
theorems

June 8, 1993 2:55 pm 1/6 D. L. Parnas

Some Theorems We Should Prove

David Lorge Parnas

Telecommunications Research Institute of Ontario (TRIO)
Communications Research Laboratory

Department of Electrical and Computer Engineering
McMaster University, Hamilton, Ontario, Canada L8S 4K1

ABSTRACT

Mathematical techniques can be used to produce precise, provably complete
documentation for computer systems. However, such documents are highly
detailed and oversights and other errors are quite common. To detect the “early”
errors in a document, one must attempt to prove certain simple theorems. This
paper gives some examples of such theorems.

1   Introduction

In [4], we have shown how the contents of key computer systems documents can be defined in
terms of mathematical functions and relations. We also reminded our readers that (1) functions
and relations can be viewed as sets of ordered pairs, (2) sets can be characterised by predicates
and described by logical expressions, (3) predicates can be represented in a more readable way
using multidimensional (tabular) expressions whose components are logical expressions and
terms, and (4) the meaning of these tables can be defined by rules for translating those tables into
more conventional expressions. A complete discussion of these tabular expressions can be found
in [6]. The most recent illustration of their use can be found in [3].

Our efforts have very pragmatic goals. We are not trying to provide mathematical proofs of
program correctness; our goals are much more mundane. We wish to use mathematical methods to
improve the quality of documentation in software systems. We believe, and have demonstrated
using both practical and “academic: examples. ([1, 7, 3]) that we can provide mathematically
precise documents that can be read by both programmers and properly prepared users.

Although we are not working on program verificationper se, we believe that the ability to
provide readable mathematical documentation is a prerequisite for regular practical use of
mathematical methods in software development. It does no good to prove that a piece of software
satisfies a specification, if that specification cannot be read, understood, and criticised by potential
users or their representatives.

Although we are not trying to prove programs correct, we do have a need for theorem provers.
The formulae in our tabular expressions must satisfy certain mathematical conditions. When we
have used these tables in practice (e.g. [7]), we have found that the documents submitted for
review often fail to satisfy those conditions; as a result the reviewers spent much too much of their
time and energy checking for simple, application-independent, properties. This distracted us from
the more difficult, safety relevant, issues and we felt that the preliminary checking should be done
by a computer. Tools that check these tables must prove theorems, but theorems that are different
from those that arise in program verification. The purpose of this paper is to formulate, but not
prove, examples of those theorems. We would like to know which theorem provers or theorem
proving support systems, are best able to deal with this type of theorem.



theorems

June 8, 1993 2:55 pm 2/6 D. L. Parnas

2   An introductory example

The example below describes a function in terms of a single real variable, x, applying a
previously defined function, denoted by “ ”, which represents a function that is defined on a
domain containing only non-negative real-numbers. The value of the function is a pair with two
elements named y and z. The intent is to describe a function whose domain includes all real

values. Each column of the table describes the value of the function in the subset of the function’s
domain that is characterised by the predicate expression in the column header. Each row in the
table corresponds to an element of the pair; the rows are identified by the labels “y” and “z”.

The first “theorem” that must be proven is given in Figure 2. It confirms our intent that the
domain of the function described includes all real numbers.

In addition, we wish to make sure that each column deals with a disjoint subset of the domain.
This can be expressed by the theorem in Figure 3,

Finally, since the function applied in this table is a partial function, we want to prove that there
is a defined value for the function in each column. We introduce notation for referring to the
domain of a partial function f,domain(f), (a predicate that characterises the domain of f) so that
we can state the following two theorems...

x < 0 x = 0 x > 0

H1

y x + 2 x + 4.21 5.4 +

z 5 + x-4 x

H2 G

Figure  1: Arbitrary function of a single real represented by “x”

(∀ x, (x < 0∨ x = 0∨ x > 0))

Figure  2: Domain Coverage Theorem for Figure 1

(∀ x, ¬((x < 0∧ x = 0)∨ (x < 0 ∧ x > 0)∨ (x > 0 ∧ x = 0)))

Figure  3: Disjoint Domains Theorem for Figure 1

x < 0⇒ domain( )

Figure  4: Definedness theorem for Column 1 of Figure 1

x > 0⇒ domain( )

Figure  5: Definedness theorem for Column 3 of Figure 1

x

x−

x−

x



theorems

June 8, 1993 2:55 pm 3/6 D. L. Parnas

Each of these theorems is “obviously true”, but they must be checked routinely when preparing
these tabular descriptions of functions. “Proving” them requires knowing the definitions of each of
the relations and functions that appear as well as knowing the characterisation of the domain of
any partial functions. The functions used in these examples are familiar functions, but, in practice,
designers define unfamiliar functions for their applications. Thus, it must be possible to add new
functions and relations to the “vocabulary” of the prover. The users of these tables cannot be
assumed to be mathematically sophisticated, or even rigorous. Thus, we would like the theorems
to be formulated and verified automatically wherever possible.

