which work with �nite sequencesbut which can be instantiated in di�erent ways to produce algorithms working onarrays or linked lists.Four kinds of abstraction|data, algorithmic, structural, and representational|are discussed, with examples of their use in building an Ada library of softwarecomponents. The main topic discussed is generic algorithms and an approach totheir formal speci�cation and veri�cation, with illustration in terms of a partitioningalgorithm such as is used in the quicksort algorithm. It is argued that genericallyprogrammed software component libraries o�er important advantages for achievingsoftware productivity and reliability.�This paper was presented at the First International Joint Conference of ISSAC-88 and AAECC-6,Rome, Italy, July 4-8, 1988. (ISSAC stands for International Symposium on Symbolic and AlgebraicComputation and AAECC for Applied Algebra, Algebraic Algorithms, and Error Correcting Codes). Itwas published in Lecture Notes in Computer Science 358, Springer-Verlag, 1989, pp. 13-25.yThe �rst author's work was sponsored in part through a subcontract from Computational Logic,Inc., which was sponsored in turn by the Defense Advanced Research Projects Agency, ARPA order9151. The views and conclusions contained in this document are those of the authors and should notbe interpreted as representing the o�cial policies, either expressed or implied, of the Defense AdvancedResearch Projects Agency, the U.S. Government, or Computational Logic., Inc.i

ii CONTENTSContents1 Introduction 12 Classi�cation of Abstractions 22.1 Data abstractions : 22.2 Algorithmic abstractions : 32.3 Structural abstractions : 32.4 Representational abstractions : 43 Algorithmic Abstractions 44 A Generic Partition Algorithm 75 Abstract Algorithm Speci�cation and Veri�cation 85.1 Basic speci�cation of Partition : 115.2 Obtaining a sequence satisfying Test : 125.3 Correctness when Swap is an assignment operation : : : : : : : : : : : : : 145.4 Correctness of the body of Partition : 156 Conclusion 16

11 IntroductionBy generic programming, we mean the de�nition of algorithms and data structures atan abstract or generic level, thereby accomplishing many related programming tasks si-multaneously. The central notion is that of generic algorithms, which are parameterizedprocedural schemata that are completely independent of the underlying data representa-tion and are derived from concrete, e�cient algorithms. The purpose of this paper is toconvey the key ideas of generic programming, focusing mainly on establishing a method-ological framework that includes appropriate notions of algorithm and data abstractions,and what it means to formally specify and verify such abstractions.We present the issues relating to generic algorithms mainly in terms of a single ex-ample, a Partition algorithm such as is used in quicksort, but we will also allude toa large collection of examples we have developed in Ada as part of an Ada Generic Li-brary project [6], [7]. The structure of the library is designed to achieve a much higherdegree of modularity than has been found in previous libraries, by completely separatingdata representations from algorithmic and other data abstraction issues. Some of ourgoals are in common with the \parameterized programming" approach advocated by J.Goguen [4], but the most fundamental di�erence is that Goguen mainly addresses meta-issues|namely, how to manipulate theories|while our primary interest is in buildinguseful theories to manipulate.The notion of generic algorithms is not new, but we are unaware of any similar attemptto structure a software library founded on this idea. The Ada library developed by G.Booch [1], for example, makes only very limited use of generic algorithms. Booch hasdeveloped an interesting taxonomy of data structures and has populated it with manydi�erent abstract data types, but the implementations of these data types are for the mostpart built directly on Ada's own data structure facilities rather than using other dataabstractions in the library; i.e., there is very little layering of the implementations. (Someuse of generic algorithms and layering is described for list and tree structure algorithms,but almost as an afterthought in a chapter on utilities).In fact, most work on development of abstraction facilities for the past decade ormore has focused on data abstraction [2], [9]. Algorithmic abstraction has received littleattention, even in the more recent work on object oriented programming. Most work onprocedural abstraction has been language- rather than algorithm-oriented, attempting to�nd elegant and concise linguistic primitives; our goal is to �nd abstract representationsof e�cient algorithms.As an example of algorithmic abstraction, consider the task of choosing and imple-menting a sorting algorithm for linked list data structures. The merge sort algorithm

