
SOFTWARE—PRACTICE AND EXPERIENCE

Softw. Pract. Exper.2005;00:1 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

Profiling with AspectJ

David J. Pearce1, Matthew Webster2, Robert Berry2 and
Paul H.J. Kelly3

1School of and Mathematics, Statistics and Computer Science, Victoria University of Wellington, NZ.
Email: david.pearce@mcs.vuw.ac.nz. Tel: +64 (0)44635833.
2IBM Corporation, Hursley Park, Winchester, UK
3Department of Computing, Imperial College, London, UK

SUMMARY

This paper investigates whether AspectJ can be used for efficient profiling of Java programs. Profiling

differs from other applications of AOP (e.g. tracing), since it necessitates efficient and often complex

interactions with the target program. As such, it was uncertain whether AspectJ could achieve this goal.

Therefore, we investigate four common profiling problems (heap usage, object lifetime, wasted time and

time-spent) and report on how well AspectJ handles them. Foreach, we provide an efficient implementation,

discuss any trade-offs or limitations and present the results of an experimental evaluation into the costs

of using it. Our conclusions are mixed. On the one hand, we findthat AspectJ is sufficiently expressive

to describe the four profiling problems and reasonably efficient in most cases. On the other hand, we

find several limitations with the current AspectJ implementation that severely hamper its suitability for

profiling.

KEY WORDS: AspectJ, AOP, Java, Profiling, Performance

1. INTRODUCTION

Profiling program behaviour is a common technique for identifying performance problems caused

by, for example, inefficient algorithms, excessive heap usage or synchronisation. Profiling can be

formalised as the collection and interpretation of programevents and is a well-understood problem

with a significant body of previous work. However, one area ofthis field has been largely unexplored

Received August 2005

Copyright c© 2005 John Wiley & Sons, Ltd. Revised April 2006

2 D. J. PEARCEET AL.

in the past:effective deployment. That is, given a program, how can it be easily profiled in the desired

manner? In some situations, this is relatively straightforward because the underlying hardware provides

support. For example, time profiling can be implemented using a timer interrupt to give periodic access

to the program state. Alternatively, hardware performancecounters can be used to profile events such as

cache misses, cycles executed and more [1, 2]. The difficultyarises when there is no hardware support

for the events of interest. In this case,instrumentation codemust be added and various strategies are

used to do this. For example,gprof — perhaps the most widely used profiler — relies upon specific

support fromgcc to insert instrumentation at the start of each method [3]. Unfortunately, it is very

difficult to capitalise on this infrastructure for general purpose profiling simply becausegcc has no

mechanism for directing where the instrumentation should be placed.

In a similar vein, binary rewriters (e.g. [4, 5]) or program transformation systems (e.g. [6, 7]) can

help automate the process of adding instrumentation. Whilethese tools do enable profiling, they are

cumbersome to use since they operate at a low level. For example, binary rewriters provide only simple

interfaces for program manipulation and, hence, code must still be written to apply the instrumentation.

Likewise, program transformation tools operate on the abstract syntax tree and require the user provide

complex rewrite rules to enable instrumentation. In a sense, these tools are too general to provide an

easy solution to the profiling problem. What is needed is a simple and flexible mechanism for succinctly

specifying how and where instrumentation should be deployed.

One solution is to provide support for profiling through a general purpose virtual machine interface.

For example, theJava Virtual Machine Profiler Interface (JVMPI)enables several different types of

profiling [8]. However, there are some drawbacks: firstly, itis a fixed interface and, as such, can

only enablepredefinedtypes of profiling; secondly, enabling the JVMPI often dramatically reduces

performance. TheJava Virtual Machine Tool Interface (JVMTI)replaces the JVMPI in Java 1.5 and

attempts to address both of these points [9]. However, as we will see in Section 8.3, this comes at a

cost — the JVMTI no longer supports profiling directly. Instead, it simply enables the manipulation of

Java bytecodes at runtime, placing the burden of performingthe manipulation itself on the user.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 3

An alternative to this has recently become possible with theadvent ofAspect Oriented Programming

(AOP) — a paradigm introduced by Kiczaleset al. [10]. In this case, the programmer specifies in

the AOP language how and where to place the instrumentation,while the language compiler/runtime

takes care of its deployment. This does not require special support (e.g. from the JVM), as the

target program is modified directly. However, very few workshave considered AOP in the context of

profiling. Therefore, we address this by taking the most successful AOP language, namely AspectJ, and

evaluating whether it is an effective tool for profiling. We do this by selecting four common profiling

problems and investigating whether they can be implementedin AspectJ or not. We also examine what

performance can be expected in practice from the current AspectJ implementation, as this is critical to

the adoption of AspectJ by the profiling community. Our reasoning is that the outcome of this provides

some evidence as to whether AspectJ is suitable for general purpose profiling or not. For example, if we

could not implement these straight-forward cases, we wouldhave little hope that other, more complex

types of profiling were possible. Likewise, if we were able toimplement them, but the performance

was poor, this would indicate AspectJ was not yet ready for the profiling community.

The outcome of our investigation is somewhat mixed. We find that, while the language itself

can express the profiling examples we consider, several limitations with the current AspectJ

implementation prevent us from generating results comparable with other profilers (such ashprof).

As such, we believe these must be addressed before AspectJ can be considered a serious platform for

profiling. Specifically, the main contributions of this paper are as follows:

1. We investigate AspectJ as a profiling tool — both in terms ofperformance and descriptive

ability. This is done by evaluating four case studies across10 benchmarks, including 6 from

SPECjvm98.

2. We present novel techniques, along with source code, for profiling heap usage, object lifetime,

wasted time and time-spent with AspectJ.

3. We identify several issues with the current AspectJ implementation which prohibit complete

implementations of our profiling case-studies.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

4 D. J. PEARCEET AL.

Throughout this paper we use the term “AspectJ” to refer to the language itself, whilst “AspectJ

implementation” refers to the AspectJ implementation available fromhttp://www.aspectj.org

(since this is very much the standard implementation at thistime).

The remainder is organised as follows. Section 2 provides a brief introduction to AspectJ. Sections

3, 4, 5 and 6 develop AspectJ solutions for profiling heap usage, object lifetime, wasted time and time-

spent respectively. After this, Section 7 presents the results of an experimental evaluation into the cost

of using them. Section 8 discusses related work and, finally,Section 9 concludes.

2. INTRODUCTION TO ASPECTJ

In this section, we briefly review those AspectJ constructs relevant to this work. For a more complete

examination of the language, the reader should consult one of the well-known texts (e.g. [11, 12]).

AspectJ is a language extension to Java allowing new functionality to be systematically added to an

existing program. To this end, AspectJ provides several language constructs for describing where the

program should be modified and in what way. The conceptual idea is that, as a program executes, it

triggers certain events and AspectJ allows us to introduce new code immediately before or after these

points. Under AOP terminology, an event is referred to as ajoin point, whilst the introduced code is

calledadvice. The different join points supported by AspectJ include method execution, method call

and field access (read or write). We can attach advice to a single join point or to a set of join points

by designating them with apointcut. The following example, which profiles the number of calls to

MyClass.toString() versus those to anytoString() method, illustrates the syntax:

1. aspect ToStringCountingAspect {
2. private int totalCount = 0;
3. private int myCount = 0;
4.
5. pointcut myCall() : call(String MyClass.toString());
6. pointcut allCalls() : call(String * .toString());
7.
8. before(): myCall() { myCount++; }
9. after() : allCalls() { totalCount++; }
10.}

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 5

This creates two pointcuts,myCall() andallCalls() , which respectively describe the act of

calling MyClass.toString() and toString() on any class. They are each associated with

advice which is executed whenever a matching join point is triggered. Here,before() signals the

advice should be executed just before the join point triggers, while after() signals it should be

executed immediately afterwards (although it makes no difference which is used in this example). The

advice is wrapped inside anaspect which performs a similar role to the class construct. Aspects

permit inheritance, polymorphism and implementation hiding. When the aspect is composed with

a Java program — a process known asweaving— the program behaviour is changed such that

myCount is incremented wheneverMyClass.toString() is called. Likewise,totalCount

is incremented whenever anytoString() method is called (includingMyClass.toString()).

Note, the current AspectJ implementation does not alter theprogram’s source code, rather the change is

seen in its generated bytecode. A problem can arise with a pointcut that matches something inside the

aspect itself as this can cause an infinite loop, where the aspect continually triggers itself. This would

happen, for example, if our aspect had atoString() method that was called from the after advice.

To overcome this, we can specify that a classC should not be advised by including!within(C) in

the pointcut definition.

Another interesting issue is determining which particularjoin point triggered the execution of some

advice. For this purpose, AspectJ provides a variable called thisJoinPoint which is similar in

spirit to thethis variable found in OOP. It refers to an instance ofJoinPoint which contains both

staticanddynamicinformation unique to the join point in question. Here, static information includes

method name, class name and type information, while dynamicinformation includes parameter values,

virtual call targets and field values. To provide the dynamicinformation, the AspectJ implementation

creates a fresh instance ofJoinPoint every time a join point is triggered, passing it to the

advice as a hidden parameter (much like thethis variable). For efficiency reasons, this is only

done if the advice actually references it. For the static information, the AspectJ implementation

constructs an instance ofJoinPoint.StaticPart which is retained for the duration of the

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

6 D. J. PEARCEET AL.

program’s execution. This can be accessed through either the thisJoinPoint.StaticPart

or the thisJoinPointStaticPart variables. The latter is preferred as it allows greater

optimisation. We can alter our example in the following way to record the total number of calls to

toString() on a per-class basis, rather than lumping them all together:

2. private Map totalCounts = new HashMap();
...