3   More Advanced Examples

The example in Section 2 illustrates the meaning of our tabular expressions and the way that
“theorems” are derived from such tables. In more advanced examples we want to prove the same
general theorems, but the expressions become more complex. The primary source of new
problems is the use quantification over finite sets.

3.1  Array Search Example

The example below describes programs that deal with an array, B, with indices 1... N. Like
many others, we treat such arrays as partial functions whose domain consists of the integers 1 ... N.
The value of the array (partial function) is not defined for other values.

Figure 6 specifies the behaviour of a program that must search the array B, looking for an
element whose value is the same as the value of the program variable x1. To describe the behaviour
of this program completely, we must distinguish two cases depending on whether or not there is
such an element. The table describes the required properties of thefinal values of j and present
(denoted by “j’ ” and “present’ ”) in both cases. In the first row, we state a predicate that j’ must
satisfy. Note that if the value of x cannot be found in the array, any value of j will satisfy the
specification. In the next row, we provide a term whose value gives will be the value of present’.
We further indicate that the variables x and B should not change (by writing “NC(x, Β)”). 2

For Figure 6 to be proper, the two columns must be mutually exclusive. Further, we would like
the domain of the function described to be the universe. This means that we would want the

1 In these tables,true andfalse are predicate values, whiletrue and, false represent the values of program
variables. “|” is read “such that” and indicates that the value of the variable must satisfy a predicate given in
the appropriate column.
2 NC(x,B) is our abbreviation for x’=‘x∧ ‘B = B’

(∃ i, B[i] =x) (∀ i, ((1 ≤ i ≤ N) ⇒ B[i] ≠ x))

H1

j’ | B[j’] = x true

present’= true false ∧ ΝC(x, Β)

H2 G

Figure  6: Relational Description of a program that searches B for the value of x



theorems

June 8, 1993 2:55 pm 4/6 D. L. Parnas

formulae in Figures 7 and 8 to evaluate totrue for any array B. . .

It should be noted that the theorems in Figures 7 and 8 are not as obvious as they might appear.
In the logic that we use (described in [2]), if both “=” and “≠” denote primitive relations, (i.e. one
is not defined to be the complement of the other) they arenot complementary. If i is not in the
index set of B, bothB[i] =x and B[i] ≠ x will be false. Thus one cannot apply the standard
transformation in this case. We can simplify both the expressions, and the proofs, if we do not
include “≠” in the set of primitive relations and define “≠” to be the complement of “=”. If we do
that all occurrences of the formulae: “(∀ i, ((1 ≤ i ≤ N) ⇒ B[i] ≠ x))”, can be replaced by
“ (∀ i, B[i] ≠ x)”. Alternatively, we could replace “B[i] ≠ x” by “¬(B[i]= x)” and get the same
simplifications. The simplified theorems are shown in Figures 9 and 10. . .

Column 1 of Figure 6 requires that prove that there will be a value of j’ that satisfies the
condition specified. This gives rise to the theorem of Figure 9.  Since the expressions in the second

row are constants, we need not state the corresponding theorems.

3.2  Searching for a palindrome of length n in an array A with index set 1:N

Figure 12 shows the use of some additional mathematical functions. Although we could have
avoided it, we use floor and integer division in the expression “n÷2”. The Domain Coverage
Theorem and the Disjoint Domain Theorem for Figure 12 are trivial as the header for column 2 is
explicitly given as the complement of the header for column 1, The definedness theoremshould

(∃ i, B[i] =x) ∨ (∀ i, ((1 ≤ i ≤ N) ⇒ B[i] ≠ x))

Figure  7: Domain Coverage Theorem for Figure 6

¬((∃ i, B[i] =x) ∧ (∀ i, ((1 ≤ i ≤ N) ⇒ B[i] ≠ x))

Figure  8: Disjoint Domains Theorem for Figure 6

(∃ i, B[i] =x) ∨ (∀ i, ¬(B[i] = x))

Figure  9: Simplified Domain Coverage Theorem for Figure 6

¬((∃ i, B[i] =x) ∧ (∀ i, ¬(B[i] = x))

Figure  10: Simplified Disjoint Domains Theorem for Figure 6

(∃ i, B[i] =x) ⇒ nonempty({j’| B[j’] = x })

Figure  11: Definedness Theorem for Column 1 of Figure 6.



theorems

June 8, 1993 2:55 pm 5/6 D. L. Parnas

be easy, but checking it is likely to be forgotten in practice. It is stated in Figure 13.