2 2 CLASSIFICATION OF ABSTRACTIONScan be used and, if properly implemented, provides one of the most e�cient sorting al-gorithms for linked lists. Ordinarily one might program this algorithm directly in termsof whatever pointer and record �eld access operations are provided in the programminglanguage. Instead, however, one can abstract away a concrete representation and expressthe algorithm in terms of the smallest possible number of generic operations. In this case,we essentially need just four operations: Next and Set Next for accessing the next cell ina list, Is End for detecting the end of a list, and Test, a binary predicate on (the data in)cells. For a particular representation of linked lists, one then obtains the correspondingversion of a merge sorting algorithm by instantiating the generic access operations to besubprograms that access that representation.We believe it is better whenever possible to give programming examples in a reallanguage rather than using pseudo-language (as is so frequently done). Although we do notargue that Ada is perfect for expressing the programming abstractions we have found mostuseful, it has been adequate in most cases and it supports our goal of e�ciency throughits compile time expansion of generics and provision for directing that subprograms becompiled inline. For numerous examples of the use of generic programming techniques inthe Scheme language, and a brief discussion of the relative merits of Ada and Scheme forthis type of programming, see [5].2 Classi�cation of AbstractionsWe discuss four classes of abstractions that we have found useful in generic programming,as shown in Table 1, which lists a few examples of packages in our Ada Generic library.Each of these Ada packages has been written to provide generic algorithms and genericdata structures that fall into the corresponding abstraction class.2.1 Data abstractionsData abstractions are data types and sets of operations de�ned on them (the usual de�ni-tion); they are abstractions mainly in that they can be understood (and formally speci�edby such techniques as algebraic axioms) independently of their actual implementation. InAda, data abstractions can be written as packages which de�ne a new type and proce-dures and functions on that type. Another degree of abstractness is achieved by using ageneric package in which the type of elements being stored is a generic formal parameter.In our library, we program only a few such data abstractions directly|those necessaryto create some fundamental data representations and de�ne how they are implemented

2.2 Algorithmic abstractions 3Data Abstractions System Allocated Singly LinkedData types with operations User Allocated Singly Linkedde�ned on them fInstantiations of representational abstractionsgAlgorithmic Abstractions Sequence AlgorithmsFamilies of data abstractions Linked List Algorithmswith common algorithms Vector AlgorithmsStructural Abstractions Singly Linked ListsIntersections of Doubly Linked Listsalgorithmic abstractions VectorsRepresentational Abstractions Double Ended ListsMappings from one structural Stacksabstraction to another Output Restricted DequesTable 1: Classi�cation of Abstractions and Example Ada Packagesin terms of Ada types such as arrays, records and access types. Most other data abstrac-tions are obtained by combining existing data abstraction packages with packages fromthe structural or representational classes de�ned below.2.2 Algorithmic abstractionsThese are families of data abstractions that have a set of e�cient algorithms in common;we refer to the algorithms themselves as generic algorithms. For example, in our Adalibrary there is a package of generic algorithms for linked-lists and a more general packageof sequence algorithms whose members can be used on either linked-list or vector repre-sentations of sequences. The linked-list generic algorithms package contains 31 di�erentalgorithms such as, for example, generic merge and sort algorithms that are instantiatedin various ways to produce merge and sort subprograms in structural abstraction packagessuch as singly-linked lists and doubly-linked lists. We stress that the algorithms at thislevel are derived by abstraction from concrete, e�cient algorithms.2.3 Structural abstractionsStructural abstractions (with respect to a given set of algorithmic abstractions) are alsofamilies of data abstractions: a data abstraction A belongs to a structural abstraction

