SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expe2005;00:1 Prepared usingpeauth.cls [Version: 2002/09/23 v2.2]

Profiling with AspectJ
David J. Pearce Matthew Webster, Robert Berry and I &

Paul H.J. Kelly

'School of and Mathematics, Statistics and Computer Sciéfcria University of Wellington, NZ.
Email: david.pearce@mcs.vuw.ac.nz. Tel: +64 (0)44635833

2IBM Corporation, Hursley Park, Winchester, UK

3Department of Computing, Imperial College, London, UK

SUMMARY

This paper investigates whether AspectJ can be used for effent profiling of Java programs. Profiling
differs from other applications of AOP (e.g. tracing), sin@ it necessitates efficient and often complex
interactions with the target program. As such, it was uncertin whether AspectJ could achieve this goal.
Therefore, we investigate four common profiling problems (leap usage, object lifetime, wasted time and
time-spent) and report on how well AspectJ handles them. Foeach, we provide an efficientimplementation,
discuss any trade-offs or limitations and present the rest$ of an experimental evaluation into the costs
of using it. Our conclusions are mixed. On the one hand, we findhat AspectJ is sufficiently expressive
to describe the four profiling problems and reasonably effiaént in most cases. On the other hand, we
find several limitations with the current Aspectd implementation that severely hamper its suitability for
profiling.

KEY WORDS. AspectJ, AOP, Java, Profiling, Performance

1. INTRODUCTION

Profiling program behaviour is a common technique for idgimiy performance problems caused
by, for example, inefficient algorithms, excessive heapgesar synchronisation. Profiling can be
formalised as the collection and interpretation of progemnts and is a well-understood problem

with a significant body of previous work. However, one arehis field has been largely unexplored

Received August 2005
Copyright(© 2005 John Wiley & Sons, Ltd. Revised April 2006

2 D.J. PEARCEET AL. SR:E

in the pasteffective deploymenthat is, given a program, how can it be easily profiled in tesicd
manner? In some situations, this is relatively straightéod because the underlying hardware provides
support. For example, time profiling can be implementedgigitimer interrupt to give periodic access
to the program state. Alternatively, hardware performaoeaters can be used to profile events such as
cache misses, cycles executed and more [1, 2]. The diffieukgs when there is no hardware support
for the events of interest. In this casestrumentation codenust be added and various strategies are
used to do this. For examplgprof — perhaps the most widely used profiler — relies upon specific
support fromgcc to insert instrumentation at the start of each method [3foduanately, it is very
difficult to capitalise on this infrastructure for generalrpose profiling simply becauggc has no

mechanism for directing where the instrumentation shoaldlaced.

In a similar vein, binary rewriters (e.g. [4, 5]) or prograrartsformation systems (e.g. [6, 7]) can
help automate the process of adding instrumentation. Whése tools do enable profiling, they are
cumbersome to use since they operate at a low level. For dgabipary rewriters provide only simple
interfaces for program manipulation and, hence, code ntilldteswritten to apply the instrumentation.
Likewise, program transformation tools operate on therabssyntax tree and require the user provide
complex rewrite rules to enable instrumentation. In a sethsse tools are too general to provide an
easy solution to the profiling problem. What is needed is @krand flexible mechanism for succinctly

specifying how and where instrumentation should be degploye

One solution is to provide support for profiling through a giexh purpose virtual machine interface.
For example, thdava Virtual Machine Profiler Interface (JVMP#8nables several different types of
profiling [8]. However, there are some drawbacks: firstlyisita fixed interface and, as such, can
only enablepredefinedypes of profiling; secondly, enabling the JVMPI often dréicadly reduces
performance. Thdava Virtual Machine Tool Interface (JVMTigplaces the JVMPI in Java 1.5 and
attempts to address both of these points [9]. However, as Wesee in Section 8.3, this comes at a
cost — the JVMTI no longer supports profiling directly. Irstieit simply enables the manipulation of

Java bytecodes at runtime, placing the burden of perforthi@gnanipulation itself on the user.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 3