3.3  Looking for the longest palindrome in A [1:N], N>0

The program described by Figure 12 could be used in looking for the longest palindrome that
can be found in an array. n’ is to designate the length of this palindrome andl’ will indicate a
location where a palindrome of that length can be found. A specification of such a program is
given in Figure 14. Note that maxel(x), where x is a non-empty set of integers, is a function whose
value is the largest value in x. Even though we do not need to distinguish cases, the table format is
useful. Because, this table has only one column, the Domain Coverage Theorem is as trivial as
one can get. However, the Definedness Theorem could be interesting because it depends on our
recognising that there will always be palindromes of length 1 in any array of non-zero length.

(∃ l, (∀ i, 0 ≤ i < n÷2 ⇒
A[ l+i] =A[ l+n-1-i]))

¬(∃ l, (∀ i, 0 ≤ i < n÷2 ⇒
A[ l+i] = A[ l+n-1-i]))

H1

l’ | (∀ i, 0 ≤ i < n÷2 ⇒
A[ l’+i] = A[ l’+n-1-i])

true

present’= true false ∧ΝC(n,Α)

H2 G

Figure  12: Find a Palindrome of length l in A[1:n]

(∃ l, (∀ i, 0 ≤ i < n÷2 ⇒ A[ l+i] =A[ l+n-1-i])) ⇒
nonempty({ l’| (∀ i, 0 ≤ i < n÷2 ⇒ A[ l’+i] = A[ l’+n-1-i])})

Figure  13: Definedness Theorem for Column 1 of Figure 12.

true

H1

l’ | (∀ i, 0 ≤ i < n’÷2 ⇒A[ l’+i]=A[ l’+n’-1-i])

n’= maxel({n |(n>0)∧(∃ l,(∀ i, 0≤ i< n÷2 ⇒ A[ l+i] =A[ l+n-1-i]))}) ∧
ΝC(Α)

H2 G

Figure  14: Finding the longest Palindrome in a non-empty array.

n>1⇒nonempty({n| (∃ l, (∀ i, 0 ≤ i < n÷2 ⇒ A[ l+i] =A[ l+n-1-i]))} )

Figure  15: Definedness Theorem for Figure 12.



theorems

June 8, 1993 2:55 pm 6/6 D. L. Parnas

4   Concluding observations

Mathematicians reading this paper will find the theorems posed trivial; they are certainly
shallow when compared to the theorems that mathematicians prove in published papers.
However, they are more difficult than the majority of the theorems that arose in the
documentation and inspection of the Darlington Nuclear Plant Shutdown Systems discussed in
[7]. Most of the theorems that we had to check, were similar in nature to the ones discussed in
Section 2. The scrupulously careful inspection resulted in about 40 kg. of such trivial tables. If
these theorems can be proven automatically by today’s theorem proving programs, we should be
using those programs. If these theorems still require human intervention, perhaps the developers
of theorem proving programs would like to turn their attention to this type of theorem.

5   Acknowledgements

This work was supported by the Government of Ontario, through TRIO, and by the
Government of Canada through NSERC’s Research Grant programme.

6   References

[1] Heninger, K.L., Kallander, J., Parnas, D.L., Shore, J.E., “Software Requirements for the
A-7E Aircraft”, NRL Memorandum Report 3876, United States Naval Research
Laboratory, Washington D.C., November 1978, 523 pp.

[2] Parnas, D.L., “Predicate Logic for Software Engineering”, CRL Report 241, McMaster
University, TRIO (Telecommunications Research Institute of Ontario), February 1992, 8
pgs. To appear in IEEE Transactions on Software Engineering.

[3] D.L. Parnas, J. Madey, M. Iglewski, “Formal Documentation of Well-Structured
Programs”, CRL Report 259, McMaster University, TRIO (Telecommunications Research
Institute of Ontario), September 1992, 37 pgs.

[4]  D.L. Parnas, J. Madey, “Functional Documentation for Computer Systems Engineering
(Version 2)”, CRL Report 237, McMaster University, Hamilton Canada, TRIO
(Telecommunications Research Institute of Ontario), September 1991,14 pgs.

[5] Elliot Mendelson, “Introduction to Mathematical Logic”, Third Edition, Wadsworth and
Brooks, Pacific Grove California (USA), 1987.

[6] D.L. Parnas, “Tabular Representation of Relations”, CRL Report 260, McMaster
University, TRIO (Telecommunications Research Institute of Ontario), October 1992, 12
pgs.

[7] D.L. Parnas, G.J.K. Asmis, J. Madey, “Assessment of Safety-Critical Software in
Nuclear Power Plants”,Nuclear Safety. vol. 32, no. 2, April-June 1991, pgs. 189-198.