6. after() : allCalls() {
7. Class c = thisJPSP.getSignature().getDeclaringType() ;
8. Integer i = totalCounts.get(c);
9. if(i != null) totalCounts.put(c,new Integer(i.intValu e()+1));
10. else totalCounts.put(c,new Integer(1));
11. }

Note, thisJPSP is an abbreviation forthisJoinPointStaticPart and is used throughout

the remainder of this paper to improve the presentation of our code examples. Also,totalCounts

replacestotalCount from before. It can also be useful to access information about the enclosing

join point. That is, the join point whose scope encloses thattriggering the advice. For example,

the enclosing join point of a method call is the method execution containing it and AspectJ

providesthisEnclosingJoinPoint to access itsJoinPoint object. The corresponding static

component is accessed viathisEnclosingJoinPointStaticPart (henceforththisEJPSP).

The final AspectJ feature of relevance is theinter-type declaration, which gives the ability to define

new fields or methods for existing classes and/or to alter theclass hierarchy. For example, the following

altersMyClass to implement theComparable interface:

1. aspect ComparableMyClass {
2. declare parents: MyClass implements Comparable;
3. int MyClass.compareTo(Object o) { return 0; }
4. }

This first declares thatMyClass implementsComparable and, second, defines the required

compareTo() method (which effectively adds this method toMyClass). Note, ifMyClass already

had acompareTo() method, then weaving this aspect would give a weave-time error.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 7

3. PROFILING HEAP USAGE

In this section, we investigate AspectJ as a tool for determining which methods allocate the most heap

storage. The general idea is to advise all calls tonew with code recording the size of the allocated

object. This amount is then added to a running total for theenclosingmethod (of that call) to yield

exact results:

1. aspect HeapProfiler {
2. Hashtable totals = new Hashtable();
3.
4. before() : call(* .new(..)) && !within(HeapProfiler) {
5. MutInteger tot = getTotal(thisEJPSP);
6. Class c = thisJPSP.getSignature().getDeclaringType() ;
7. if(c.isArray()) {
8. Object[] ds = thisJoinPoint.getArgs(); // dims for array
9. tot.value += sizeof(c,ds);
10. } else {
12. tot.value += sizeof(c);
13. }}
14.
15 MutInteger getTotal(Object k) {
16. MutInteger s = (MutInteger) totals.get(k);
17. if(s == null) {
18. s = new MutInteger(0);
19. totals.put(k,s);
20. }
21. return s;
22. }
23. int sizeof(Class c, Object arrayDims...) { ... }
24. }

Here,sizeof() computes the size of an object and, for now, assume it behavesas expected —

we discuss its implementation later. Also,getTotal() maps each method to its accumulated

total. Notice that, since theJoinPoint.StaticPart object given bythisEJPSP uniquely

identifies the enclosing method, it can be used as the key. Furthermore,getTotal() is implemented

with a Hashtable to provide synchronised access, although more advanced containers (e.g.

ConcurrentHashMap) could be used here. The use of!within(HeapProfiler) is crucial

as it prevents the advice from being applied to code within the aspect itself. Without this, an infinite

loop can arise with the advice being repeatedly triggered ingetTotal() . Notice that we have

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

8 D. J. PEARCEET AL.

used ananonymouspointcut to specify where the advice should be applied, instead of an explicit

designation via thepointcut keyword. The purpose of distinguishing between the creation of

arrays and other objects is subtle. The key point is that, to determine the size of an array, we need

its dimensions and AspectJ gives access to these viagetArgs() since the arguments of an array

constructor are its dimensions (Section 3.1 discusses thisin more detail). As an optimisation, we call

getArgs() only on array types, since this requires accessing theJoinPoint object (which is

created lazily in the current AspectJ implementation). Finally, the MutInteger class is similar to

java.lang.Integer , except that its value can be updated.

A subtle aspect of our approach is that bytes allocatedinside an object’s constructorare not

attributed to the enclosing method creating it. Instead, they are attributed to the constructor itself and,

to see that this makes sense, consider the following:

1. class T { T() { for(...) new X(); }}
2. int foo() { T x = new T(); }

This example, while perhaps somewhat contrived, highlights an important point:if T’s constructor

allocates a lot of unnecessary storage, who is to blame?By including bytes allocated byT() in

foo() ’s total, we are misdirecting optimisation efforts towardfoo() rather thanT() . Of course, we

could devise situations where the problem stems fromfoo() calling T() too often. In this case, the

inclusiveapproach seems to make more sense, since it focuses attention towardfoo() . However, this

is misleading as it is really a fundamentally different problem regarding call frequency. For example,

foo() may call T() frequently because it is itself called frequently and neither will catch this.

Furthermore, while both approaches could be extended to catch problems relating to call frequency,

the inclusiveapproach could never catch the example highlighted above.

We now identify our first limitation with the current AspectJimplementation which affects

the precision of our scheme. The issue is that the pointcutcall(* .new(..)) does not catch

allocations of array objects — meaning they are not includedin the heap measurements. In

fact, a fix for this issue has been recently included in the AspectJ implementation (as a direct

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 9

result of this work), although it is not currently activatedby default (the command-line switch

“ -Xjoinpoints:arrayconstruction ” is required).

3.1. IMPLEMENTING SIZEOF

At this juncture, we must briefly discuss our implementationof sizeof as Java does not provide

this primitive. To determine an object’s size, we iterate every field of its class (using reflection) and

total their sizes. Of course, this is an estimate since alignment/packing issues are ignored, the size of

references is unknown (we assume 4 bytes) and the object header size is also unknown (we assume

8 bytes). Also, we do not traverse references and accumulatethe size of the objects they target, since

only the bytes allocated by the current call tonew are relevant (and the objects targeted by such fields

must have been allocated previously). For arrays, the innermost dimension is calculated using the type

held by the array, whilst the outer dimensions are assumed tobe arrays of references to arrays (the

dimensions themselves being obtained from the join point, as discussed previously). Again, we do not

traverse the references of objects held by the innermost dimension since an array cannot be populated

until after being created. To improve performance (as reflection is notoriously slow), we also employ a

Hashtable to cache results and make subsequent requests for the same type cheaper.

One issue with this implementation is that aHashtable lookup is needed to access cached type

sizes. If we could eliminate this, the cost of using our heap profiling aspect might be reduced. AspectJ

version 1.5.0 introduced a new primitive,pertypewithin(..) , which makes this possible. This

allows us to specify that a separate aspect instance should be instantiated for every type matching a

given type pattern. For example:

1. aspect TestAspect pertypewithin(mypkg.. *) {
2. ...
3. }

This results in a separate instance ofTestAspect (created lazily) for every class within the

packagemypkg, rather than just a single instance ofTestAspect being created (as for normal

aspects). Thus,pertypewithin allows us to associate state (in our case,sizeof information) with

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

10 D. J. PEARCEET AL.

a type. The information associated with a typeC is stored as astatic class variable ofC. This (in

theory at least) allows us to access cachedsizeof information using a static field lookup, rather than

aHashtable lookup. Unfortunately, we find in practice that usingpertypewithin to implement

the cache actually gives worse performance that using aHashtable . The reason for this appears to

be that, although the information is stored in a static field,the current AspectJ implementation accesses

it via a reflective call. We expect future optimisation of theAspectJ implementation will eliminate

this overhead, leading to better performance ofpertypewithin . A complete implementation of

sizeof usingpertypewithin is given in Appendix B for reference.

4. PROFILING OBJECT LIFETIME

In this section, we look at profiling object lifetime, where the aim is to identify which allocation sites

generate the longest-living objects. This can be used, for example, to help find memory leaks as long-

lived objects are candidates [13]. Another application is in generational garbage collectors, where it is

desirable to place long lived objects immediately into older generations, often known aspretenuring

(see e.g. [14, 15]).

As we have already demonstrated how allocation sites can be instrumented with AspectJ, the

remaining difficulty lies in developing a notification mechanism for object death. In Java there are

two obvious constructs to use:weak referencesandfinalizers. An implementation based on the latter

would rely upon introducing special finalizers for all knownobjects to signal their death. This poses a

problem as introducing a methodfoo() into a class which already has afoo() is an error in AspectJ.

To get around this, we couldmanuallyspecify which classes need finalizers introduced into them (i.e.

all those which don’t already have them) with a pointcut. At which point, we could advise all finalizers

to signal object death. Note that, while the process of determining which classes don’t have finalizers

could be automated, this cannot be done within AspectJ itself making this approach rather inelegant.

In light of this, we choose weak references and, indeed, theyhave been used for this purpose before

[14].

