THE INFLUENCE OF SOFTWARE
STRUCTURE ON RELIABILITY
D.L. Parnas
Research Group on
Operating System Structure
Technical University
Darmstadt
Darmstadt, West Germany

Keywords: Reliability, Software Structure, Modules, Interfaces, Error Handling, Error Correction

Abstract -

This paper assumes software structure to be characterized by the interfaces between subsystems or modules.
Reliability is considered to be a measure of the extent to which the system can be expected to deliver usa-
ble services when those services are demanded. It is argued that reliability and correctness (in the sense
used in current computer literature) are not synonyms. The differences suggest techn1ques by which the re-
liability of software can be improved even while the production of correct software remains beyond our reach.
In general, the techniques involve consxder1ng certain unpleasant facts of life at an early stage in the de-
sign process, the stage where the structure is determined, rather than later. An appendix gives some spec1-
fic examples of questions which, if they are thoughtfully considered early in the design, can lead to more
reliable systems.

Introduction

The word structure is used here to indicate the way that a software system is divided into modules and the
assumptions that the various modules make about each bther. A module here is intended to be a unit of work
assignment to groups of programmers or individual programmers. It is intended to be a unit which can be
constructed with no knowledge of the internal structure of other modules. It is also intended that most
design decisions in a system can be changed by altering a single module. More detailed descriptions of this
interpretation of "structure" can be found in [1,2]. The concrete representations of the structure of a
system should be the set of module specifications.

In this paper we intend to make a strong distinction between "reliability" and "correctness" as a static
property of a piece of software and its specification. If a piece of software meets its specification, it
is correct - if it does not, it is incorrect. Reliability, in-contrast, is a statistical measure relating
a system to the pattern of demands we make upon it. We consider a system to be highly reliable, if it is
highly probable that, when we demand a service from the system, it will perform to our satisfaction.

Often, we weigh situations in which we urgently need the services of the system more highly than those
situations in which our demands are routine. Thus a system may be considered unreliable if it usually fails
in emergency situations even though these situations amount to a small percentage of the total usage of the
system,

Much of the software that we now consider reliable is actually not correct. We may consider the system
reliable in spite of the errors if either: .

{1) The programming errors do not make the system unusable (e.g. format of output, erroneous output which
is easily detected and corrected by the user) or

(2) The situations in which the errors have an effect do not occur very often and the situations are not
especially likely to occur, at moments when the need for the system is very great.

On the other hand, "correct” (in the sense of mathematically verified)software can be quite unreliable.
This happens, when the specification for the software is not a complete description of what we expect from
the software specifications. Correctness proofs are generally based on the (often unstated) assumptions
that (a) the machine which interprets the software will function perfectly, and that (b) all data inputs
to the system will be correct. If these assumpcions are false a "correct" system can fail when we make a
demand of it. The system could be proven "correct” only because the speclflcatlon (which we used in proving
correctness) did not state any requirements about the behavior of the system in circumstances when either
of the abovementioned assumptions was not valid. Such failures have an unusually great effect on our
estimation of the re11ab111ty of the system, because errors in input and errors by the supporting machine
are especially likely in moments of stress.

The obvious ways that the structure of a system adversely affects its reliability are those ways that the
structure affects the correctness of the system too. It is widely recognized that badly structured systems
are more likely to be incorrect and that, when they must be changed, the changes are more likely to intro-
duce errors. In this paper I wish to discuss some of the less obvious influences of software structure on

358



‘reliability. These are situations in which we see differences between "reliability" and "correctness"
We consider a structure to be "bad" if many modules are based on assumptions which are likely to become
false. Partlcularly relevant to re11ab111ty are structures where many modules are dessigned on the assump-
tion that "nothing will be wrong". Specifcally:

(1) The software structure is based upon the assumption that everything outside the software will behave
correctly;

(2) The structure is basgd on the assumption that there are no software errors;

(3) The structure is based upon an "all or nothing" approach. There is no definition of degrees of imperfect
behavior.

The tangible description of the structure of a system is the spec1f1cat10n of the intermodule interfaces.

