Computer

COVER FEATURE

Service-Oriented Computing:
State of the Art and Research

Challenges

Michael P. Papazoglou, Tilburg University

Paolo Traverso, istituto per la Ricerca Scientifica e Tecnologica

Schahram Dustdar, vienna University of Technology
Frank Leymann, University of Stuttgart

Service-oriented computing promotes the idea of assembling application components

into a network of services that can be loosely coupled to create flexible, dynamic business
processes and agile applications that span organizations and computing platforms. An SOC
research road map provides a context for exploring ongoing research activities.

he service-oriented computing (SOC) paradigm
uses services to support the development of
rapid, low-cost, interoperable, evolvable, and
massively distributed applications. Services are
autonomous, platform-independent entities that
can be described, published, discovered, and loosely cou-
pled in novel ways. They perform functions that range
from answering simple requests to executing sophisti-
cated business processes requiring peer-to-peer rela-
tionships among multiple layers of service consumers
and providers. Any piece of code and any application
component deployed on a system can be reused and
transformed into a network-available service.

Services reflect a “service-oriented” approach to pro-
gramming that is based on the idea of composing appli-
cations by discovering and invoking network-available
services to accomplish some task.* This approach is inde-
pendent of specific programming languages or operating
systems. It lets organizations expose their core compe-
tencies programmatically over the Internet or various
networks such as cable, the Universal Mobile Tele-
communications System (UMTS), xDSL, and Bluetooth
using standard XML-based languages and protocols and
a self-describing interface.

Web services are currently the most promising SOC-
based technology.? They use the Internet as the commu-
nication medium and open Internet-based standards,

Published by the IEEE Computer Society

including the Simple Object Access Protocol (SOAP) for
transmitting data, the Web Services Description Language
(WSDL) for defining services, and the Business Process
Execution Language for Web Services (BPEL4WS) for
orchestrating services.

SOC lets developers dynamically grow application
portfolios more quickly than ever before by

< creating compound solutions that use internal orga-
nizational software assets, including enterprise infor-
mation and legacy systems, and

< combining these solutions with external components
possibly residing in remote networks.

The visionary promise of SOC is that it will be possi-
ble to easily assemble application components into a
loosely coupled network of services that can create
dynamic business processes and agile applications that
span organizations and computing platforms.2 Such ser-
vices will go well beyond simply exchanging informa-
tion—the dominating mechanism for application
integration today—to accessing, programming, and inte-
grating application services encapsulated within old and
new applications.

Key to realizing this vision is the service-oriented
architecture. SOA is a logical way of designing a soft-
ware system to provide services either to end-user

0018-9162/07/$25.00 © 2007 IEEE

Metrics

Role actions Change management
Performs —>
Publishes ===+
Uses ———>
Becomes — | Composition

Coordination
Conformance
Service provider. Transactions

N,

Foundation
(service-oriented
middleware and
basic functions)

Capability P
Interface
Behavior

Service client

Management
and :
monitoring Managed services
State management
Load balancing
A

Discovery

Service
operator

Composite services | Semantics

Nonfunctional characteristics
QoS

Basic services

Service aggregator

Figure 1.SOC research road map. The architectural layers provide a logical separation of functionality, while the perpendicular
axis indicates service characteristics that cut across all three planes.

applications or other services distributed in a network,
via published and discoverable interfaces. A well-
constructed, standards-based SOA can empower an
organization with a flexible infrastructure and process-
ing environment by provisioning independent, reusable
application functions as services and providing a robust
foundation for leveraging these services.

SOC spans many intricately interwoven concepts,
protocols, and technologies that originate in a wide
range of disciplines including distributed computing
systems, computer architectures and middleware,
grid computing, software engineering, programming
languages, database systems, security, and knowledge
representation. Given this tremendous complexity, as
well as the need to merge technology with an under-
standing of business processes and organization struc-
tures, research activities are very fragmented.