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 11

1. aspect lifetimeProfiler {
2. static int counter = 0;
3. static int period = 100;
4. static Set R; static Monitor M;
5. static ReferenceQueue Q;
6.
7. after() returning(Object o) : call(* .new(..)) &&
9. if(++counter >= period) && !within(lifetimeProfiler) {
10. MyRef mr = new MyRef(thisJPSP, System.currentTimeMill is(),o,Q);
11. R.add(mr);
12. counter = 0;
13. }
14.
15. lifetimeProfiler() {
16. HashSet tmp = new HashSet();
17. R = Collections.synchronizedSet(tmp);
18. Q = new ReferenceQueue();
19. M = new Monitor(); M.start();
20. }
21.
22. class MyRef extends PhantomReference {
23. public JoinPoint.StaticPart sjp;
24. public long creationTime;
25.
26. MyRef(JoinPoint.StaticPart s, long c, Object o, Refere nceQueue q) {
27. super(o,q); sjp = s; creationTime = c;
28. }}
29.
30. class Monitor extends Thread {
31. public void run() { while(true) { try {
32. MyRef mr = (MyRef) Q.remove();
33. R.remove(mr);
34. long age = System.currentTimeMillis() - mr.creationTi me;
35. getSample(mr.sjp).log(age);
36. } catch(InterruptedException e) {
37. }}}}
38.
39. class AvgSample {
40. double avg = 0; int num = 0;
41. public void log(long v) { avg = ((avg * num) + v) / ++num; }
42. }
43. AvgSample getSample(Object k) { ... }}

Figure 1. The outline of our lifetime profiler aspect. The keyfeature is theafter() returning(..) notation,
which gives access to the newly allocated object returned bynew. The advice then attaches an extended phantom
reference containing the creation time and allocation site. When an object dies, its reference is removed from
R by the Monitor and its lifetime logged. Here,getSample() is similar to getTotal() from before.
AvgSample is used to maintain the average lifetime of all objects created at a given allocation site. Additional
code is needed to catch immortal objects: on program termination this would iterate throughR to identify and log
the lifetime of any unclaimed objects. Finally, counter-based sampling is used to reduce the number of objects

being tracked. This lowers overhead and causes less perturbation on the target program.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

12 D. J. PEARCEET AL.

The java.lang.ref package was introduced to give a degree of control over garbage collection

and provides three types of weak reference. These share the characteristic that they do not prevent the

referenced object, called thereferent, from being collected. That is, if the only references to an object

are weak, it is open to collection. The different weak reference types provide some leverage over when

this happens:

1. Soft references. The garbage collector must free softly referenced objectsbefore throwing an

OutOfMemoryError exception. Thus, they are useful for caches, whose contentsshould stay

for as long as possible. Soft references are “cleared” (i.e.set tonull) before finalisation, so

their referents can no longer be accessed.

2. Weak references. Their referents are always reclaimed at the earliest convenience. Weak

references are also “cleared” before finalisation.

3. Phantom references. Again, phantomly referenced objects are always reclaimedat the earliest

convenience. However, they are not “cleared” until after finalisation.

To see which is best suited to our purpose, we must understandthe relevance of clearing. When creating

a reference, we can (optionally) indicate aReferenceQueue onto which it will be placed (by the

garbage collector) when cleared. Thus, this is a form of callback mechanism, allowing notification of

when the reference is cleared. Note, if it was not cleared before placed on the queue, our application

could resurrectit by adding new references. In fact, objects are not truly dead until after finalisation

because their finalizer can resurrect them [14]. From these facts, it follows that phantom references

give the most accurate indication of object lifetime.

The basic outline of our scheme is now becoming clear: at object creation, we attach a phantom

reference and record a timestamp and an identifier for the allocation site. The phantom reference is

associated with a global reference queue, monitored by a daemon thread. This is made efficient by

ReferenceQueue.remove() , which sleeps until a reference is enqueued. Thus, when an object

is garbage collected, the daemon thread is awoken (by the reference queue) to record the time of death

and, hence, compute the object’s lifetime. Figure 1 provides the core of our implementation.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 13

5. PROFILING WASTED TIME

In the last section, we developed a technique for profiling object lifetime. In fact, we can go beyond

this by breaking up the lifetime into itsLag, DragandUsephases [16]. Under this terminology,lag is

the time between creation and first use,drag is that between last use and collection, whileusecovers

the rest. Thus, we regard lag and drag as wasted time and the aim is to identify which allocation sites

waste the most.

An important question is what it means for an object to beused. In this work, we consider an object

is used when either of the following occurs: a public, non-static method is called; or a public, non-

static field is read or written. We ignore read/writes to private fields and methods, since these must

have arisen from a call to a public method, in which case the object use has been registered. Methods

which run for a long period of time updating the internal state of some object may cause imprecision

if there is sufficient difference between the time of method entry and the actual last use. This is really

a trade-off as, by ignoring changes to the internal state of an object, the profiling data associated with

it needs to be updated less frequently, leading to greater performance in practice. We wanted a more

complex definition of object use, which additionally ignored changes to public fields from within the

object’s own methods. As it turned out, we could not express this constraint efficiently in AspectJ.

The main difficulty in this endeavour actually lies in efficiently associating state with an object.

Here, the state consists of timestamps for the first and last use which, upon object death, can be used

to determinelag, drag anduse. This state is updated by advice associated with the get/setjoin points

as the program proceeds. As such advice will be executed frequently, access to the state must be as

fast as possible. We considered, when embarking upon this project, that there should be three possible

approaches:

1. Using a Map. This is the simplest solution — state is associated with each object using a

HashMap (or similar). The downside, of course, is the need toperform a lookup on every field

access (which is expensive).

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

14 D. J. PEARCEET AL.

2. Member Introduction. In this case, we physically add new fields to every object to hold the state

usingmember introduction. The advantage is constant time access, while the disadvantage is an

increase in the size of every object.

3. Using pertarget. Thepertarget specifier is designed for this situation. It indicates that one

aspect should be created for every object instance, insteadof using a singleton (which is the

norm). Again, a disadvantage is that every object is larger.

The issue of increasing object size is important as it reduces the advantages of sampling — where the

aim is to reduce overheads by monitoring only a few objects, rather than all. In particular, sampling

should dramatically reduce the amount of additional heap storage needed, but this is clearly impossible

if the size ofeveryobject must be increased. Now, approach 3 gives something like:

1. aspect ptWaste pertarget(call(* .new(..))){
2. State theState = new State();
3. before(Object o) : target(o) && (set(public !static * * . *) ||
4. get(public !static * * . *) ||
5. call(public !static * * . * (..))) {
6. ...
7. }}

The pertarget(X) specifier declares that a separate instance of the aspect should be created

for every object that is the target of the join points identified by X. Thus, a separate instance of

the ptWaste aspect will be created for every constructible object. Eachwould be created the first

time its corresponding object is the target of some invoked advice. This allowstheState to be

shared between invocations of advice on the same object. We have already seen that thecall join

point captures method invocation. In this case, we have annotated it to specify that only public,

non-static methods should be captured. Likewise, theget /set join points capture all public, non-

static field read / writes. Thus, these join points taken together define what it means for an object

to be used. Unfortunately, this approach of usingpertarget fails as there are no valid target

objects for acall(* .new(..)) — meaning thepertarget(call(* .new(..))) specifier

does not match anything. This arises because the target object is not considered to exist until after the

call(* .new(..)) pointcut. Using other pointcuts for thepertarget(...) specifier (such as

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 15

get(), set() andcall()) does not help because these will not match objects which arecreated

but not used. This constitutes our second limitation with the current AspectJ implementation. As this

behaviour was intentional, it is perhaps more significant than the others identified so far. In particular,

it remains uncertain whether or not it can be resolved.

The second approach, which usesInter-Type Declarations (ITD), provides a manual implementation

of the above:

1. aspect itdWaste {
2. private interface WI { }
3. declare parents: * && !java.lang.Object implements WI;
4. State WI.theState = new State();
5. before(Object o): target(o) &&
6. (set(public !static * * . *) ||
7. get(public !static * * . *) ||
8. call(public !static * * . * (..))) {
9. if(o instanceof WI)
9. WI w = (WI) o;
10. ... // access WI.thState directly
11. } else {
12. ... // use map
13.}}

Here, line 3 is an ITD which declares every class to implementinterface WI (except

java.lang.Object , as this is prohibited by the current AspectJ implementation), while line 4

introducestheState into WI. The effect of all this is to introduce a new instance variabletheState

into every user-defined class in the class hierarchy (see Section 7.1 for more on why only user-defined

classes are affected). This ensures that every corresponding object has exactly one copy∗ of theState

and, through this, we can associate each object with a uniqueinstance ofState . Only user-defined

classes are affected by the ITD because, in practice, classes in the standard library cannot be altered

using the current AspectJ implementation (Section 7.1 discusses the reasons for this in more detail).

The pointcut for the advice matches all uses (including method invocation) of any object. In the case of

a user-defined object (i.e. an object implementing WI), we obtain constant-time access totheState

∗Note, AspectJ does not introduce a field F into a class whose supertype is also a target for the introduction of F. Thus, an
instance of any class can have at most one copy of F, rather than potentially one for every supertype in its class hierarchy.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

16 D. J. PEARCEET AL.

(since it is a field). For other objects, we use a map to associate the necessary state as a fall back (this

is outlined in more detail below) . To complete the design, wemust also advise allnew calls to record

creation time and include our technique from the previous section for catching object death.

We now consider our final design, which uses a map to associatestate with each object. A key

difficulty is that the map must not prevent an object from being garbage collected. Thus, we use weak

references to prevent this, which adds additional overhead. The main body of our implementation is

detailed in Figure 2 and the reader should find it similar to those discussed so far. Note the use of

sampling to reduce the number of objects being tracked. Thisimproves space consumption as fewer

state objects are instantiated, although it has little impact upon runtime overhead. In fact, our ITD

implementation also uses sampling for this reason, although it must still pay the cost of an extra word

per user-defined object (fortheState).

The astute reader may notice something slightly odd about our implementation of Figure 2 — it

contains a bug! The problem is subtle and manifests itself only when the target program contains

objects with user-definedhashCode() implementations that read/write public fields. It arises

becauseWeakKey invokes an object’sHashCode() method, which is needed to ensure different

WeakKeys referring to the same object match in theHashtable . This invocation will correspond to

a use of the object ifhashCode() reads/writes public fields. The invocation itself is not a use, since

it occurs withinWasteAspect and this is explicitly discounted using!within(..) . The problem

causes an infinite loop where looking up the state associatedwith an object is a use of it, which triggers

thebefore() advice, which again tries to lookup the state and so on. To getaround this is not trivial.