Below we discuss how these interfaces must appear if the structure is not to have the problems listed
above,

On incorrect exteérnal influences

'
The interfaces between the modules must enable the communication of information about external errors, For
example, it should be possible for a module to be informed that information, given to it earlier, was in-
correct, or that a request, which it had issued some time ago, was executed incorrectly. It should be
possible for a module, which detects inconsistancies in incoming information, to inform the supplying module
about those inconsistancies. The module supplying those data should be designed to respond meaningfully to
such a not1f1cat10n.
In most "real" systems the intermodule 1nterfaces are defined in such a way that the responsibility for
detecting and responding to external errors is "left" to those ‘modules that deal directly with the extgrnal
interfaces. For example responsibility for noticing inconsistancies in operator input (e.g. an alphabetic
character in a numeric field) is given to the program with responsibility for handling the operator's
console. Another example, responsibility for recovering from an error in memory hardware is usually given

o "low level" routines. This appears to conform to our intuitive notions of modular1ty, but in fact it is
a dlrect violation of the "information hiding principle" used in d1v1d1ng programs #nto modules [1,2].
An attempt to confine error handling to a single module or level in a system leads to inflexible systems
and systems which do not do as much error detection and correction as they could. The reasons:
(1) The 1nformat10n necessary for good recovery from most hardware errors is not usually present in the
"hardware near" programs but in programs responsible for the more global strategies and techniques used
in the system.
(2) The information necessary to detect an input error and to inform the operator of the dlfflculty is
usually contained in modules responsible for storage of previously processed inputs — not in the modules
responsible for direct handling the console interface.
The solution to these problems lies in specifying module interfaces which allow communication about errors
between the modules. In most cases the module detecting an error should not be the module which corrects it.
The module which determines the correction strategy will often require many other submodules to take
corrective action as well. Unfortunately, in most of the real systems that I have looked at, consideration
of these problems comes late in the design process (usually during use) and the module interfaces must be
violated in order to obtain the desired behavior.
Some- aspects of module design related to inter-module error communication have been discussed and illus-
trated in [5] and further examples are given in an appendix to this paper.

On Incorrect Software

The wave of interest in structured programming has brought with it a new wave of optimism. Some people ap-
parently believe that good intentions and mathematical rigor will lead to the production of correct pro-
grams. Such an approach seems to ignore all the errors that good-willed, rigorous mathematicians have made
in the past. Even if we will eventually have error-free programs, we must consider the transition period.
During that time the structure of the system should not be based upon the assumption that there are no
errors in the individual modules, but allow for the possible malfunctioning of software components due to
internal error. The module specifications should give each of the modules the responsibility of making cer-
tain basic checks on the behavior of those modules with which it interacts. Even if the software were
written correctly, earlier hardware errors might have made it incorrect.

The literature now contains a number of examples of "well-structured” systems which have the property that
all the components are written with no provision for the malfunctioning of other components. A design with

such a structure will be less reliable than one which requires each of the components to include provisions
for the most likely malfunctioning of the others.

The "all or nothing" Assumption

The predicates usually used in proving the correctness of programs define the behavior, which we consider
the desired behavior of the system under ideal circumstances. Absolutely nothing is said about what should
be done if that behavior cannot be obtained. Using such a set of predicates as a specification can result
in a system which behaves perfectly when everything goes well, but behaves randomly in other situations.
An alternative would be to include several sets of predicates, each set defining a "degree" of desired
behavior. Degree O would define the "ideal' behavior and correspond to the predicates currently used to
prove correctness. Degree i+l would be a set of requirements which we would like to be satisfied in situa-
tions where the requirements for degree i cannot be met. Such a system gives some guidance to the program-
mers about what the program should do when something goes wrong. The information is particularly necessary

359



for writing the error handling routines. The inclusion of such predicates does not simplify the correctness
proof - but it can lead to more reliable systems.

In many applications users would consider a system which behaved perfectly under ideal circumstances but
randomly at all other times to be less reliable than a system which was not loo% "correct", but provided
some services even when it could not function perfectly.

The effect of unrealistic software structures ém reliability

"Structures"must often be understood as a euphemism for "restricted". When we define a systém structure, we
restrict the ways in which the components may interact. We consider a structure to be unrealistic when it
does not permit the inter-module interactions which are mecessary to meet realistic goals (e.g. as meaning-
ful response to meaningless inputs and efficiency).

When a structure is unrealistic it contributes to unreliability in two ways:

(1) It does not allow certain error recovery procedures which could lead to increased reliability;

(2) It encourages practical programmers to violate the restrictions set down by the structure in order to
meet realistic goals, This results in so called "unstructured systems" which are more accurately descxibed
simply as "poorly structured systems" or systems in which many assumptions about details, which are likely
to change, are widely distributed.