An alternative to this has recently become possible wittatheent ofAspect Oriented Programming
(AOP) — a paradigm introduced by Kiczalet al. [10]. In this case, the programmer specifies in
the AOP language how and where to place the instrumentatioite the language compiler/runtime
takes care of its deployment. This does not require speajpat (e.g. from the JVM), as the
target program is modified directly. However, very few wohleve considered AOP in the context of
profiling. Therefore, we address this by taking the mostassitl AOP language, namely AspectJ, and
evaluating whether it is an effective tool for profiling. We this by selecting four common profiling
problems and investigating whether they can be implementAdpectJ or not. We also examine what
performance can be expected in practice from the currere&dpmplementation, as this is critical to
the adoption of AspectJ by the profiling community. Our reasg is that the outcome of this provides
some evidence as to whether AspectJ is suitable for genm@dge profiling or not. For example, if we
could not implement these straight-forward cases, we whale little hope that other, more complex
types of profiling were possible. Likewise, if we were abldrngplement them, but the performance
was poor, this would indicate AspectJ was not yet ready feptiofiling community.

The outcome of our investigation is somewhat mixed. We firat,tivhile the language itself
can express the profiling examples we consider, severatalions with the current Aspect]
implementation prevent us from generating results conigp@naith other profilers (such dgorof).

As such, we believe these must be addressed before Aspedi& cmnsidered a serious platform for

profiling. Specifically, the main contributions of this papee as follows:

1. We investigate AspectJ as a profiling tool — both in termgpefformance and descriptive
ability. This is done by evaluating four case studies actdsdenchmarks, including 6 from

SPECjvms.

2. We present novel techniques, along with source code riilipg heap usage, object lifetime,

wasted time and time-spent with AspectJ.

3. We identify several issues with the current AspectJ imgletation which prohibit complete

implementations of our profiling case-studies.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

4 D.J. PEARCEET AL. SR:E

Throughout this paper we use the term “AspectJ” to refer ® l#tnguage itself, whilst “AspectJ
implementation” refers to the AspectJ implementationlaie fromhttp://www.aspectj.org

(since this is very much the standard implementation atitimie).

The remainder is organised as follows. Section 2 providese ibtroduction to AspectJ. Sections
3, 4,5 and 6 develop AspectJ solutions for profiling heap eisalgject lifetime, wasted time and time-
spent respectively. After this, Section 7 presents thdtestian experimental evaluation into the cost

of using them. Section 8 discusses related work and, firadlgtion 9 concludes.

2. INTRODUCTION TO ASPECTJ

In this section, we briefly review those AspectJ construglisvant to this work. For a more complete
examination of the language, the reader should consult biteeavell-known texts (e.g. [11, 12]).
AspectJ is a language extension to Java allowing new fumality to be systematically added to an
existing program. To this end, AspectJ provides severglage constructs for describing where the
program should be modified and in what way. The conceptual igl¢hat, as a program executes, it
triggers certain events and AspectJ allows us to introdeeecode immediately before or after these
points. Under AOP terminology, an event is referred to &irapoint, whilst the introduced code is
calledadvice The different join points supported by AspectJ includehodtexecution, method call
and field access (read or write). We can attach advice to desjioig point or to a set of join points
by designating them with pointcut The following example, which profiles the number of calls to

MyClass.toString() versus those to anpString() method, illustrates the syntax:

. aspect ToStringCountingAspect {
private int totalCount = 0;
private int myCount = 0;

pointcut allCalls() : call(String * .toString());

before(): myCall() { myCount++; }

1
2
3
4.
5. pointcut myCall() : call(String MyClass.toString());
6
7
8
9. after() : allCalls() { totalCount++; }

1

0}

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITHASPECTJ 5

This creates two pointcutmpyCall() andallCalls() , which respectively describe the act of
calling MyClass.toString() and toString() on any class. They are each associated with
advice which is executed whenever a matching join pointiggyered. Herebefore() signals the
advice should be executed just before the join point triggetile after() signals it should be
executed immediately afterwards (although it makes neudifice which is used in this example). The
advice is wrapped inside aspect which performs a similar role to the class construct. Aspect
permit inheritance, polymorphism and implementation ngdiWwhen the aspect is composed with
a Java program — a process knownwesaving— the program behaviour is changed such that
myCount is incremented whenevérlyClass.toString() is called. LikewisetotalCount
is incremented whenever atyString() method is called (includinlylyClass.toString()).
Note, the current AspectJ implementation does not altgpithgram’s source code, rather the change is
seen in its generated bytecode. A problem can arise withrgqudithat matches something inside the
aspect itself as this can cause an infinite loop, where thecaspntinually triggers itself. This would
happen, for example, if our aspect hatb&tring() method that was called from the after advice.
To overcome this, we can specify that a cl@sshould not be advised by includirgithin(C) in

the pointcut definition.