We cannot use an alternative map, such asTreeMap , since this uses the object’scompareTo()

method, leading to the same problem. We could, however, employ AspectJ’scflow() construct to

include in our definition of an object use the constraint thata method withinWasteAspect cannot

be on the call stack. Unfortunately, this would almost certainly impose a large performance penalty

[17]. Thus, we choose simply to acknowledge this problem, rather than resolving it, since it is unlikely

to occur in practice.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 17

1. public final aspect WasteAspect {
2. static int counter = 0;
3. static int period = 100;
4. static Map R = new Hashtable();
5. static ReferenceQueue Q = new ReferenceQueue();
6.
7. after() returning(Object newObject) : call(* .new(..))
8. && !within(WasteAspect) && if(++counter >= period) {
9. WeakKey wk = new WeakKey(newObject,Q);
10. R.put(wk,new State(thisJPSP, System.currentTimeMil lis()));
11. counter = 0;
12. }
13.
14. before(Object o) : target(o) && !within(WasteAspect) & & (
15. call(public !static * * . * (..)) ||
16. set(public !static * * . *) || get(public !static * * . *)) {
17. Object t = R.get(new WeakKey(o));
18. if(t != null) {
19. State s = (State) t;
20. s.lastUse = System.currentTimeMillis();
21. if(s.firstUse == -1) { s.firstUse = s.lastUse; }
22 }}
23.
24. class WeakKey extends WeakReference {
25. int hash;
26. WeakKey(Object o) { super(o); hash = o.hashCode(); }
27. WeakKey(Object o, ReferenceQueue q) { super(o,q); hash = o.hashCode();}
28. public int hashCode() { return hash; }
29. public boolean equals(Object o) {
30. if (this == o) return true;
31. Object t = this.get();
32. Object u = ((WeakKey) o).get();
33. if ((t == null) || (u == null)) { return false; }
34. return t == u;
35. }
36.
37. private final class State {
38. long lastUse,firstUse = -1;
39. long creationTime;
40. JoinPoint.StaticPart sjp = null;
41. State(JoinPoint.StaticPart s, long c) { creationTime = c; sjp = s; }
42. }}

Figure 2. The core parts of an aspect for profiling wasted time. The key features are theHashtable which
associates state with an object and the use of counter-basedsampling to reduce overhead. Note that, while
sampling does help reduce storage, it does not prevent a table look up on each field access. To complete this
design, a daemon thread must monitorQto catch object death and log usage information, as for Figure 1. Finally,
WeakKey.equals() deals with two awkward problems: firstly, its hashcode must be identical for identical
referents to allow correct look up from theafter() advice; secondly, look up must still be possible after the

referent is cleared.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

18 D. J. PEARCEET AL.

6. PROFILING TIME SPENT

In this section, we consider time sampling, where the idea isto periodically log the currently executing

method. Thus, on termination, those methods with the most samples (i.e. logs) accrued are considered

to be where most time was spent. Our approach is to track the currently executing method with AspectJ,

so it can be periodically sampled by a daemon thread. This is done by updating a global variable

whenever a method is entered (through normal entry/call return) or left (through normal exit/calling

another):

1. aspect CurrentMethodAspect {
2. static JoinPoint.StaticPart current;
3. before() : (execution(* * . * (..)) || execution(* .new(..)))
4. && !within(CurrentMethodAspect) {
5. current = thisJPSP;
6. }
7.
8. after() returning : (execution(* * . * (..)) || execution(* .new(..)))
9. && !within(CurrentMethodAspect) {
10. current = null;
11. }
12.
13. before() : (call(* * . * (..)) || call(* .new(..)))
14. && !within(CurrentMethodAspect){
15. current = null;
16. }
17.
18. after() returning : (call(* * . * (..)) || call(* .new(..)))
19. && !within(CurrentMethodAspect) {
20. current = thisEJPSP;
21. }}

Here, the uniqueJoinPoint.StaticPart object is used to identify the currently executing

method. Notice thatcurrent is assigned to null when a method is left. This may seem redundant,

since it will be overwritten as soon as the next method is (re-)entered. Indeed, if we could guarantee

that all methods were advised, this would be the case. Unfortunately, we cannot necessarily make

this guarantee for reasons discussed in Section 7.1. With regard to multithreading, our approach can

be inaccurate as, following a context switch, a sample may betaken beforecurrent is updated by

the newly executing method. This results in time being incorrectly charged to the method which was

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 19

running before the switch. Following [18], we argue that this is not a serious cause for concern as

sampling is inexact anyway and it is unlikely that such behaviour would consistently affect the same

method. Certainly, synchronizing oncurrent would cause greater problems and making it a thread

local means a thread lookup before/after every method call/execution. Thus, we choose against either

of these on the grounds of efficiency.

Another interesting point is the use ofafter() returning , instead of justafter() advice.

The former only catches normal return from a method, whilst the latter also catches thrown exceptions.

Our reason then, for choosingafter() returning is that we have observed it offers better

performance (up to 20% in some cases), while the issues of missing return by exception seem

negligible. Note, if this were considered important, thenafter() could simply be used in place

of after() returning to ensurecurrent was updated correctly after an exception.

7. EXPERIMENTAL RESULTS

In this section, we present and discuss the results of an experimental evaluation into the costs of using

the profiling aspects developed in the previous sections. Wealso introducedjprof , a command-

line tool which packages these aspects together so they can be used without knowledge of AspectJ.

This was used to generate the results presented later on and we hope it will eventually find future

use as a non-trivial AspectJ benchmark. Indeed, previous work has commented on the lack of such

benchmarks [17]. Thedjprof tool itself is available for download under an open source license from

http://www.mcs.vuw.ac.nz/˜djp/djprof .

The benchmark suite used in our experiments consisted of 6 benchmarks from the SPECjvm98

suite [19] as well as 4 candidates which were eventually dropped from inclusion in it†. Table I details

these. Where possible, we also compared the performance andprecision ofdjprof againsthprof

†Note, the 222 mpegaudio benchmark is also part of the SPECjvm98 suite. This could notbe used due to a bug in the current
implementation of the new array join point.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

20 D. J. PEARCEET AL.

Benchmark Size (KB) Time (s) Heap (MB) SPECjvm98 Multi-threaded
_227_mtrt 56.0 4.7 25 Y Y
_202_jess 387.2 6.5 17 Y N
_228_jack 127.8 5.5 17 Y N

_213_javac 548.3 12.3 31 Y N
_224_richards 138.5 7.4 18 N Y

_210_si 18.2 9.0 16 N N
_208_cst 23.2 17.8 30 N N

_201_compress 17.4 21.1 24 Y N
_209_db 9.9 35.1 28 Y N

_229_tsgp 7.7 36.5 26 N N

Table I. The benchmark suite. Size indicates the amount of bytecode making up the benchmark, excluding harness
code and standard libraries. Time and Heap give the execution time and maximum heap usage for one run of the

benchmark.

(a well-known JVMTI profiler — see [8]) andpjprof , a pure Java time profiler described below. In

doing this, our aim was twofold: firstly, to ascertain whether the current AspectJ implementation is

competitive, compared with alternative approaches; secondly, to validate the results produced by our

profiling aspects. We now provide further discussion ofdjprof andpjprof , detail the experimental

procedure used and present the results themselves.

7.1. THE DJPROF TOOL

In this section, we consider issues related to the deployment of our aspects as part of a general purpose

profiling tool. We believe it desirable that such a tool can beused on existing Java programs without

knowledge of AspectJ. One solution is for the tool to statically weave aspects behind the scenes. In

this case, they are combined with the original binaries to produce modified binaries in some temporary

location. However, the current AspectJ implementation allows a more efficient mechanism, through a

feature known asload-time weaving. In this case, all weaving is performed by a special classloader

allowing it to be done lazily — thereby reducing costs. Therefore, we used this to implementdjprof

— a command-line tool which encompasses the profiling aspects considered in the previous sections.

Unfortunately, there is one significant drawback with the current load-time weaving implementation:

code in the standard libraries cannot be woven against. This is very restrictive and constitutes our third

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 21

limitation with the current AspectJ implementation. In fact, while in theory it is possible to statically

weave against the standard libraries, we find this impractical due to the massive amounts of time and

storage required. Furthermore, static weaving requires every class in the standard libraries be woven

against, regardless of whether it is used or not. Thus, it seems clear that, if this limitation with the

load-time weaver were overcome, then it would offer the bestapproach as only classes actually used

by the program would be woven.

At this point, we must clarify how this limitation affects the results produced by our tool. The

inability to weave against the standard libraries means that djprof cannot report results for methods

within the libraries themselves. For heap and lifetime, accurate results are still obtained for all objects

allocated in the target application. However, for wasted-time profiling, uses of objects allocated in the

target application which occur in library methods are missed. This, in theory at least, could affect the

precision of the wasted-time results (if a significant number of uses occur in library methods), although

it remains unclear whether this really happens in practice or not. Finally, for time-spent profiling,

accurate results are obtained for all methods in the target application (subject to the issues of multi-

threading already discussed in Section 6).

Aside from issues of imprecision, the inability to weave against the standard libraries also gives

djprof an inherent advantage overhprof andpjprof , since they must pay the cost of profiling all

methods wheredjprof does not. While this does compromise our later performance comparison of

djprof againsthprof andpjprof , it does not render it completely meaningless. This is because we

are still able to make general observations about the performance ofdjprof and, hence, the current

AspectJ implementation (namely, that it is not outrageously slow in most cases and, most likely, will

be competitive should this limitation be overcome).