To provide the means for consolidating and stream-
lining current SOC research efforts, as well as prioritiz-
ing important gaps, we examine ongoing projects in the
broader context of a road map that embraces four piv-
otal, inherently related research themes: service foun-
dations, service composition, service management and
monitoring, and service-oriented engineering. A com-
prehensive review of the state of the art and standards
in each area identifies open problems and bottlenecks
to progress.

SOC RESEARCH ROAD MAP

The SOC research road map, shown in Figure 1, intro-
duces an extended SOA! that separates functionality into
three planes: service foundations at the bottom, service
composition in the middle, and service management and
monitoring on top. This logical stratification is based
on the need to separate

 basic service capabilities provided by a middleware
infrastructure and conventional SOA from more
advanced service functionality needed for dynami-
cally composing services,

e business services from systems-centered services, and

= service composition from service management.

The perpendicular axis indicates service characteristics
that cut across all three planes including semantics, non-
functional service properties, and quality of service. QoS
encompasses important functional and nonfunctional
attributes such as performance metrics (for example,
response time), security attributes, transactional integrity,
reliability, scalability, and availability. Traditionally, QoS
guantifies the degree to which applications, systems, net-
works, and other IT infrastructure elements support avail-
ability of services at a required performance level under
all access and load conditions. Web services environments
also demand greater availability of applications and

November 2007

introduce increased complexity in terms of accessing and
managing services.

The SOC research road map also defines several roles.
The service requester or client and provider must both
agree on the service description (WSDL definition) and
semantics that will govern the interaction between them
for Web services to interact properly in composite appli-
cations. A complete solution must address semantics not
only at the terminology level but also at the levels that
Web services are used and applied in the context of busi-
ness scenarios—the business process and protocol levels.
Thus, a client and provider must
agree on the implied processing, con-
text, and sequencing of messages
exchanged between interacting ser-
vices that are part of a business
process. In addition to the classical
roles of service client and provider,
the road map also defines the roles
of service aggregator and operator.

Finally, Figure 1 illustrates that ser-
vice modeling and service-oriented
engineering—service-oriented analy-
sis, design and development techniques, and methodolo-
gies—are crucial elements for creating meaningful services
and business process specifications. These are an impor-
tant requirement for SOA applications that leverage Web
services and apply equally well to all three service planes.

SERVICE FOUNDATIONS

The service foundations plane consists of a service-
oriented middleware backbone that realizes the runtime
SOA infrastructure. This infrastructure connects het-
erogeneous components and systems and provides mul-
tiple-channel access to services over various networks
including the Internet. It lets application developers
define basic service functionality in terms of the descrip-
tion, publishing, finding, and binding of services.

In a typical service-based scenario, a provider hosts a
network-accessible software module—an implementa-
tion of a given service—and defines a service description
through which a service is published and made discov-
erable. A client discovers a service and retrieves the ser-
vice description directly from the service, possibly
through metadata exchange or from a registry or repos-
itory such as UDDI. The client uses the service descrip-
tion to bind to the provider and invoke the service.
Service provider and client roles are logical constructs,
and a service can exhibit characteristics of both. Service
aggregators group services provided by other providers
into a distinct value-added service and can themselves
act as providers.

State of the art
The requirements to provide a capable and manage-
able integration infrastructure for Web services and SOA

m Computer

Service modeling and
service-oriented engineering
are crucial elements for

creating meaningful
services and business
process specifications.

are coalescing into the concept of the enterprise service
bus.*®> The ESB’s two key objectives are to

» loosely couple the systems taking part in the inte-
gration, and

* break up the integration logic into distinct, easily
manageable pieces.