4 3 ALGORITHMIC ABSTRACTIONSS if and only if S is an intersection of some of the algorithmic abstractions to whichA belongs. An example is singly-linked-lists, the intersection of sequence- , linked-list-,and singly-linked-list-algorithmic abstractions. It is a family of all data abstractions thatimplement a singly-linked representation of sequences (it is this connection with moredetailed structure of representations that inspires the name \structural abstraction").Note that, as an intersection of algorithmic abstractions, such a family of data ab-stractions is smaller than the algorithm abstraction classes in which it is contained, buta larger number of algorithms are possible, because the structure on which they operateis more completely de�ned.Programming of structural abstractions can be accomplished in Ada with the samekind of generic package structure as for generic algorithms. The Singly Linked Listspackage contains 66 subprograms, most of which are obtained by instantiating or callingin various ways some member of the Sequence Algorithms package or one of the linked-list algorithms packages. In Ada, to place one data abstraction in the singly-linked-listsfamily, one instantiates the Singly Linked Lists package, using as actual parametersa type and the set of operations on this type from a data abstraction package such asSystem Allocated Singly Linked that de�nes an appropriate representation.2.4 Representational abstractionsThese are mappings from one structural abstraction to another, creating a new typeand implementing a set of operations on that type by means of the operations of thedomain structural abstraction. For example, stacks can easily be obtained as a structuralabstraction from singly-linked-lists. Note that what one obtains is really a family of stackdata abstractions, whereas the usual programming techniques give only a single dataabstraction.The following sections give more detailed examples of algorithmic abstractions. Fur-ther discussion and examples of data, structural, and representational abstraction maybe found in [6].3 Algorithmic AbstractionsAs an example of generic algorithms, we consider the sequence algorithmic abstraction:diverse data abstractions which can be sequentially traversed. These data abstractionsbelong to numerous di�erent families: singly-linked lists, doubly-linked lists, vectors, trees,and many others. There are many algorithms that make sense on all of them and require

5only a few simple access operations for their implementation: �nd an element, accumulatevalues together (by + or �, for example), count elements satisfying some predicate, etc.The solution that has been taken in Common Lisp [8] is to index all kinds of sequencesby natural numbers. So the Common Lisp generic find function always returns a naturalnumber, which is not particularly useful on linked lists.In the generic programming approach, we use generic indexing by a generic formaltype, Coordinate. Coordinate is instantiated to type Natural for vectors; for linkedlists, however, cells themselves can serve as Coordinate values. A generic Find can thusreturn a Coordinate value that can be used to reference the located element directly.The intended semantics for Coordinate is that there are functions� Initial from Sequence to Coordinate,� Next from Coordinate to Coordinate,� Is End from Sequence � Coordinate to Boolean, and� Ref from Sequence � Coordinate to a third type Element,such that for any sequence S there are a natural number N (called the length of S) andcoordinates I0; I1; : : : ; IN such that� I0 = Initial(S) and Ii = Next(Ii�1) for i = 1; : : :N ;� the elements of S are given by Ref(S; I0); Ref(S; I1); : : : ; Ref(S; IN�1);� Is End(S; Ii) is false for i = 0; 1; : : : ; N � 1, and true for i = N .We further assume that each of the functions Initial, Next, Ref, and Is End is a constanttime operation. It is important that Ref provides constant time access, so that after Findreturns the coordinate it is possible to access the data without any additional traversal ofthe sequence. Thus, for example, one could not use natural numbers as coordinates whenthe sequences are linked lists.In Ada we can write:generictype Sequence is private;type Coordinate is private;type Element is private;with function Initial(S : Sequence) return Coordinate;