The output produced bydjprof consists of a list of methods, along with the amount of the profiled

quantity (e.g. bytes allocated) used by them. The output is ordered so that methods consuming the most

appear first. As such,djprof does not provide any additional context (i.e. stack-trace)information. In

contrast,hprof is capable of providing context-sensitive information, where information is reported

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

22 D. J. PEARCEET AL.

for individual stack-traces (to a given depth). This information can be more useful in practice, as it

can help determine the circumstances (if there are any) under which a method performs badly. In fact,

djprof can easily be extended to record such information, althoughwe have opted against doing

this to simplify our evaluation. Since recording this additional context information can be expensive,

we restrict the amount of context recorded byhprof to a depth of one (which is equivalent to that

recorded bydjprof) to ensure a fair comparison. This is achieved using thedepth=1 command-line

switch tohprof .

7.2. PJPROF - A PURE JAVA TIME PROFILER

The ability to write a time profiler without AspectJ is made possible in Java 1.5 with the new

Thread.getAllStackTraces() and Thread.getState() methods. The former allows a

daemon thread to iterate, at set intervals, the stack trace of all other threads to record their currently

executing method. In doing this,Thread.getState() is used to ignore those which are blocked,

as samples should not be recorded for them [20, 8]. This was developed by us in the course of this work

and is the first pure Java time profiler we are aware of. A complete implementation, which we refer to

aspjprof , can be found in Appendix A.

7.3. EXPERIMENTAL PROCEDURE

The SPECjvm98 benchmark harness provides an autorun feature allowing each benchmark to be run

repeatedly for N iterations in the same JVM process. Generally speaking, the first run has higher

overhead than the others as it takes time before JIT optimisations are applied and it also includes the

weaving time. Therefore, we report the average of five runs from a six iteration autorun sequence

(we discard the first run), using a problem size of 100. We believe this reflects the overheads that

can be expected in practice, since most real world programs are longer running than our benchmarks

(hence, these startup costs will be amortised) and, for short running programs, such overheads will be

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 23

insignificant anyway. In all cases, the variation coefficient (i.e. standard deviation over mean) for the

five measured runs was≤ 0.15 — indicating low variance between runs.

To generate time-spent profiling data usinghprof , we used the following command line:

java -Xrunhprof:cpu=samples,depth=1,interval=100 ...

The interval indicateshprof should record a sample every 100ms (the same value was used for

djprof and pjprof). The depth value indicates no context information should be recorded (as

discussed in Section 7.1), whilst the cutoff indicates the precision (as a percentage) of information

whichhprof should report. To generate heap profiling data, we used the following:

java -Xrunhprof:heap=sites,depth=1,cutoff=0.0 ...

Thehprof tool produces a breakdown per stack trace of the live bytes allocated (i.e. those actually

used), as well as the total number of bytes allocated. The results are ranked by live bytes allocated,

rather than total bytes allocated. However,hprof does not report stack traces where the number of live

bytes allocated, relative to the total number of live bytes allocated overall, is below a certain threshold

(this is thecutoff value). Sincedjprof reports total bytes allocated only, a discrepancy can occur

between the profilers when a method allocates a large number of bytes which are not considered live

by hprof (since these will be reported bydjprof , but cut off byhprof). Settingcutoff=0.0

ensures a fair comparison withdjprof , since it forceshprof to report all results. Note, this does not

in any way affect the performance ofhprof .

The output ofdjprof andpjprof is similar, providing a breakdown of the total allocated by each

method. A script was used to converthprof ’s output into a form identical to that ofdjprof and

pjprof . A slight complication is that, in the case of heap profiling,using a depth of 1 withhprof

also does not provide comparable information withdjprof . This is becausehprof charges storage

allocated for a typeX to its constructor (indeed, its supermost constructor), rather than the method

calling new X(..) (asdjprof does). Therefore, to ensure the fairest comparison possible, we ran

hprof twice for each benchmark when generating the heap profiling data: the first haddepth=1

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

24 D. J. PEARCEET AL.

and was used to generate the performance data (sincedjprof does not record context information);

the second haddepth=5 and was used to compare the outputs ofhprof anddjprof (since the

additional context allowed the true calling method to be determined).

Finally, to determine the maximum amount of heap storage used by the VM (used to measure a

profiler’s space overhead), we used a simple program to periodically parse/proc/PID/stat and

record the highest value for the Resident Set Size (RSS). Theexperiments were performed on a 900Mhz

Athlon based machine with 1GB of main memory, running Mandrake Linux 10.2, Sun’s Java 1.5.0

(J2SE 5.0) Runtime Environment and AspectJ version 1.5.2.

7.4. DISCUSSION OF RESULTS

Before looking at the results, we must detail our metrics. Time overhead was computed asTP −TU

TU

for each benchmark, whereTP andTU are the execution times of the profiled and unprofiled versions

respectively. Space overhead was computed in a similar way.

7.4.1. HEAP PROFILING

Figure 3 looks at the overheads (in time and space) of the heapprofiling implementation developed in

Section 3, as well as those ofhprof . Regardingdjprof , perhaps the most important observations

are: firstly, time overhead is quite low — especially on the longer-running benchmarks; secondly, space

overhead is comparatively higher. We suspect the latter stems from our implementation ofsizeof ,

which indefinitely caches the size of previously seen types.For hprof , we see significantly higher

time overheads, while the space overheads are (roughly) of the same magnitude asdjprof . The exact

reasons behindhprof ’s poor runtime performance remain unclear. A very likely explanation is that

the additional costs of instrumenting standard libraries (which are not profiled bydjprof) is to blame.

Figure 4 details our attempts to validate the output of the heap profiling aspect againsthprof . To

do this, we compare the profilers against each other using a metric calledoverlap percentage[18]. This

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 25

 0

 50

 100

 150

 200

tsgpdbcompresscstsirichardsjavacjackjessmtrt

T
im

e
O

ve
rh

ea
d

%

Heap Profiling Overheads
(6734%) (5845%) (4187%) (2281%) (4734%) (1244%) (442%)

djprof hprof

 0

 20

 40

 60

 80

 100

 120

 140

 160

tsgpdbcompresscstsirichardsjavacjackjessmtrt

S
pa

ce
 O

ve
rh

ea
d

%

Figure 3. Experimental results comparing the overhead (in time and space) of our heap profiling implementation
againsthprof using theheap=sites switch. Note, empty columns (e.g. forcompress) do not indicate

missing data — only that the relevant value was very small.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

26 D. J. PEARCEET AL.

 0

 20

 40

 60

 80

 100

tsgpdbcompresscstsirichardsjavacjackjessmtrt

O
ve

rla
p

%

Heap Profiling Accuracy

Figure 4. Experimental results comparing the precision of our heap profiling implementation againsthprof using
the heap=sites switch. The overlap metric indicates the amount of similarity between the output of the two
profilers (see Section 7.4.1 for more discussion on this). A higher value indicates greater similarity, with the

maximum being 100% overlap.

works as follows: first, the output of each profiler is normalised to report the amount allocated by each

method as a percentage of the total allocatedby any method in the target application, not including the

standard libraries; second, each method is considered in turn and the minimum score given for it by

either profiler is added to the overlap percentage. For example, if djprof reports thatFoo.bar()

accounts for 25% of the total storage allocated, whilsthprof gives it a score of only 15%, then the

lower value (i.e. 15%) is counted toward the overlap percentage. Thus, two profilers with identical

results produce an overlap of 100%, whilst completely different results have no overlap. We can think

of the overlap percentage as theintersectionof the scores given by the two profilers. Methods in the

standard libraries are not included in the calculation becausedjprof cannot profile them (see Section

7.1 for more on why). In general, we find this is a useful way to evaluate profiler precision.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 27

 0

 20

 40

 60

 80

 100

 120

tsgpdbcompresscstsirichardsjavacjackjessmtrt

O
ve

rh
ea

d
%

Object Lifetime Profiling Overheads (period = 100 objects)
(126%)

Time
Space

Figure 5. Experimental results looking at the overheads of our object lifetime implementations. The period
indicates that every100th object was monitored. Again, empty columns (e.g. forjack) do not indicate missing

data — only that the relevant value was very small.

Looking at Figure 4 we see that on all benchmarkshprof anddjprof have an overlap of over

90%, indicating an excellent correlation between them. We would not expect identical results since

djprof estimates object size (recall Section 3.1), wherehprof does not.

Our overall conclusions from these results are mixed. Clearly, the inability to profile the standard

libraries makes it difficult to properly compare the performance ofdjprof andhprof . In spite of

this, the results are still interesting since they indicatethat: firstly, the performance ofdjprof is not

outrageously bad, compared withhprof , and, hence, could well be competitive should this limitation

be overcome; secondly, that the precision obtained bydjprof (when ignoring methods in the standard

libraries) is good.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

28 D. J. PEARCEET AL.

7.4.2. OBJECT LIFETIME

Figure 5 looks at the overheads of the lifetime profiling technique developed in Section 4. The main

observations are, firstly, that similar but consistently lower time overheads are seen compared with

heap profiling. Secondly, that the space overheads are also similar, but consistently higher. The first

point can most likely be put down to the cost of usingsizeof (as the lifetime aspect does not use

this) which is non-trivial, especially for previously unseen types. The second point almost certainly

arises because we are associating additional state with individual object instances.

7.4.3. WASTED TIME

Figure 6 details the overheads of using the two wasted-time implementations of Section 5. The main

observation is that the Member Introduction (MI) approach generally performs better than just using a

Map (java.util.HashTable in this case). Indeed, although its overhead is still large,we feel the

MI approach works surprisingly well considering it is advising every public field and method access.