Another interesting issue is determining which particydém point triggered the execution of some
advice. For this purpose, AspectJ provides a variable @ #fisJoinPoint which is similar in
spirit to thethis variable found in OOP. It refers to an instanceloinPoint which contains both
staticanddynamicinformation unigue to the join point in question. Here, istatformation includes
method name, class name and type information, while dynenfdomation includes parameter values,
virtual call targets and field values. To provide the dynamiormation, the AspectJ implementation
creates a fresh instance dbinPoint every time a join point is triggered, passing it to the
advice as a hidden parameter (much like this variable). For efficiency reasons, this is only
done if the advice actually references it. For the stationmiation, the AspectJ implementation

constructs an instance dbinPoint.StaticPart which is retained for the duration of the

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

6 D.J. PEARCEET AL. SRE

program’s execution. This can be accessed through eitleethteJoinPoint.StaticPart
or the thisJoinPointStaticPart variables. The latter is preferred as it allows greater
optimisation. We can alter our example in the following wayrécord the total number of calls to

toString() on a per-class basis, rather than lumping them all together:

2. private Map totalCounts = new HashMap();

6. after() : allCalls() {

7 Class ¢ = thisJPSP.getSignature().getDeclaringType() ;

8. Integer i = totalCounts.get(c);

9 if(i '= null) totalCounts.put(c,new Integer(i.intValu e()+1));
1
1

0. else totalCounts.put(c,new Integer(1));
1.}

Note,thisJPSP is an abbreviation fothisJoinPointStaticPart and is used throughout
the remainder of this paper to improve the presentation otode examples. AlsaptalCounts
replacedotalCount from before. It can also be useful to access information atfmenclosing
join point. That is, the join point whose scope encloses thiggering the advice. For example,
the enclosing join point of a method call is the method exeoutontaining it and AspectJ
providesthisEnclosingJoinPoint to access itgoinPoint object. The corresponding static

componentis accessed ¥iasEnclosingJoinPointStaticPart (henceforththisEJPSP).

The final AspectJ feature of relevance is ther-type declarationwhich gives the ability to define
new fields or methods for existing classes and/or to altecldss hierarchy. For example, the following

altersMyClass to implement theComparable interface:

1. aspect ComparableMyClass {

2. declare parents: MyClass implements Comparable;
3. int MyClass.compareTo(Object o) { return 0; }
4

-}

This first declares thaMyClass implementsComparable and, second, defines the required
compareTo() method (which effectively adds this methodMigClass). Note, ifMyClass already

had acompareTo() method, then weaving this aspect would give a weave-tinm.err

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITHASPECT) 7

3. PROFILING HEAP USAGE

In this section, we investigate AspectJ as a tool for deteirrgiwhich methods allocate the most heap
storage. The general idea is to advise all callsd¢a with code recording the size of the allocated
object. This amount is then added to a running total forghelosingmethod (of that call) to yield

exact results:

aspect HeapProfiler {
Hashtable totals = new Hashtable();

1

2

3

4. before() : call(*.new(..)) && !'within(HeapProfiler) {
5. Mutinteger tot = getTotal(thiSEJPSP);

6 Class ¢ = thisJPSP.getSignature().getDeclaringType()

7 if(c.isArray()) {

8 Object] ds = thisJoinPoint.getArgs(); // dims for array

9. tot.value += sizeof(c,ds);
10. } else {

12. tot.value += sizeof(c);
13. 1

14.

15 Mutinteger getTotal(Object k) {
16. Mutinteger s = (Mutinteger) totals.get(k);
17. if(s == null) {

18. s = new Mutinteger(0);

19. totals.put(k,s);

20.

21. return s;

22.