From these considerations I feel forced to state my opinion that some of the suggestions for system struc-—
turing which have appeared in the literature could actually have a negative effect on reliability if
applied. For example, many of the suggestions for operating system structuring achieve an appealing simpli-
city by assuming by assuming either that (1) relatively long programs can be carried out in a machine state
with interrupts disabled, or (2) the number of processes in a system or and their speeds are such that there
will rarely be more than one process waiting for entrance to a critical section. If these assumptions are
realistic, the simplifications that result from them are clearly beneficial. Unfortunately, for many of the
systems which the practitioners in this audience deal with, the assumptions are unrealistic. Even if the
assumptions are true when the system structure is conceived, by the time that the system actually sees use,
the application requirements may have been changed so that the assumptions are no longer valid. Note that
the assumptjons, that one is in a critical section for only a short time is very questionable when one
considers the possibility of an error occurring during execution of the critical sections. If only one
critical section is used and error handling operates in the same section, a deadlock may result. The
designer whochooses to base a system on such simplifying assumptions must weigh the benefit that comes from
the simplicity against the estimated cost that would be incurred if the assumptions proved invalid.

These considerations point out the danger in the wide soread assumption that simpler programs are "better
structured" than complex ones. Careful attention to program structure usually brings simplicity and clarity
as a result, but simplicity can also be obtainéd by neglecting essential problems.

Summary and Conclusions

The above considerations have led me to the conclusion that there are two guite distinct and complementary
approaches that one can take to the problem of obtaining more reliable software. In the first approach one
regards "unreliable" as a euphemism for "error ridden" and we develop techniques for (1) writing correct
programs in the first place and (2) verifying that programs are correct or finding their errors. The second
approach is based on the observation that with computer systems (just as with people) "reliable" and
"correct” are not synonyms. This leads us to suggest steps in the design process which can 1lead to an
improvement in reliability without necessarily affecting "correctness". These are:

(1) When writing specifications for the system and each of the modules, be realistic enough to specify the
behavior which is desired when perfect behavior is not obtainable.

(2) In specifying the interface between the system and its environment and the interfaces between the
various sub-systems modules, require the programs to be suspicious. Specify not omnly what the interfacing
elements should do in the normal case, but also which assumptions should be verified by run-time checks
and which actions are required when an error is detected.

(3) Include in the interfaces conventions for informing affected modules about things that have gone wrong
elsewhere in the system.

It is important that these actions be taken at early stages in the design of a system. Usually those
assumptions made at the early stages of the system are most costly to change at later stages. Every
assumption which is made in the design of an interface affects more than one module and generally interface
decisions which are made early in the system design. Realism from the start is to be preferred over expen-
sive changes when the system reaches "puberty" (the stage before maturity when the facts of life become
apparent).

I hope however that the reader will not reach the conclusion that one should abandon or ignore the attempts
to write correct programs and automate the verification process. As I stated at the start of this sectiomn
the two approaches are complémentary. Nobody favors incorrect software.

360



I have chosen to emphasize the second approach for two reasons:

(1) I believe enough has been said and written about the first and that I could not add much to it.

(2) 1 personally believe that for payoff in the next 5-lo years the second approach (a) is more prom1s1ng
and (b) is not receiving enough attention. Although consideration of the points mentioned above, is clearly
within the intellectual reach of these responsible for specifying and designing systems today, and I have
looked at many specifications for real and academic systems as well, I have yet to find one which makes
gsignificant efforts in the directions I have outlined.

In the appendix of this paper I have included a few illustrative examples in the hope of making the rather
general principles outlined above more concrete for those who would like to apply them in practice.

Appendix
Examples of System and Module Requirements intended to make Real Software more reliable.

In this example we consider the early stages of the design of a communications support system. The purpose
of this system is to (1) provide for the effective use of the communications equipment according to estab-
lished priorities, (2) provide a convenient interface for the communications operators (those who type the

messages in), and (3) provide a data bank from which information about messages sent and received can be
retrieved.

Below we give a list of questions which we believe should be considered during the early stages of the
system design. Note that we have said "considered" and nmot " answered". Many of the questions may not be
best answered at an early stage because the correct answer may differ from installation to installation or
even change during the life cycle of the system. By considering sich questions however one can so struc-
ture the system that it is possible to "answer" the question at a later stage by writing or changing a
single program rather than by redesigning vast portions of the system.