As expected from its implementation (where an extra field is added to every used-defined object), the

storage needed for the MI approach is consistently greater than for the Map approach.

7.4.4. TIME-SPENT PROFILING

Figure 7 compares the overheads of our time-spent profiling implementation againsthprof and

pjprof . The results show that the overheads ofdjprof are much higher than for either of the

other two profilers. However, there are several other issuesto consider: firstly,pjprof only works in

Java 1.5; secondly, in other experiments not detailed here,we have found the performance ofhprof

on Java 1.4 environments to be significantly worse thandjprof . The reason for this latter point is

almost certainly due to the fact that, under Java 1.4,hprof uses the JVMPI whilst, under Java 1.5, it

uses the more efficient JVMTI (see Section 8.3 for more on this). While these points are only relevant

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 29

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

tsgpdbcompresscstsirichardsjavacjackjessmtrt

T
im

e
O

ve
rh

ea
d

%

Wasted Time Profiling Overheads (period = 100 objects)
(3240%) (4034%)(3561%) (4087%)(3420%) (TO)(TO) (7225%) (10491%)

Map MI

 0

 100

 200

 300

 400

 500

 600

 700

 800

tsgpdbcompresscstsirichardsjavacjackjessmtrt

S
pa

ce
 O

ve
rh

ea
d

%

Figure 6. Experimental results looking at the overheads of our wasted-time implementations. Here,Map
corresponds to approach 1 from Section 5, whilstMI (short for Member Introduction) corresponds to approach 2.
TO indicates the benchmark had not completed after 1 hour (i.e. timeout) and the period indicates that every100

th

object was monitored.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

30 D. J. PEARCEET AL.

 0

 20

 40

 60

 80

 100

tsgpdbcompresscstsirichardsjavacjackjessmtrt

T
im

e
O

ve
rh

ea
d

%

Time Sampling Overheads (period = 100ms)
(278%) (212%)

hprof
djprof
pjprof

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

tsgpdbcompresscstsirichardsjavacjackjessmtrt

S
pa

ce
 O

ve
rh

ea
d

%

hprof
djprof
pjprof

Figure 7. Experimental results looking at the overheads in time (top) and space (bottom) of our time profiling
implementation, compared withhprof and pjprof . Again, empty columns (e.g. forcst) do not indicate

missing data — only that the relevant value was very small.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 31

 0

 20

 40

 60

 80

 100

tsgpdbcompresscstsirichardsjavacjackjessmtrt

O
ve

rla
p

%

Time Sampling Accuracy (period = 100ms)

hprof-djprof hprof-pjprof djprof-pjprof

Figure 8. Experimental results looking at the precision of our time profiling implementation, compared with
hprof and pjprof . The overlap metric indicates the amount of correlation between the output of the two
profilers (see Section 7.4.1 for more discussion on this). A higher value indicates a better correlation, with the

maximum being 100% overlap.

to those using the older Java 1.4 VM’s, we expect this user-base to remain significant for some time to

come.

Figure 8 details our attempts to validate the output of the time profiling aspect againsthprof and

pjprof . Again, overlap percentage is used to make the comparison, with each profiler normalised to

report the time spent by each method as a percentage of the total spent by any in the target application,

not including the standard libraries. As there are three time profilers, we compared each against the

others separately in an effort to identify their relative accuracy. Looking at Figure 8, we see that

hprof andpjprof have consistently higher overlaps when compared with each other. This suggests

djprof is the least precise of the three. Since time spent in the standard libraries is not included in

the overlap scores,djprof ’s inability to profile them does not explain this observation. While the

other inaccuracies mentioned in Section 6 may be a factor, webelieve the main problem is simply that

djprof causes the most perturbation on the target program. To see why, recall that our time profiling

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

32 D. J. PEARCEET AL.

implementation adds advice before and after every method execution and method call. Even if this

advice is inlined, its effect on short, frequently executedmethods will still be quite high and this would

skew the results significantly.

Our overall conclusion from these results is thatdjprof and, hence, the current AspectJ

implementation is not well-suited to this kind of profiling.In fact, should the restriction on profiling

the standard libraries be overcome, we would only expect theperformance ofdjprof to deteriorate

further.

8. RELATED WORK

We now consider two categories of related work: AspectJ/AOPand profiling. We also examine the

JVMPI/JVMTI in more detail.

8.1. ASPECTJ AND AOP

Aspect-Oriented Programming was first introduced by Kiczales et al. [10] and, since then, it has

received considerable attention. Many language implementations have arisen, although their support

for AOP varies widely. Some, such as AspectC [21], AspectC++[22] and AspectC# [23], are similar

to AspectJ but target different languages. Others, like Hyper/J [24] and Jiazzi [25], are quite different

as they do not integrate AOP functionality into the source language. Instead, they provide a separate

configuration language for dictating how pieces of code in the source language compose together.

AspectWerkz [26] and PROSE [27] focus on run-time weaving, where aspects can be deployed (or

removed) whilst the target program is executing. The advantage is that, when the aspect is not applied,

no overheads are imposed. While static weaving techniques can enable/disable their effect at runtime,

there is almost always still some overhead involved. In fact, the ideas of run-time weaving share much

in common with Dynamic Instrumentation (e.g. [5, 28, 29]) and Metaobject Protocols [30].

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 33

Several works have focused on AspectJ itself. In particular, Dufour et al. investigated the

performance of AspectJ over a range of benchmarks [17]. Eachbenchmark consisted of an aspect

applied to some program and was compared against a hand-woven equivalent. They concluded that

some uses of AspectJ, specificallypertarget and cflow , suffered high overheads. In addition,

after() returning() was found to outperformaround() advice when implementing

equivalent things. A detailed discussion on the implementation of these features can be found in [31],

while [32] focuses on efficient implementations ofaround() advice.

Hanenberget al. [33] considerparametric introductions, which give member introductions access

to the target type. Without this, they argue, several commonexamples of crosscutting code, namely

the singleton, visitor and decorator patterns, cannot be properly modularised into aspects. In fact,

introductions share much in common with mixins [34] and openclasses [35], as these also allow

new functionality to be added at will. Another extension to AspectJ is investigated by Sakuraiet al.,

who propose a variant onpertarget which allows aspect instances to be associated with groups of

objects, instead of all objects [36].

8.2. PROFILING

Profiling is a well known topic which has been studied extensively in the past. Generally speaking we

can divide the literature up into those which use sampling (e.g. [14, 1, 37, 18, 3]) and those which

use exact measurements (e.g. [28, 38]). However, exact measurements are well known to impose

significant performance penalties. For this reason, hybridapproaches have been explored where exact

measurements are performed on a few methods at a time, ratherthan all at once [28, 38]. However, it

remains unclear what advantages (in terms of accuracy) are obtained. Most previous work has focused

on accounting for time spent in a program (e.g. [3, 37, 1, 39, 20, 28, 38]). As mentioned already,gprof

is perhaps the best known example [3]. It uses a combination of CPU sampling and instrumentation to

approximate a call-path profile. That is, it reports time spent by each method along with a distribution

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

34 D. J. PEARCEET AL.

of that incurred by its callees. To generate this,gprof assumes the time taken by a method is constant

regardless of calling context and this leads to imprecision[39].

DCPI uses hardware performance counters to profile without modifying the target program [1].

These record events such as cache misses, cycles executed and more and generate hardware interrupts

on overflow. Thus, they provide a simple mechanism for sampling events other than time and are

accurate to the instruction level. More recent work has focused on guiding Just-In-Time optimisation

of frequently executed and time consuming methods [37, 40].

Techniques for profiling heap usage, such as those developedin Sections 3, 4 and 5, have received

relatively little attention in the past. Röjemo and Runciman first introduced the notions oflag, drag

anduse[16]. They focused on improving memory consumption in Haskell programs and relied upon

compiler support to enable profiling. Building on this, Shahamet al. looked at reducing object drag

in Java programs [41]. Other works use lifetime informationfor pretenuring (e.g. [14, 15]). Of these,

perhaps the most relevant is that of Agesen and Garthwaite who use phantom references (as we do) to

measure object lifetime. The main difference from our approach is the use of a modified JVM to enable

profiling.

The heap profilermprof requires the target application be linked against a modifiedsystem library

[42]. Unfortunately, this cannot be applied to Java since the JVM controls memory allocation. Another

heap profiler,mtrace++ , uses source-to-source translation of C++ to enable profiling [43]. However,

translating complex languages like C++ is not easy and we feel that building on tools such as AspectJ

offers considerable benefit.

We are aware of only two other works which cross the boundary between AOP and profiling. The

first of these does not use AOP to enable profiling, but insteadis capable of profiling AOP programs

[44]. The second uses AspectJ to enable profiling, but focuses on the visualisation of profiling data

rather than the intricacies of using AspectJ in this context[45]. Finally, there are many other types

of profiling which could be explored in conjunction with AspectJ in the future. These includelock

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 35

contention profiling(e.g. [8, 44]),object equality profiling(e.g. [46]),object connectivity profiling

(e.g. [47]),value profiling(e.g. [48]) andleak detection(e.g. [13]).

Conversely, others suchpath, vertexor edge profiling(e.g. [49, 50]) are perhaps not well suited to

AspectJ, since they require instrumentation at the basic block level.

8.3. COMPARISON WITH JVMPI/JVMTI

An interesting question is what is gained with AspectJ over what can already be achieved through

the standard profiling interface found in JVM’s. Prior to Java 1.5, this was theJava Virtual Machine

Profiler Interface (JVMPI). With Java 1.5 this has been replaced by theJava Virtual Machine Tool

Interface (JVMTI)[9]. The latter is a refined version of the JVMPI, designed to be more flexible and

more efficient than its predecessor.