23. int sizeof(Class ¢, Object arrayDims...) { ... }
24. }

Here, sizeof() computes the size of an object and, for now, assume it beles/expected —

we discuss its implementation later. AlsgetTotal() maps each method to its accumulated
total. Notice that, since thdoinPoint.StaticPart object given bythisEJPSP uniquely
identifies the enclosing method, it can be used as the kethémmoregetTotal() is implemented

with a Hashtable to provide synchronised access, although more advancethicers (e.g.
ConcurrentHashMap) could be used here. The use lafithin(HeapProfiler) is crucial
as it prevents the advice from being applied to code withenabpect itself. Without this, an infinite

loop can arise with the advice being repeatedly triggeredetiTotal() . Notice that we have

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

8 D.J. PEARCEET AL. SR:E

used ananonymougointcut to specify where the advice should be appliedesdtof an explicit
designation via thepointcut keyword. The purpose of distinguishing between the craatib
arrays and other objects is subtle. The key point is thateterthine the size of an array, we need
its dimensions and AspectJ gives access to thesgetiargs() since the arguments of an array
constructor are its dimensions (Section 3.1 discussedtinre detail). As an optimisation, we call
getArgs() only on array types, since this requires accessingJtiiePoint object (which is
created lazily in the current AspectJ implementation)aliyn the Mutinteger class is similar to
java.lang.Integer , except that its value can be updated.

A subtle aspect of our approach is that bytes allocatsile an object’s constructoare not
attributed to the enclosing method creating it. Insteagly tire attributed to the constructor itself and,

to see that this makes sense, consider the following:

1. class T { T() { for(...) new X(); }}
2.int foo() { T x = new T(); }

This example, while perhaps somewhat contrived, highdigimt important pointif T's constructor
allocates a lot of unnecessary storage, who is to blaBg7ncluding bytes allocated by() in
foo() ’stotal, we are misdirecting optimisation efforts tow&od() rather thanr() . Of course, we
could devise situations where the problem stems ffoof) calling T() too often. In this case, the
inclusiveapproach seems to make more sense, since it focuses attemtardfoo() . However, this
is misleading as it is really a fundamentally different desb regarding call frequency. For example,
foo() may callT() frequently because it is itself called frequently and reitwill catch this.
Furthermore, while both approaches could be extended th gabblems relating to call frequency,
theinclusiveapproach could never catch the example highlighted above.

We now identify our first limitation with the current Aspecithplementation which affects
the precision of our scheme. The issue is that the poirtali *.new(..)) does not catch
allocations of array objects — meaning they are not includedhe heap measurements. In

fact, a fix for this issue has been recently included in thee&tp implementation (as a direct

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 9

result of this work), although it is not currently activatbg default (the command-line switch

“-Xjoinpoints:arrayconstruction "is required).
3.1. IMPLEMENTING SIZEOF

At this juncture, we must briefly discuss our implementatidrsizeof as Java does not provide
this primitive. To determine an object’s size, we iteraterg\field of its class (using reflection) and
total their sizes. Of course, this is an estimate since algmt/packing issues are ignored, the size of
references is unknown (we assume 4 bytes) and the objecéhsiaé is also unknown (we assume
8 bytes). Also, we do not traverse references and accunthlatgize of the objects they target, since
only the bytes allocated by the current calltew are relevant (and the objects targeted by such fields
must have been allocated previously). For arrays, the mastdimension is calculated using the type
held by the array, whilst the outer dimensions are assumée tarrays of references to arrays (the
dimensions themselves being obtained from the join poidiscussed previously). Again, we do not
traverse the references of objects held by the innermostrtiian since an array cannot be populated
until after being created. To improve performance (as refledés notoriously slow), we also employ a
Hashtable to cache results and make subsequent requests for the saenehgaper.

One issue with this implementation is thaHashtable lookup is needed to access cached type
sizes. If we could eliminate this, the cost of using our heayfiling aspect might be reduced. AspectJ
version 1.5.0 introduced a new primitiveertypewithin(..) , which makes this possible. This
allows us to specify that a separate aspect instance shedultstantiated for every type matching a

given type pattern. For example:
1. aspect TestAspect pertypewithin(mypkg.. *) |

2. ..