I. Questions which should be considered when designing the interface to the system

(1) If a piece of communications equipment fails during a transmission - how should the system be informed
of that failure? How much information about the failure will be supplied? How should the system respond?
(2) What action should the system take if an operator inputs a message with a priority beyond his privi-
leges? How can an operator indicate that he made an error in priority?

(3) Assume that the system keeps mcssage logs 1nc1ud1ng a separate log of absolute top priority messages.
What corrective action should the system take if it is determined that the mass storage device used for
keeping the log was defective and the information stored on it has been lost? *

(4) How can one inform the system (or how can the system detect) the failure or misfunctioning of a part
of the main memory?

II. Questions which should be considered when defining the intermodule interfaces.

Here we assume that the system uses a memory allocation module which allocates blocks of 512 words when-
ever requested to supply such by other modules who call GETSPACE. We also assume that there is a deadlock
prevention module (the banker) which approves or disapproves requests for all resource allocation modules
without knowing any details about the individual resources.

(1) Does the interface to the memory allocation module allow it to be 1nformed that a part of the memory
is malfunctioning and should not be allocated?

(2) What should the memory allncation module do if it is informed that a memory area which is already
allocated to a program is not functioning properly.

(3) Does the Banker module contain programs which allow it to be informed of a sudden failure of a resource
such as a memory bank? What action should it take if it discovers that a deadlock is the result of this
failure?

(4) How can a program which is using a piece of defective memury be informed of this problem? How should
that program react?

(5) If the result of being allocated non-functioning memory is that the program process is walting and

it will not continue until the memory is repaired, how should one inform the memory allocation module and
the banker of this problem? (Both of those modules usually proceed on the assumption that the program will
eventually return its resources - that assumption is now false.

(6) If it is discovered that one program is misfunctioning and continues to ask for resources without
returning them, how should the above named modules be informed of this problem? How should they react?

” Possible Answer:
(1): try to reconstruct the data from other logs, if .that's impossible, then
(2): if part of the data has been lest, ask the operator to resupply. If (1) + (2) not possible, then...
(N): if it is not poseible to maintain a log with the storage available, produce a punched card version
or paper tape version.

361



Comments on the above questions:

It is possible to generate an arbitrarily long list of such questions, starting with highly likely situa-
tions such as those mentioned above and ending at some point where the problems mentioned are deemed so
unlikely that it is not worthwhile preparing for them.

I have examined descriptions of a wide variety of systems ranging from "model systems" produced by small
groups of highly skilled people in Universities to '"real systems which appeared to have been produced by
a stream of visitors who never met each other, but managed somehow to glue something together which func~
tions. As far as I, (an outsider,) could tell questions such as these are never considered at the design
stage in which the external and intermodule specifications are determined. In other words, the structure
is based upon the assumption that such situations will never occurr.

When reality forces the developers to consider such situations later in the design, the necessary changes
violate the early assumptions and hence are expensive and time consuming to introduce and often lead to
many difficult to find bugs.

My thesis is that consideration of such questions when designing the structure of a system is within the
state of the art and carries a high short range payoff which can be measured in terms of increased system
reliability.

Acknowledgments

Conversations with A. Endres of IBM Germany and H. Wiirges of the Technical University, Darmstadt, have con-
tributed greatly to my understanding of the problems discussed in this paper. Remarks by W. Bartussek on an
early draft of this paper have been very helpful.

References

[1] Parnas, D.L., "Information Distribution Aspects of Design Methodology", Proceedings of IFIP Congress
1971.

{2] Parnas, D.L., "On the Criteria to be Used in Decomposing Systems into Modules", Communications of the
ACM (Programming Techniques Department), Dec. 1972.

(3] Parnas, D.L., "Some Conclusions from an Experiment in Software Engineering”, Proceedings of the
1972 FJCC.

[4] Kaiser, C., Krakowiak, S., "An Analysis of Some Run-Time Errors in an Operating System", Aspects Théo-
riques et Pratiques des Systémes d'Exploitation, IRIA, Rocquencourt, April 1974,

(5] Parnas, D.L., "On the Response to Detected Errors in Hierarchically Structured Systems", Technical
Report, Carnegie-Mellon University, 1972.

362