The ESB is an open-standards-based message back-
bone designed to enable the implementation, deploy-
ment, and management of SOA-based solutions. Itis a
set of infrastructure capabilities
implemented by middleware tech-
nology that enable an SOA and alle-
viate disparity problems between
applications that run on heteroge-
neous platforms and use diverse
data formats. The ESB supports ser-
vice, message, and event-based
interactions with appropriate ser-
vice levels and manageability.
Conceptually, it has evolved from
the store-and-forward mechanism
found in middleware products to an enterprise appli-
cation integration solution that combines, for exam-
ple, application servers and integration brokers, Web
services, XSLT, and orchestration technologies.® The
ESB provides an implementation backbone for an SOA
that treats applications as services.

An emerging concept for the ESB is the container
model. In this model, a ““‘container” for the service run-
time implementation exposes the service functionalities
and nonfunctional properties to the external world via
the network. It establishes connectivity and message
exchange patterns and provides support and facilities
such as transactions, security, performance metrics,
dynamic configuration, and services discovery. In addi-
tion, the container performs data and protocol adap-
tation, and it monitors the internal behavior and state
of services.

Figure 2 shows a simplified view of an ESB that inte-
grates a J2EE application using the Java Message
Service, a .NET application using a C# client, an IBM
WebSphere MQ application that interfaces with legacy
applications, and external applications and data sources
using Web services. A distributed query engine, nor-
mally based on XQuery or the Structured Query
Language, enables the creation of data services to
abstract the complexity of underlying data sources.

The ESB enables a more efficient value-added inte-
gration of numerous different application components
by positioning them behind a service-oriented fagcade
and applying Web services technology to the problem.
A primary use case is for the ESM to act as the inter-
mediary layer between a portal server and the back-end
data sources that the portal server must interact with.

Service
orchestration-based
custom

applications Portals
- Reliable asynchronous secure messaging -
Service |
interface
Service
container 1| 1| 1| 1| 1|
Distributed Web MQ
query engine Adapters service JMS/J2EE gateway

-1 1 ! }

Mainframe and

WebSphere
legacy applications

.NET applications

Java applications

AN J AN

J AN J

Y
Data sources

. Y . .
Enterprise applications

Y
Multiplatform support

Figure 2.Enterprise service bus. The ESB connects diverse applications and technologies.

A portal is a user-facing aggregation point of various
resources represented as services—for example, there
can be retail, divisional, corporate employee, and busi-
ness partner portals.

Research challenges

Major research challenges for service foundations in
the near future include the following:

Dynamically reconfigurable runtime architectures.
The services runtime infrastructure should automati-
cally leverage distributed service components and
resources to create an optimal architectural configura-
tion according to both a particular user’s requirements
and the application characteristics.

End-to-end security solutions. Validating the secu-
rity aspects in SOA-based applications requires a full
system approach to test end-to-end security solutions at
both the network and application level. The Web
Services Road Map jointly developed by IBM and
Microsoft has similar concerns.”

Infrastructure support for data and process inte-
gration. The runtime infrastructure should provide uni-
form consistent access to all data by all the applications
that require it, irrespective of the data format, source, or
location. It should also integrate service-based applica-
tions into processes and integrate processes with other
processes into end-to-end constellations that span mul-
tiple institutions.

Semantically enhanced service discovery. The main
challenge of service discovery is using automated means
to accurately discover services with minimal user
involvement. This requires explicating the semantics of

both the service provider and requester. It also involves
adding semantic annotations and including descriptions
of QoS characteristics—for example, in the DARPA
Agent Markup Language, Web Ontology Language, or
other semantic markup languages—to service definitions
in WSDL and then registering these descriptions.
Achieving automated service discovery requires explic-
itly stating requesters’ needs—most likely as goals that
correspond to the description of desired services—in
some formal request language.

SERVICE COMPOSITION

The service composition plane encompasses roles and
functionality for aggregating multiple services into a sin-
gle composite service. Resulting composite services can
be used as basic services in further service compositions
or offered as complete applications and solutions to ser-
vice clients. Service aggregators accomplish this task and
thus become service providers by publishing the service
descriptions of the composite service they create. The
aggregators also enforce policies on aggregate service
invocations.