6 3 ALGORITHMIC ABSTRACTIONSwith function Next(C : Coordinate) return Coordinate;with function Is_End(S : Sequence; C : Coordinate) return Boolean;with function Ref(S : Sequence; C : Coordinate) return Element;package Sequence_Algorithms is-- definitions of sequence algorithms such as-- Count, Find, Every, Notany, Some, Search; e.g.,genericwith function Test(S : Sequence; C : Coordinate) return Boolean;procedure Find(S : Sequence;Result : out Coordinate;Is_Found : out Boolean);end Sequence_Algorithms;We have made Find a procedure instead of a function so that the case in which anelement satisfying Test is not found does not require some \extra" coordinate value to bereturned; such an extra value might not exist for some instances of the coordinate type.Note also that Find is a generic procedure; in addition to forming an instance of theSequence Algorithms package, the programmer would also create particular instancesof Find in which some particular test, such as equality to a particular value, would besubstituted for Test.The body of Find could be expressed as follows:package body Sequence_Algorithms is-- among other thingsprocedure Find(S : Sequence;Result : out Coordinate;Is_Found : out Boolean) isCurrent : Coordinate;Flag : Boolean;beginCurrent := Initial(S);while not Is_End(S, Current) loopif Test(S, Current) thenResult := Current; Is_Found := True; return;end if;Current := Next(Current);end loop;Result := Current; Is_Found := False;

7end Find;end Sequence_Algorithms;It should be noted that not every possible data abstraction which contains a set of elementscan be a member of the sequence algorithmic abstraction. Some data abstractions do notcontain an explicit coordinate type (stacks, or queues, for example). Intuitively speaking,the intended data abstractions are those which can be iterated through without side-e�ects, and where there is a coordinate type which can be used to represent the currentposition in a manner allowing constant time access.4 A Generic Partition AlgorithmAnother limitation of sequence algorithms as we have de�ned them in the previous sectionis that they allow only for one-directional traversals of sequences. There are severalalgorithms which require a bidirectional traversal of sequences by two variables of thetype Coordinate advancing towards each other. If we assume there is a Prev operationsuch that Prev(Next(I)) = Next(Prev(I)) = I, and a Swap operation for exchangingelements, then we can obtain generic implementations of such procedures as Reverse andPartition (as in quicksort). We examine the Partition algorithm in particular as amore detailed example of the issues that arise with programming and reasoning aboutalgorithmic abstractions.In Ada, we could provide such algorithms in a generic package,generictype Sequence is private;type Coordinate is private;with function Next(I : Coordinate) return Coordinate;with function Prev(I : Coordinate) return Coordinate;with procedure Swap(S : in out Sequence; I, J : Coordinate);package Bidirectional_Sequence_Algorithms is-- for example:procedure Reverse(S : in out Sequence);genericwith function Test(S : Sequence; C : Coordinate) return Boolean;procedure Partition(S : in out Sequence;

8 5 ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATIONF, L : in Coordinate;Middle : out Coordinate;Middle_OK : out Boolean);end Bidirectional_Sequence_Algorithms;which could be used along with the Sequence Algorithmspackage to construct collectionsof algorithms for di�erent kinds of linear lists. In this package we do not need to haveElement and Ref as generic parameters, since algorithms such as Reverse and Partitiondo not directly refer to them.To describe the Partition algorithm informally (a formal treatment follows in Sec-tion 5), we speak of Next(I) giving a \larger" coordinate than I and Prev giving onethat is smaller; and we also speak of elements that satisfy Test as \good" and those thatdon't as \bad." Provided Swap(S; I; J) exchanges the elements with coordinates I andJ and leaves all other elements of S unchanged, the Partition algorithm rearranges theelements of S between those with coordinates F and L so that all of the good elementscome �rst, followed by all the bad elements. Middle = M is computed as a coordinatebetween F and L (inclusive) such that all of the elements with smaller coordinates aregood and all elements with greater coordinates are bad; the M -th element is good if andonly if Middle OK is true.Middle OK is needed because for N elements there are N + 1 possibilities for theboundary between good and bad elements, but we are guaranteed of having only Ncoordinate values; in general we cannot assume the existence of coordinate values outsidethe range from F to L. This complication does not arise with the usual concrete partitionalgorithm in which coordinates are integers, since one could use values F � 1 or L+1 forM . This is an example of the extra care that must be taken in expressing an algorithmat a more abstract level.The Partition algorithm can be expressed in Ada as shown in Figure 1. A somewhatshorter implementation could be achieved in which calls to Test with the same argumentsmight be repeated, but since Test is a generic parameter we must be careful to avoidsuch redundant calls, since one might instantiate the algorithm with a Test that is fairlyexpensive to compute.5 Abstract Algorithm Speci�cation and Veri�cationThe main idea of our approach to speci�cation and veri�cation of a generic algorithm issimilar to classical program veri�cation techniques, e.g., Dijkstra's idea of weakest pre-