The JVMTI comprises two main features: an event call-back mechanism and aByte Code Insertion

(BCI) interface. The former provides a number of well-defined events which can be set to automatically

call the JVMTI client when triggered. The latter allows classes to be modified at the bytecode

level during execution. However, the BCI does not itself provide support for manipulating bytecodes

and, instead, the user must do this manually (perhaps via some third-party library such as BCEL

[51]). Example events supported by JVMTI include:MonitorWait , triggered when a thread begins

waiting on a lock;MethodEntry , triggered on entry to a Java/JNI method; andFieldAccessed ,

triggered when a predetermined field is accessed. In general, events supported by the JVMTI tend

to be those which cannot otherwise be implemented via the BCIinterface. In particular, there is

no event for catching objects allocated by Java programs. Furthermore, while theMethodEntry

andMethodExit events exist, they are not recommended because they can severely impair JVM

performance. Instead, using the BCI to catch method entry/exit should be preferred since this gives

full-speedevents. That is, since the triggers inserted to catch methodentry/exit are simply bytecodes

themselves, they can be fully optimised via the JVM. Note, this applies to other events such as

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

36 D. J. PEARCEET AL.

FieldAccessed andFieldModified . Thus, it becomes apparent that AspectJ and the JVMTI

actually complement each other, rather than providing alternate solutions to the same problem.

The older JVMPI did not provide a Byte Code Insertion interface, making it less flexible. However,

it did provide some events not found in the JVMTI. In particular, there was direct support for heap

profiling via theOBJECT_ALLOCevent type, which caught all object allocations made by the JVM.

Finally, both the JVMPI/JVMTI can be used to profile synchronisation issues. This is not currently

possible in AspectJ, as there is no join point forsynchronized blocks. However, this feature has

been requested as an enhancement and we hope this work will help further motivate its inclusion in the

language.

9. CONCLUSION

Profiling tools typically restrict the user to a set of predefined metrics, enforce a particular profiling

strategy (e.g. sampling or exact counting) and require the whole program be profiled regardless of

whether this is desired or not. Aspect-oriented programming languages offer an alternative to this

dogma by allowing the user to specify exactly what is to be profiled, how it is to be profiled and which

parts of the program should be profiled. In this work, we have investigated how well an aspect-oriented

programming language (namely AspectJ) lives up to this claim. We have developed and evaluated

solutions to four well-known profiling problems in an effortto answer this question. The results of our

investigation are mixed. On the one hand, we found AspectJ was sufficiently flexible to support the four

profiling examples and that it was reasonably efficient in most cases; on the other hand, we uncovered

several limitations, some of which are quite severe, which would need to be addressed before AspectJ

could be considered a serious profiling platform. To summarise, these issues are:

1. Load-time weaving standard libraries - the inability to perform load-time weaving against the

standard libraries severely handicaps any profiler (see Section 7.1). One solution to this problem

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 37

may be possible through the Java 1.5instrument package and we hope this is explored in the

future.

2. State association - We found that associating state throughpertarget failed as

pertarget(call(* .new(..))) does not match any join points (see Section 5). This

prevented us from usingpertarget to provide a more natural implementation of the wasted

time aspect.

3. Synchronisation - We would like to have explored the possibility of profiling lock contention

(among other things), but this is not possible assychronized blocks have no join point

associated with them. As this feature has already been requested by others, we feel this adds

further support for its inclusion.

4. Array allocation join point - The current version of AspectJ (1.5.2) does not support thearray

join point by default — meaning array objects are not profiled(see section 3). A fix for this has

been recently included in the AspectJ implementation (as a direct result of this work) and we

hope this will be activated by default in future releases.

The limitations identified here are limitations with the current AspectJ implementation, rather than

Aspect-Oriented Programming (AOP). Nevertheless, we believe that AspectJ — and AOP in general

— has much to offer the profiling community. For example, two of the problems studied (namely,

object lifetime and wasted time) are not generally supported by profilers in the main (such ashprof),

and yet were easily expressed in AspectJ. Furthermore, building upon our techniques to develop more

powerful profilers should be straightforward and opens up many possibilities that would otherwise be

hard to achieve.

We do not expect AspectJ will excel at all types of profiling, since it operates on a fairly abstracted

program model which, most notably, ignores many details of amethod’s implementation. Profiling for

branch prediction is, therefore, impossible (since there is no branch join point). Likewise, profiling the

flow of values (e.g. reference values) through a program is hampered by the inability to monitor value

flow through local variables (this would require, at the veryleast, an assignment join point). Of course,

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

38 D. J. PEARCEET AL.

both of these would be possible with a language supporting a richer variety of join points. Thus, these

issues are not with AOP in general, rather they are artifactsof a particular language (i.e. AspectJ) and

we could easily imagine an AOP language tailored more specifically to profiling.

In the future, we would also like to investigate how well AspectJ applies to other profiling problems,

such as those discussed in Section 8.2. We would also like to investigate the amount of perturbation

caused bydjprof , although this is well-known to be a difficult undertaking [52].

ACKNOWLEDGEMENTS

We thank everyone on the AspectJ team at IBM Hursley for theirhelp, as well as all members of the

aspectj-users mailing list. We also thank Prof. James Noble and the anonymous SP&E (and other) referees

for helpful comments on earlier drafts of this paper. Finally, Dr. Paul H. J. Kelly is supported by an Eclipse

Innovation Grant.

REFERENCES

1. J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S. A. Leung, R. L. Sites, M. T. Vandervoorde, C. A.

Waldspurger, and W. E. Weihl. Continuous profiling: Where have all the cycles gone? InProceedings of the Symposium

on Operating Systems Principles, pages 1–14. ACM Press, 1997.

2. G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow and context sensitive profiling.

In ACM Conference on Programming Language Design and Implementation, pages 85–96. ACM Press, 1997.

3. S. L. Graham, P.B. Kessler, and M.K. McKusick. gprof: a call graph execution profiler. InACM Symposium on Compiler

Construction, pages 120–126. ACM Press, 1982.

4. A. Srivastava and A. Eustace. ATOM: a system for building customized program analysis tools. InProceedings of the

ACM Conference on Programming Language Design and Implementation, pages 196–205. ACM Press, 1994.

5. D. J. Pearce, P. H. J. Kelly, T. Field, and U. Harder. Gilk: ADynamic Instrumentation Tool for the Linux Kernel. In

Proceedings of the International TOOLS Conference, pages 220–226. Springer-Verlag, 2002.

6. I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: program transformations for practical scalable software evolution. In

Proceedings of the IEEE International Conference on Software Engineering, pages 625–634. IEEE Computer Society

Press, 2004.

7. E. Visser. Stratego: A language for program transformation based on rewriting strategies. InProceedings of the

International Conference on Rewriting Techniques and Applications, pages 357–362. Springer-Verlag, 2001.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 39

8. S. Liang and D. Viswanathan. Comprehensive profiling support in the Java Virtual Machine. InProceedings of the

USENIX Conference On Object Oriented Technologies and Systems, pages 229–240. USENIX Association, 1999.

9. K. O’Hair. The JVMPI transition to JVMTI,http://java.sun.com/developer/technicalArticles/

Programming/jvmpitransition/ , 2004.

10. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented programming.

In Proceedings of the European Conference on Object-OrientedProgramming, pages 220–242. Springer-Verlag, 1997.

11. J. D. Gradecki and N. Lesiecki.Mastering AspectJ : Aspect-Oriented Programming in Java. Wiley, 2003.

12. R. Laddad.AspectJ in Action. Manning Publications Co., Grennwich, Conn., 2003.

13. N. Mitchell and G. Sevitsky. LeakBot: An automated and lightweight tool for diagnosing memory leaks in large Java

applications. InProceedings of the European Conference on Object-OrientedProgramming, pages 351–377. Springer-

Verlag, 2003.

14. O. Agesen and A. Garthwaite. Efficient object sampling via weak references. InProceedings of the international

Symposium on Memory Management, pages 121–126. ACM Press, 2000.

15. P. Cheng, R. Harper, and P. Lee. Generational stack collection and profile-driven pretenuring. InProceedings of the ACM

Conference on Programming Language Design and Implementation, pages 162–173. ACM Press, 1998.

16. N. Röjemo and C. Runciman. Lag, drag, void and use — heap profiling and space-efficient compilation revisited. In

Proceedings of the ACM International Conference on Functional Programming, pages 34–41. ACM Press, 1996.

17. B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittampalam, and C. Verbrugge. Measuring the dynamic behaviour of

AspectJ programs. InProceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages and

Applications, pages 150–169. ACM Press, 2004.

18. M. Arnold and B.G. Ryder. A framework for reducing the cost of instrumented code. InProceedings of the ACM

Conference on Programming Language Design and Implementation, pages 168–179. ACM Press, 2001.

19. The Standard Performance Corporation. SPEC JVM98 benchmarks,http://www.spec.org/osg/jvm98 , 1998.

20. T. E. Anderson and E. D. Lazowska. Quartz: a tool for tuning parallel program performance. InProceedings of the ACM

Conference on Measurement and modeling of computer systems, pages 115–125. ACM Press, 1990.

21. Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the modularity of Path-Specific customization

in operating system code. InProceedings of the Joint European Software Engeneering Conference and ACM Symposium

on the Foundation of Software Engeneering, pages 88–98. ACM Press, 2001.

22. O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: an aspect-oriented extension to the C++ programming

language. InProceedings of the Conference on Technology of Object Oriented Languages and Systems, pages 53–60.

Australian Computer Society, Inc., 2002.