State of the art

Currently, developers widely use the terms “orches-
tration” and “choreography’” to describe business inter-
action protocols that coordinate and control
collaborating services.

Orchestration describes how services interact at the
message level, including the business logic and execution
order of interactions under control of a single end point.
It is an executable business process that can result in a

November 2007

long-lived, transactional, multistep process model. With
orchestration, one of the business parties involved in the
process always controls the business-process interactions.
Orchestration is achieved via BPEL4WS and other XML-
based process standard definition languages.®

Choreography is typically associated with the public
(globally visible) message exchanges, rules of interac-
tion, and agreements that occur between multiple busi-
ness-process end points rather than a specific business
process executed by a single party. Service choreogra-
phy is achieved via the Web Services Choreography
Description Language (WS-CDL),° which specifies the
common observable behavior of all
participants.

This sharp distinction between
orchestration and choreography is
rather artificial, and the consensus
is that they should coalesce in a sin-
gle language and environment.

Research challenges

Some of the most notable re-
search challenges for service com-
position in the near future include
the following:

Composability analysis for replaceability, compat-
ibility,and process conformance. Service conformance
ensures a composite service’s integrity by matching its
operations with those of its constituent component ser-
vices. It imposes semantic constraints on the component
services and guarantees that constraints on data that
component services exchange are satisfied. Service con-
formance comprises both behavioral conformance as
well as semantic conformance. The former guarantees
that composite operations do not lead to spurious
results, while the latter ensures that they preserve their
meaning when composed and can be formally validated.

Dynamic and adaptive processes. Services and
processes should equip themselves with adaptive service
capabilities so that they can continually morph themselves
to respond to environmental demands and changes with-
out compromising operational and financial efficiencies.
In this context, the challenge is to provide techniques and
support for dynamic service compositions that are self-
configuring, -optimizing, -healing, and -adapting.

QoS-aware service compositions. Service composi-
tions must be QoS-aware'°>—that is, understand and
respect one another’s policies, performance levels, secu-
rity requirements, service-level agreement (SLA) stipu-
lations, and so on. For example, knowing that a new
business process adopts a Web services security standard
from WS-Security is not enough information to enable
successful composition. The client needs to know if the
services in the business process actually require WS-
Security, what kind of security tokens they are capable
of processing, and which one they prefer.

m Computer

Service compositions must
understand and respect one
another’s policies, performance

levels, security requirements,
service-level agreement (SLA)
stipulations,and so on.

Business-driven automated compositions. Service-
oriented applications should abstract away the logic at
the application or business level, such as order process-
ing, from non-business-related aspects at the system
level, such as the implementation of transactions, secu-
rity, and reliability policies. This abstraction should
enable the composition of distributed business processes
and transactions.*

SERVICE MANAGEMENT AND MONITORING

When composing services, developers must be able to
assess the health of systems that implement Web services
as well as the status and behavior
patterns of loosely coupled applica-
tions. Service management spans a
range of activities, from installation
and configuration to collecting met-
rics and tuning, to ensure responsive
service execution. It typically in-
volves gathering information about
the managed-service platform, ser-
vices and business processes, and
managed-resource status and per-
formance via root-cause failure
analysis, SLA monitoring and reporting, service deploy-
ment, and life-cycle management and capacity planning.

Service monitoring involves monitoring events or
information produced by the services and processes;
monitoring instances of business processes; viewing
process-instance statistics, including the number of
instances in each state (running, suspended, aborted, or
completed); viewing the status, or a summary, of selected
process instances; and suspending, resuming, or termi-
nating selected process instances.

State of the art

Figure 3 illustrates a conceptual Web services archi-
tecture that provides a continuous connection between
the application and management channels. Manageable
resources include hardware and software resources,
both physical and logical—for example, software appli-
cations, hardware devices, servers, and so on. Their
management capabilities are exposed as Web services
that implement various management interfaces, such as
those defined in the Web Services Distributed Manag-
ement (WSDM) specification.