3.}

This results in a separate instanceTastAspect (created lazily) for every class within the

packagemypkg, rather than just a single instance BéstAspect being created (as for normal

aspects). Thugertypewithin allows us to associate state (in our casegof information) with

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

10 D.J. PEARCEET AL. SR:E

a type. The information associated with a typés stored as atatic class variable o€. This (in
theory at least) allows us to access cactiedof information using a static field lookup, rather than
aHashtable lookup. Unfortunately, we find in practice that usipgrtypewithin to implement
the cache actually gives worse performance that usidgshtable . The reason for this appears to
be that, although the information is stored in a static figld current AspectJ implementation accesses
it via a reflective call. We expect future optimisation of thepectJ implementation will eliminate
this overhead, leading to better performanceeftypewithin . A complete implementation of

sizeof usingpertypewithin is given in Appendix B for reference.

4. PROFILING OBJECT LIFETIME

In this section, we look at profiling object lifetime, whetetaim is to identify which allocation sites
generate the longest-living objects. This can be used xamele, to help find memory leaks as long-
lived objects are candidates [13]. Another applicatiomigénerational garbage collectors, where it is
desirable to place long lived objects immediately into olgenerations, often known gsetenuring
(see e.g. [14, 15]).

As we have already demonstrated how allocation sites camdteumented with Aspectd, the
remaining difficulty lies in developing a notification mecitism for object death. In Java there are
two obvious constructs to usereak referenceandfinalizers An implementation based on the latter
would rely upon introducing special finalizers for all knowbjects to signal their death. This poses a
problem as introducing a methéab() into a class which already ha$ao() is an errorin AspectJ.
To get around this, we coultianuallyspecify which classes need finalizers introduced into thieam (
all those which don’t already have them) with a pointcut. Aietr point, we could advise all finalizers
to signal object death. Note that, while the process of dateng which classes don't have finalizers
could be automated, this cannot be done within AspectJ itsaking this approach rather inelegant.
In light of this, we choose weak references and, indeed, la@g been used for this purpose before

[14].

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITHASPECT) 11

1. aspect lifetimeProfiler {

2. static int counter = O;

3. static int period = 100;

4. static Set R; static Monitor M;
5. static ReferenceQueue Q;
6
7
9

after() returning(Object o) : call(*.new(..)) &&
. if(++counter >= period) && !within(lifetimeProfiler) {
10. MyRef mr = new MyRef(thisIPSP, System.currentTimeMill is(),0,Q);
11. R.add(mr);
12. counter = O;
13. }

15. lifetimeProfiler() {
16. HashSet tmp = new HashSet();
17. R = Collections.synchronizedSet(tmp);

18. Q = new ReferenceQueue();
19. M = new Monitor(); M.start();
20. }

21.

22. class MyRef extends PhantomReference {
23. public JoinPoint.StaticPart sjp;
24. public long creationTime;

25.

26. MyRef(JoinPoint.StaticPart s, long ¢, Object o, Refere nceQueue q) {
27. super(o,q); sjp = s; creationTime = c;

28. }}

29.

30. class Monitor extends Thread {

31. public void run() { while(true) { try {

32. MyRef mr = (MyRef) Q.remove();

33. R.remove(mr);

34. long age = System.currentTimeMillis() - mr.creationTi me;
35. getSample(mr.sjp).log(age);

36. } catch(InterruptedException e) {

37. 1Y}

39. class AvgSample {
40. double avg = 0O; int hum = O;
41. public void log(long v) { avg = ((avg * num) + v) / ++num; }

}
43. AvgSample getSample(Object k) { ... }}

Figure 1. The outline of our lifetime profiler aspect. The kegture is thafter() returning(..) notation,
which gives access to the newly allocated object returneakloy The advice then attaches an extended phantom
reference containing the creation time and allocation $itken an object dies, its reference is removed from
R by the Monitor and its lifetime logged. HereggetSample() is similar to getTotal() from before.
AvgSample is used to maintain the average lifetime of all objects @@at a given allocation site. Additional
code is needed to catch immortal objects: on program tetinimthis would iterate througR to identify and log

the lifetime of any unclaimed objects. Finally, counteséd sampling is used to reduce the number of objects

being tracked. This lowers overhead and causes less patitnton the target program.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