9procedure Partition(S : in out Sequence;F, L : in Coordinate;Middle : out Coordinate;Middle_OK : out Boolean) isFirst : Coordinate := F;Last : Coordinate := L;beginlooploopif First = Last thenMiddle := First;Middle_OK := Test(S, First);return;end if;exit when not Test(S, First);First := Next(First);end loop;loopexit when Test(S, Last);Last := Prev(Last);if First = Last thenMiddle := First;Middle_OK := False;return;end if;end loop;Swap(S, First, Last);First := Next(First);if First = Last thenMiddle := First;Middle_OK := False;return;end if;Last := Prev(Last);end loop;end Partition; Figure 1: Body of Partition Algorithm

10 5 ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATIONconditions [3], in which one attempts to obtain a strong statement about the result of acomputation while making as few assumptions as possible about its initial conditions. Indiscussing preconditions of ordinary, nongeneric algorithms, the assumptions one makesabout the operations in terms of which the algorithm is expressed are �xed, since theoperations themselves are �xed. But for generic algorithms we want to make these op-erations generic parameters and vary the assumptions about them; our goal is both toconsider a variety of possible postconditions and to maximize the number of di�erentmodels (abstract data types) under which an an algorithm attains a given postcondition.In terms of proof theory, we want to consider how to prove various postconditions undera variety of assumptions about the generic parameters, so that later we can easily provecorrectness of a wide variety of instances.It appears that the best approach is to build up the speci�cations and the veri�cationlemmas in stages, just as we build up algorithmic capabilities in layers. In fact we will�nd it advantageous to have even more layering in the speci�cations and proofs than inthe construction of the algorithms.We introduce the main ideas in terms of the Partition algorithm given in the previoussection. What are the minimal assumptions we need to make about the generic parametersin terms of which Partition is programmed, namely the Sequence and Coordinatetypes and the Next, Prev, and Swap operations? If we want to use the algorithm onlyfor partitioning in the usual sense, and the only use of abstraction is in the use of theCoordinate type rather than a more speci�c integer type (for an array version) or pointertype (for a linked list version), then we could carry out the speci�cation and proof in onestep in which we make strong assumptions about the generic parameters.Instead, however, we begin with weaker assumptions about these generic parameters,and obtain a lemma about the results of Partition that enables us to deal with lessconventional instances of partitioning. For example, suppose that we are only interestedin the part of the output consisting of elements that satisfy Test; i.e., we do not need toprocess the elements that don't satisfy it. Then we can obtain a more e�cient partitioningalgorithm by using for Swap(S; I; J) an operation that just performs the assignment ofthe element with the J -th coordinate to the I-th coordinate. If we had made a strongerassumption about Swap, that it exchanges two elements in the sequence, then the theoremabout the generic algorithm would not be applicable to this instance.Instead, we carry out the speci�cation and proofs in layers, one of which allows usto \tap in" at the level we need to verify the second kind of Partition, while the �rst,more usual, kind can be veri�ed when additional assumptions are made about Swap andcombined with the lemma stated at the �rst level.First, we assume that associated with the Coordinate type there is a predicate <