The management channel offers functionality such as
availability and performance management, configura-
tion management, capacity planning, asset protection,
job control, and problem determination. A WSDL doc-
ument, resource properties schema, metadata docu-
ments, and, potentially, a set of management-related
policies describe a resource’s management interface.

The application in Figure 3 comprises business
processes that integrate basic services such as credit val-
idation, shipping, order processing, and inventory ser-

| R |

. Enterprise 1 |

' Business q —_— Management i

WSDL : application BFSSA?eSi?]apS%IF\C,%g;" application [

! (credit validation) pping (WSDM) :

| |

| .| Service Management || Service | Management Service [

: " | interface interface interface interface interface :

| |

S S L —— -

Application channel

WSDM '—’ Management channel

T e v =

|
, Enterprise 2 :
| Service || Management | Service | Management Service || wspL
: interface interface interface interface interface |
! I
! I
| . |
| Business . - Management
[application Business a;t)pllcatlon application :
: (order processing) (inventory) :
! I

Figure 3.Web services management architecture. The architecture provides a continuous connection between the application
and management channels. The application comprises business processes that integrate basic services originating from two

collaborating enterprises.

vices originating from two collaborating enterprises.
Resource managers provide detailed performance sta-
tistics that

* support assessment of the application’s effectiveness,

* permit complete visibility into individual business
processes and transactions,

e guarantee consistency of service compositions, and

» deliver status notifications when a particular activ-
ity is completed or a decision condition is reached.

To achieve consistent management of end-to-end Web
services, WSDM defines a protocol for interoperability of
management information and capabilities in a distributed
environment via Web services. It attempts to solve dis-
tributed system management problems through two com-
panion specifications: Management Using Web Services
(MUWS) addresses the use of Web services technologies as
the foundation of a modern distributed systems manage-
ment framework, while Management of Web Services
(MOWS) specifies the requirements for managing Web
services themselves just like any other resource.*?

Research challenges

The use of autonomic capabilities in conjunction with
service-level management provides an evolutionary
approach in which autonomic computing capabilities
anticipate runtime system requirements and resolve

problems with minimal human intervention.3* Some of
the most notable research challenges for the near future
include the following:

Self-configuring management services. These must
configure themselves automatically to adapt to differ-
ent environments in which they can be installed and
optimized for particular uses.

Self-adapting management services. These must
adapt dynamically to changes in the environment and
market using policies provided by IT professionals. Such
changes could include deploying new instances of a par-
ticular kind of service or removing existing ones, or even
dramatically changing runtime system characteristics.

Self-healing management services. These must
discover, diagnose, and react to disruptions. They
should detect system malfunctions and initiate policy-
based corrective actions without disrupting the run-
time environment.

Self-optimizing management services. These must
monitor resources automatically and tune themselves to
meet end-user or business needs. Self-optimizing man-
agement services improve overall utilization or ensure
the timely completion of particular business transactions.

Self-protecting management services. These must
anticipate, detect, identify, and protect against threats.
Self-protecting components can detect hostile activi-
ties—such as unauthorized access and use, virus infec-
tion and proliferation, and denial-of-service attacks—as

November 2007 m

they occur and take corrective actions to reduce their
vulnerability.

SERVICE DESIGN AND DEVELOPMENT

A well-constructed SOA can empower a business
with a flexible infrastructure and processing environ-
ment by provisioning independent, reusable auto-
mated business processes as services and providing a
robust foundation for leveraging these services. SOASs
must rely on an evolutionary software engineering
approach that partly builds upon earlier processes
including component-based development and business
process modeling.

State of the art

Many developers think they can port existing com-
ponents to Web services by creating wrappers and leav-
ing the underlying component untouched. Because
component methodologies focus on the interface, many
developers assume that these methodologies apply
equally well to service-oriented architectures.