23. H. Kim. AspectC#: An AOSD implementation for C#. Master’s thesis, Department of Computer Science, Trinity College,

Dublin, 2002.

24. H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation of concerns for Java. InProceedings of the International

Conference on Software Engineering, pages 734–737. ACM Press, 2000.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

40 D. J. PEARCEET AL.

25. S. Mcdirmid and W. C. Hsieh. Aspect-oriented programming with Jiazzi. InProceedings of the ACM Conference on

Aspect Oriented Software Development. ACM Press, 2003.

26. J. Bonér. What are the key issues for commercial AOP use:how does AspectWerkz address them? InProceedings of the

Conference on Aspect-oriented software development, pages 5–6. ACM Press, 2004.

27. A. Popovici, T. Gross, and G. Alonso. Dynamic weaving foraspect-oriented programming. InProceedings of the

Conference on Aspect-Oriented Software Development, pages 141–147. ACM Press, 2002.

28. H. W. Cain, B. P. Miller, and B. J.N. Wylie. A callgraph-based search strategy for automated performance diagnosis. In

Proceedings of the European Conference on Parallel Processing (Euro-Par), pages 108–122. Springer-Verlag, 2001.

29. K. Yeung, P. H. J. Kelly, and S. Bennett. Dynamic instrumentation for Java using A virtual JVM. InPerformance Analysis

and Grid Computing, pages 175–187. Kluwer, 2004.

30. J. des Rivires G. Kiczales and D. G. Bobrow.The Art of the Metaobject Protocol. MIT Press, 1991.

31. E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. InProceedings of the ACM Conference on Aspect-Oriented

Software Development, pages 26–35. ACM Press, 2004.

32. S. Kuzins. Efficient implementation of around-advice for the aspectbench compiler. Master’s thesis, Oxford University,

2004.

33. S. Hanenberg and R. Unland. Parametric introductions. In Proceedings of the Conference on Aspect-Oriented Software

Development, pages 80–89. ACM Press, 2003.

34. G. Bracha and W. Cook. Mixin-based inheritance. InProceedings of the ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 303–311. ACM Press, 1990.

35. C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.MultiJava: Modular open classes and symmetric multiple dispatch

for Java. InProceedings of the ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications,

pages 130–145. ACM Press, 2000.

36. K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and S.Komiya. Association aspects. InProceedings of the ACM

Conference on Aspect-Oriented Software Development, pages 16–25. ACM Press, 2004.

37. J. Whaley. A portable sampling-based profiler for Java Virtual Machines. InProceedings of the ACM Java Grande

Conference, pages 78–87. ACM Press, 2000.

38. D. J. Brear, T. Weise, T. Wiffen, K. C. Yeung, S. A.M. Bennett, and P. H. J. Kelly. Search strategies for Java bottleneck

location by dynamic instrumentation.IEE Proceedings — Software, 150(4):235–241, 2003.

39. M. Spivey. Fast, accurate call graph profiling.Software — Practice and Experience, 34:249–264, 2004.

40. M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed optimization of Java. InProceedings of the ACM

Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 111–129. ACM Press, 2002.

41. R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling forspace-efficient Java. InProceedings of the ACM Conference

on Programming Language Design and Implementation, pages 104–113. ACM Press, 2001.

42. B. Zorn and P. Hilfinger. A memory allocation profiler for Cand Lisp programs. InProceedings of the USENIX

Conference, pages 223–237. USENIX Association, 1988.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 41

43. W. H. Lee and J. M. Chang. An integrated dynamic memory tracing tool for C++. Information Sciences, 151:27–49, 2003.

44. R. Hall. CPPROFJ: aspect-capable call path profiling of multi-threaded Java applications. InProceedings of the IEEE

Conference on Automated Software Engineering, pages 107–116. IEEE Computer Society Press, 2002.

45. M. Hull, O. Beckmann, and P. H. J. Kelly. MEProf: Modular extensible profiling for eclipse. InProceedings of the Eclipse

Technology eXchange (eTX) Workshop. ACM Digital Library, 2004.

46. D. Marinov and R. O’Callahan. Object equality profiling.In Proceedings of the Conference on Object-Oriented

Programing, Systems, Languages, and Applications, pages 313–325. ACM Press, 2003.

47. M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understanding the connectivity of heap objects. InProceedings of the ACM

symposium on Memory management, pages 36–49. ACM Press, 2002.

48. S. A. Watterson and S. K. Debray. Goal-directed value profiling. In Proceedings of the Conference on Compiler

Construction, pages 319–333. Springer-Verlag, 2001.

49. T. Ball and J. R. Larus. Optimally profiling and tracing programs.ACM Transactions on Programming Language Systems,

16(4):1319–1360, 1994.

50. D. Melski and T. W. Reps. Interprocedural path profiling.In Computational Complexity, pages 47–62, 1999.

51. Markus Dahm. Byte code engineering with the BCEL API. Technical Report B-17-98, Freie Universität Berlin, 2001.

52. A. D. Malony and S. Shende. Overhead compensation in performance profiling. InProceedings of the European

Conference on Parallel Processing (Euro-Par), pages 119–132. Springer-Verlag, 2004.

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1

Prepared usingspeauth.cls

42 D. J. PEARCEET AL.

APPENDIX A — PJPROF IMPLEMENTATION

1. class PureJavaTimeProfiler {
2. Hashtable totals = new Hashtable();
3. TimerThread timer = null;
4. long startTime; int period = 100; // 100ms
5.
6. PureJavaTimeProfiler() {
7. startTime = System.currentTimeMillis(); timer = new Tim erThread();
8. timer.setDaemon(true); timer.start();
9. }
10.
11. void sample() { // do the sampling
12. Map<Thread,StackTraceElement[]> m = Thread.getAllSt ackTraces();
13. Iterator<Thread> i = m.keySet().iterator();
14. while(i.hasNext()) {
15. Thread t = i.next();
16. if(t != timer && t.isAlive() && t.getThreadGroup().get Name() != "system"
17. && t.getState() == Thread.State.RUNNABLE) {
18. StackTraceElement ste[] = m.get(t);
19. if(ste.length > 0) {
20. // discard line number
21. StackTraceElement s = new StackTraceElement(ste[0].g etClassName(),
22 ste[0].getMethodName(), ste[0].getFileName(),-1);
23. getTotal(s).value++;
24. }}}}
25.
26. MutInteger getTotal(Object k)
27. MutInteger s;
28. s = (MutInteger) totals.get(k);
29. if(s == null) { s = new MutInteger(0); totals.put(k,s); }
30. return s;
31. }
32.
33. class TimerThread extends Thread {
34. public void run() {
35. while(true) { try { Thread.sleep(period); sample(); }
36. catch(InterruptedException e) {}
37. }}}
38.
39. public static void main(String argv[]) {
40. new PureJavaTimeProfiler();
41. try {
42. Class clazz = Class.forName(argv[0]);
43. Method mainMethod = clazz.getDeclaredMethod("main", argv.getClass());
44. // construct args array for target
45. String nArgv[] = new String[argv.length-1];
46. Object args[] = new Object[1];
47. for(int i=1;i<argv.length;++i) { nArgv[i-1]=argv[i] ; }
48. args[0] = nArgv;
49. mainMethod.invoke(null,args);
50. } catch(Exception e) {}
51. }}

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1
Prepared usingspeauth.cls

PROFILING WITH ASPECTJ 43

APPENDIX B — SIZEOF ASPECT

1. aspect SizeOf pertypewithin(*) {
2. static final private Hashtable cache = new Hashtable();
3. private int size = -1;
4.
5. after() returning(): staticinitialization(*) && !within(SizeOf) {
6. size = sizeof(thisJPSP.getSignature().getDeclaringT ype()) + 8;
7. }
8. public static int get(Object o) {
9. Class c = o.getClass();
10. if(SizeOf.hasAspect(c)) {
11. SizeOf a = SizeOf.aspectOf(c);
12. return a.size;
13. } else { // for classes which AspectJ cannot weave
14. Integer r = (Integer) cache.get(c);
15. if(r != null) { return r.intValue(); }
16. else {
17. int x = sizeof(c,o) + 8;
18. cache.put(c,new Integer(x));
19. return x;
20. }}}
21. static public int sizeof(Class c, Object dims...) {
22. int tot = 0, m = 1;
23. if(c.isArray()) {
24. for(int i=0;i!=dims.length;++i) {
25. c = c.getComponentType(); // move toward type held by arr ay
26. int d = ((Integer) dims[i]).intValue();
27. if(i != (dims.length-1)) { tot += m * ((d * 4) + 8); }
28. else { tot += m * ((d * primitiveSize(c)) + 8); }
29. m = m * d;
30. }} else {
31. Field fs[] = c.getDeclaredFields();
32. for(int i=0;i!=fs.length;++i) {
33. Field f = fs[i];
34. if(isInstance(f)) {
35. Class ft = f.getType ();
36. tot += primitiveSize(ft);
37. }}
38. Class s = c.getSuperclass();
39. if(s != null) { tot += sizeof(s); }
40. }
41. return tot;
42. }
42. static private boolean isInstance(Field f) {
43. return !Modifier.isStatic(f.getModifiers());
44. }
45. static private int primitiveSize(Class pt) {
46. if (pt == boolean.class || pt == byte.class) return 1;
47. else if (pt == short.class || pt == char.class) return 2;
48. else if (pt == long.class || pt == double.class) return 8;
49. else { return 4; } // object references, floats + ints
50. }}

Copyright c© 2005 John Wiley & Sons, Ltd. Softw. Pract. Exper.2005;00:1–1
Prepared usingspeauth.cls