5.1 Basic speci�cation of Partition 11which is a well-founded partial ordering1 on Coordinate, de�ned byI < J � 9N(N > 0 and J = NextN (I)):For coordinates F and L, where F � L, we de�neCoordinate Range(F;L) = fNexti(F) : 0 � i � Ng;where N is the smallest integer such that NextN (F) = L. Note thatPrevi(L) = NextN�i(F):5.1 Basic speci�cation of PartitionInitially we make only a weak assumption about Swap:Swap Assumption 1 If I; J 2 Coordinate Range(F;L), then Swap(S; I; J) com-putes S1 such that for all K 2 Coordinate Range(F;L)� fI; Jg,Test(S1;K) = Test(S;K):The reason that we can get by with such a weak assumption is simply that we express theresult Partition computes as equivalent to that produced by a straight-line sequence ofcalls of Swap. The speci�cation asserts the existence of two sequences of coordinate valuesthat serve as arguments to the Swap calls and constrains the relationship between thesevalues.Syntactic Speci�cationprocedure Partition(S : in out Sequence;F, L : in Coordinate;Middle : out Coordinate;Middle_OK : out Boolean);Formal SemanticsNext and Prev are assumed to obey the relations discussed above and to have noside e�ects; Swap is assumed to obey Swap Assumption 1. With inputs S = S; F =F; L = L, with F � L according to the partial ordering relation < de�ned above,Partition outputs S = S1; Middle=M; Middle OK = B such that:1Note that < is not generic parameter of the package because it is not used in expressing the algorithmsthemselves, as it would be expensive to implement for, say, doubly-linked lists.

12 5 ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATION1. M 2 Coordinate Range(F;L),2. There are two sets of coordinatesAccept = (Coordinate Range(F;M) if B is trueCoordinate Range(F;M)� fMg if B is falseReject = Coordinate Range(F;L)� Acceptand a nonnegative integer n and two Coordinate sequences I1; : : : ; In andJ1; : : : ; Jn such that(a) F � I1 < : : : < In �M � Jn < : : : < J1 � L(b) For k = 1; : : : ; n, Test(S; Ik) is false while Test(S; Jk) is true.(c) For P 2 Accept� fI1; : : : ; Ing, Test(S; P) is true.(d) For P 2 Reject� fJ1; : : : ; Jng, Test(S; P) is false.(e) S1 is the �nal value of S computed bySwap(S, I1, J1); ... ; Swap(S, In, Jn);The fact that the coordinate type is abstract compels taking considerable care in thisspeci�cation to avoid the mention of coordinate values that might not exist; e.g., we writeCoordinate Range(F;M)� fMg instead of Coordinate Range(F; Prev(M)).Later we show how the above input-output speci�cation can be proved as a lemma, byannotating the algorithm with assertions and using the inductive assertions method. Fornow, we consider how to combine this speci�cation with additional assumptions aboutSwap in order to draw stronger conclusions about the output of Partition. We add theseassumptions one at a time, thereby obtaining several useful lemmas that apply to di�erentinstances of Partition.5.2 Obtaining a sequence satisfying TestBy making a second assumption about Swap, we can draw a stronger conclusion aboutPartition.Swap Assumption 2 If I; J 2 Coordinate Range(F;L), then Swap(S; I; J) com-putes S1 such that Test(S1; I) = Test(S; J):This can be combined with the basic Partition speci�cation to deduce:

5.2 Obtaining a sequence satisfying Test 13Partition Lemma 1 If Swap satis�es Swap Assumptions 1 and 2, then the sequence S1computed by Partition satis�esPartition Property 1 For all K 2 Accept, Test(S1;K) is true.Similarly, we can introduceSwap Assumption 3 If I; J 2 Coordinate Range(F;L), then Swap(S; I; J) com-putes S1 such that Test(S1; J) = Test(S; I):and this can be combined with the basic Partition speci�cation to deduce:Partition Lemma 2 If Swap satis�es Swap Assumptions 1 and 3, then the sequence S1computed by Partition satis�esPartition Property 2 For all K 2 Reject, Test(S1;K) is false.Partition Lemma 3 If Swap satis�es Swap Assumptions 1, 2 and 3, then the sequenceS1 computed by Partition satis�es Partition Properties 1 and 2.Note that we have not yet made any assumption about Swap actually exchangingtwo elements of a sequence; we have only assumed that it does not a�ect elements otherthan those with coordinates I and J insofar as can be determined by Test, and that itchanges the I-th element to have the same Test-value as the J -th, or vice-versa. Thus,for example, if we have sequences of integers and Test just checks whether an element ispositive, a Swap operation that assigns 1 or �1 to the I-th element according to whetherthe J -th is nonpositive or positive would satisfy Swap Assumption 1 and 2!Thus to be able to conclude that the sequence S1 computed by Partition is a per-mutation of its input S, we need to assume that Swap satis�esSwap Assumption 4 If I; J 2 Coordinate Range(F;L), then Swap(S; I; J) com-putes S1 such that for all K 2 Coordinate Range(F;L)� fI; Jg,Ref(S1;K) = Ref(S;K):Swap Assumption 5 If I; J 2 Coordinate Range(F;L), then Swap(S; I; J) com-putes S1 such that Ref(S1; I) = Ref(S; J).

14 5 ABSTRACT ALGORITHM SPECIFICATION AND VERIFICATIONSwap Assumption 6 If I; J 2 Coordinate Range(F;L), then Swap(S; I; J) com-putes S1 such that Ref(S1; J) = Ref(S; I).From these assumptions we obtainPartition Lemma 4 If Swap satis�es Swap Assumptions 4, 5, and 6, then it also satis-�es Swap Assumptions 1, 2 and 3, and Partition has Partition Properties 1 and 2, aswell asPartition Property 3 The output sequence S1 is a permutation of the input sequenceS.5.3 Correctness when Swap is an assignment operationNow suppose, instead of performing an exchange of two elements, Swap just does anassignment operation, so that it satis�es Swap Assumption 5 but not Swap Assumption 6.We can still conclude:Partition Lemma 5 If Swap satis�es Swap Assumptions 5 and 6 , then it also satis�esSwap Assumptions 1 and 2, and Partition has Partition Property 1, as well asPartition Property 4 The sequence of elements of the output sequence S1 with co-ordinates in Accept is the subsequence of the elements of S with coordinates inCoordinate Range(F;L) and satisfying Test.This tells us that by instantiating Partition with Swap as an assignment operation, weobtain a version that brings together all the elements that satisfy Test. It does not yieldall the elements that do not satisfy Test, but in some applications we would not need thisinformation.The main bene�t of dividing the speci�cation of assumptions about Swap and con-clusions about Partition into small pieces is that we can deal with the question ofcorrectness of di�erent instances merely by citing the appropriate lemmas (or we cancreate and prove new lemmas with comparatively little e�ort). The work of proof hasbeen factored into small steps that allow us the same bene�ts of reuse in proofs as genericalgorithms allow us in programming.