The software industry now widely implements a thin
SOAP/WSDL/UDDI veneer atop existing applications
or components that implement the Web services, but this
is insufficient for commercial-strength enterprise appli-
cations. Unless the component’s nature makes it suitable
for use as a Web service, and most are not, properly
delivering components’ functionality through a Web ser-
vice takes serious redesign effort.*

Older software development paradigms for object-ori-
ented and component-based development!*4cannot be
blindly applied to SOA and Web services as they do not
address SOA’s key elements: services, information flows,
and components realizing services.*® These methodolo-
gies satisfy only some of the requirements of SOC appli-
cations and fail when they independently attempt to
develop service-oriented solutions.

Research challenges

Major research challenges for service design and devel-
opment in the near future include the following:

Engineering of service applications. SOA-based
applications require a service-oriented engineering
methodology*¢ that enables modeling the business envi-
ronment, including key performance indicators of busi-
ness goals and objectives; translates the model into
service design; deploys the service system; and tests and
manages the deployment.t’

Flexible gap-analysis techniques. Gap analysis pur-
poses a business process and services a realization strat-
egy by incrementally adding more implementation
details to an abstract service/process interface. Such a
strategy considers several service-realization possibili-
ties such as green field development, top-down and bot-
tom-up development, meet-in-the-middle development,
and development based on reference models.

Computer

Service versioning and adaptivity. Developers
should introduce techniques to analyze business
processes in detail instantaneously, discover and select
suitable external services, detect problems in service
interactions, search for alternative solutions, monitor
service-execution sequences step by step, and appropri-
ately upgrade and version services.

Service governance. Due to the cross-organizational
nature of end-to-end business processes composed from
various service fragments that different organizations
must maintain separately, service governance is a chal-
lenging issue. The potential composition of services into
business processes across organizational boundaries can
function properly and efficiently only if the services are
effectively governed for compliance with QoS and pol-
icy requirements. Services must meet the functional and
QoS obijectives within the context of the business unit
and the enterprises within which they operate.

ervice-oriented computing is a vast and enormously

complex subject, embracing many technologies that

must be integrated in an intricate manner. By focus-
ing on the inherently related themes of service founda-
tions, service composition, service management and
monitoring, and service design and development,
researchers can make requisite connections among diver-
sified activities, find links in hitherto neglected spheres
of work, and align ongoing and future projects in a more
meaningful and coherent manner. This in turn will lead
to a harmonization of research expertise and more inter-
operable SOC solutions.

References

1. M.P. Papazoglou, Web Services: Principles and Technology,
Prentice Hall, 2007.

2. S. Weerawarana et al., Web Services Platform Architecture:
SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More, Prentice Hall, 2005.

3. F. Leymann, “Combining Web Services and the Grid: Towards
Adaptive Enterprise Applications,” Proc. CAISE 05 Work-
shops, vol. 2, FEUP Edicdes, 2005, pp. 9-21.

4. D. Chappell, Enterprise Service Bus, O’Reilly Media, 2004.

5. F. Leymann, “The (Service) Bus: Services Penetrate Everyday
Life,” Proc. 3rd Int’l Conf. Service-Oriented Computing
(ICSOC 2005), LNCS 3826, Springer-Verlag, 2005.

6. M.P. Papazoglou and W-J. van den Heuvel, ““Service-Oriented
Architectures: Approaches, Technologies and Research
Issues,” VLDB J., vol. 16, no. 3, 2007, pp. 389-415.

7. “Security in a Web Services World: A Proposed Architecture
and Roadmap,” v1.0, 7 Apr. 2002, IBM/Microsoft; http://
msdn2.microsoft.com/en-us/library/ms977312.aspx.

8. T. Andrews et al., “Business Process Execution Language for
Web Services,” v1.1, 5 May 2003, IBM developerWorks;
www.ibm.com/developerworks/library/specification/ws-bpel.

9. N. Kavantzas, “Web Services Choreography Description
Language 1.0,” editor’s draft, 3 Apr. 2004, W3C; http://
lists.w3.org/Archives/Public/www-archive/2004Apr/att-0004/
cdl_v1-editors-apr03-2004-pdf.pdf.