5.4 Correctness of the body of Partition 155.4 Correctness of the body of PartitionTo prove partial correctness, we add three internal assertions to the body of Partition(Figure 1). In these assertions note that S refers to the initial value of variable S, whileS1 refers to the current value at the point of the assertion:1. (At the beginning of the �rst inner loop.) There are a nonnegative integer n andtwo Coordinate sequences I1; : : : ; In and J1; : : : ; Jn such that(a) F � I1 < : : : < In < First � Last < Jn < : : : < J1 � L;(b) For k = 1; : : : ; n, Test(S; Ik) is false while Test(S; Jk) is true;(c) for P 2 Coordinate Range(F; First)�fI1; : : : ; In; Firstg, Test(S; P) is true;(d) for P 2 Coordinate Range(Last; L)� fLast; J1; : : : ; Jng, Test(S; P) is false;(e) The current value S1 of S is the value of S computed bySwap(S, I1, J1); ...; Swap(S, In, Jn);2. (At the beginning of the second inner loop.) Assertion 1, First 6= Last, andTest(S; First) is false.3. (Just before the Swap call.) Assertion 2 and Test(S, Last) is true.These assertions along with entry and exit assertions obtained from the Formal Semanticsof the algorithm are su�cient for carrying out an inductive assertions proof of partialcorrectness: any path from the beginning of the procedure to the exit is composed of a�nite number of path segments between two assertions, and one can verify that for eachsuch path segment the assertion at the beginning combined with the semantics of thestatements along the path implies the assertion at the end. We omit these proofs.To prove total correctness, we need to show also that the procedure always terminates.Actually, the result we prove is conditional on the termination of Test and Swap. Notethat1. it can be shown inductively that, at all times, First � Last;2. every path segment (as de�ned in the partial correctness proof) that can be repeatedin any execution of the procedure contains an assignment that increases First ordecreases Last (on one path both are changed, but not without violating 1);

16 REFERENCESTherefore, any execution consists of only a �nite number of path segments. Since eachpath segment contains only assignment statements, equality tests, or calls to Test andSwap, we havePartition Lemma 6 If the generic parameters Test and Swap always terminate, thenPartition always terminates.6 ConclusionIn this paper we have attempted to develop a framework su�cient to encompass the keyaspects of generic programming, with illustrations from our experience in building a li-brary of generic software components in Ada. Although the documentation of the initiallibrary in [7] is informal, and we have not yet carried out formal speci�cation and veri�-cation of the library components, we believe that this task would be both mathematicallyvery interesting and practically very useful.On the mathematical side, the correctness of generic algorithms o�ers greater chal-lenges and less tedium than concrete algorithms, for often one must create the appropriateabstract concepts in terms of which one can e�ectively express and reason about the be-havior of an algorithm or collection of algorithms. The nature of the problem of verifyinggeneric algorithms should be attractive to researchers in computer science and mathemat-ics, whereas the problem for concrete algorithms is often regarded as so tedious as to beworth doing only if most of the work can be done with an automated reasoning system.On the practical side, the considerable work of composing a formal speci�cation andcarrying out a detailed proof of correctness at a generic level is compensated by the easewith which one is then able to deal with the correctness of many distinct instantiations.While it is often di�cult to justify the amount of e�ort required for formal veri�cationof concrete programs, except in the case of software used in life-critical systems, thepossibility of verifying components in generic software libraries may open the way for thebene�ts of this technology to become much more widely available.References[1] G. Booch, Software Components in Ada. Benjamin/Cummings, 1987.[2] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, AcademicPress, 1972.

REFERENCES 17[3] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cli�s, NewJersey, 1976.[4] J. Goguen, \Parameterized Programming," Transactions on Software Engineering,SE-10(5):528-543, September 1984.[5] A. Kershenbaum, D. R. Musser and A. A. Stepanov, \Higher Order Imperative Pro-gramming," Computer Science Dept. Rep. No. 88-10, Rensselaer Polytechnic Insti-tute, Troy, New York, April 1988.[6] D. R. Musser and A. A. Stepanov, \A Library of Generic Algorithms in Ada," Proc.of 1987 ACM SIGAda International Conference, Boston, December, 1987.[7] D. R. Musser and A. A. Stepanov, The Ada Generic Library: Linear List ProcessingPackages, Springer{Verlag, 1989. (This book supercedes General Electric CorporateResearch and Development Reports 88CRD112 and 88CRD113, April 1988).[8] G. L. Steele, Common LISP: The Language, Digital Press, 1984.[9] N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