10. F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping Per-
formance and Dependability Attributes of Web Services,”
Proc. IEEE Int’l Conf. Web Services (ICWS 06), IEEE Press,
2006, pp. 205-212.

11. M.P. Papazoglou and B. Kratz, ““Web Services Technology in
Support of Business Transactions,” Service-Oriented Com-
puting and Applications J., vol. 1, no. 1, 2007, pp. 51-63.

12. H. Kreger et al., “Management Using Web Services: A Pro-
posed Architecture and Roadmap,” v1.0, 2 June 2005, Com-
puter Assoc./HP Development Co./IBM; ftp://wwwe6.software.
ibm.com/software/developer/library/ws-mroadmap.pdf.

13. F. Bachmann et al., Volume 11: Technical Concepts of Com-
ponent-Based Software Eng., 2nd ed., tech. report CMU/
SEI-2000-TR-008 ESC-TR-2000-007, Software Eng. Inst.,
Carnegie Mellon University, May 2000.

14. P. Herzum and O. Sims, Business Component Factory: A
Comprehensive Overview of Component-Based Development
for the Enterprise, John Wiley & Sons, 2000.

15. A. Arsanjani, “Service-Oriented Modeling and Architecture,”
9 Nov. 2004, IBM developerWorks; www-106.ibm.com/
developerworks/library/ws-soa-design1.

16. U. Zdun and S. Dustdar, “Model-Driven Integration of
Process-Driven SOA Models,” to appear in Int’l J. Business
Process Integration and Management, 2007.

17. C. Ghezzi, “Service-Oriented Computing: Where Does It
Come From? A Software Engineering Perspective,” keynote
address, 3rd Int’l Conf. Service-Oriented Computing, Ams-
terdam, Dec. 2005.

Michael P. Papazoglou is the chair of computer science and
director of the Infolab in the Department of Information
Systems and Management at Tilburg University, Tilburg,
the Netherlands. His research interests include distributed
systems, service-oriented computing, enterprise application
integration, and e-business technologies and applications.
Papazoglou received a PhD in computer systems engineer-
ing from the University of Edinburgh. He is an IEEE Com-
puter Society Golden Core member and distinguished
visitor. Contact him at mikep@uvt.nl.

Paolo Traverso is director of information technology at the
Fondazione Bruno Kessler, Istituto per la Ricerca Scientifica
e Tecnologica, FBK-IRST, Trento, Italy. His research inter-
ests include automated planning, automated verification
and synthesis, and service-oriented applications. Traverso
received a Laurea in electronic engineering from the Uni-
versity of Genoa. He is a member of the IEEE Computer
Society and the ACM. Contact him at traverso@itc.it.

Schahram Dustdar is a full professor of computer science,
director of the Vienna Internet Technologies Advanced
Research Lab, and head of the Distributed Systems Group
of the Information Systems Institute at the Vienna Univer-
sity of Technology, Vienna, Austria. He is also honorary
professor of information systems in the Department of
Computer Science at the University of Groningen, the
Netherlands. His research interests include service-oriented
architectures and computing, mobile and ubiquitous com-
puting, complex and adaptive systems, and context-aware
computing. Dustdar received a PhD in business informat-
ics from the University of Linz, Austria. He is a member of
the IEEE Computer Society and the ACM. Contact him at
dustdar@infosys.tuwien.ac.at.

Frank Leymann is a full professor of computer science and
director of the Institute of Architecture of Application Sys-
tems at the University of Stuttgart, Stuttgart, Germany. His
research interests include service-oriented computing and
middleware, workflow- and business-process management,
programming in the large, transaction processing, integra-
tion technology, and architecture patterns. Leymann
received a PhD in mathematics from the University of
Bochum, Bochum, Germany. He is a member of the Ger-
man Computer Society. Contact him at frank.leymann@
iaas.uni-stuttgart.de.

November 2007