12 D.J. PEARCEET AL. SR:E

Thejava.lang.ref package was introduced to give a degree of control over garballection
and provides three types of weak reference. These sharéahaoteristic that they do not prevent the
referenced object, called theferent from being collected. That is, if the only references to bject
are weak, it is open to collection. The different weak refieeetypes provide some leverage over when

this happens:

1. Soft referencesThe garbage collector must free softly referenced objeefsre throwing an
OutOfMemoryError exception. Thus, they are useful for caches, whose corgbotdd stay
for as long as possible. Soft references are “cleared”geetonull) before finalisation, so
their referents can no longer be accessed.

2. Weak referencesTheir referents are always reclaimed at the earliest guemee. Weak
references are also “cleared” before finalisation.

3. Phantom referenceg\gain, phantomly referenced objects are always reclaiatdtle earliest

convenience. However, they are not “cleared” until aftealfgation.

To see which is best suited to our purpose, we must undertamelevance of clearing. When creating
a reference, we can (optionally) indicat&kaferenceQueue onto which it will be placed (by the
garbage collector) when cleared. Thus, this is a form obealt mechanism, allowing notification of
when the reference is cleared. Note, if it was not clearedrbgilaced on the queue, our application
couldresurrectit by adding new references. In fact, objects are not trulgddentil after finalisation
because their finalizer can resurrect them [14]. From thasks fit follows that phantom references
give the most accurate indication of object lifetime.

The basic outline of our scheme is nhow becoming clear: atoblojeation, we attach a phantom
reference and record a timestamp and an identifier for tloeatibn site. The phantom reference is
associated with a global reference queue, monitored by maa¢hread. This is made efficient by
ReferenceQueue.remove() , which sleeps until a reference is enqueued. Thus, when jaatob
is garbage collected, the daemon thread is awoken (by theerefe queue) to record the time of death

and, hence, compute the object’s lifetime. Figure 1 pravitie core of our implementation.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 13

5. PROFILING WASTED TIME

In the last section, we developed a technique for profilingctifetime. In fact, we can go beyond
this by breaking up the lifetime into itsag, DragandUsephases [16]. Under this terminolodsg is
the time between creation and first udeggis that between last use and collection, whitecovers
the rest. Thus, we regard lag and drag as wasted time andnthis to identify which allocation sites

waste the most.

An important question is what it means for an object taubed In this work, we consider an object
is used when either of the following occurs: a public, naatistmethod is called; or a public, non-
static field is read or written. We ignore read/writes to atév/fields and methods, since these must
have arisen from a call to a public method, in which case theoblise has been registered. Methods
which run for a long period of time updating the internal stat some object may cause imprecision
if there is sufficient difference between the time of methothyeand the actual last use. This is really
a trade-off as, by ignoring changes to the internal stateaftgect, the profiling data associated with
it needs to be updated less frequently, leading to greatésrpeance in practice. We wanted a more
complex definition of object use, which additionally igndrehanges to public fields from within the

object’s own methods. As it turned out, we could not expriessdonstraint efficiently in AspectJ.

The main difficulty in this endeavour actually lies in effiotly associating state with an object.
Here, the state consists of timestamps for the first and &&stuich, upon object death, can be used
to determindag, drag anduse This state is updated by advice associated with the gébiegboints
as the program proceeds. As such advice will be executeddrdly, access to the state must be as
fast as possible. We considered, when embarking upon thjsqty that there should be three possible

approaches:

1. Using a Map This is the simplest solution — state is associated witthezlgject using a
HashMap (or similar). The downside, of course, is the nequktéorm a lookup on every field

access (which is expensive).

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

14 D.J. PEARCEET AL. SR:E

2. Member Introductionin this case, we physically add new fields to every objectld khe state
usingmember introductionThe advantage is constant time access, while the disaalyaig an
increase in the size of every object.

3. Using pertarget The pertarget specifier is designed for this situation. It indicates thag o
aspect should be created for every object instance, ingteading a singleton (which is the

norm). Again, a disadvantage is that every object is larger.

The issue of increasing object size is important as it resltioe advantages of sampling — where the
aim is to reduce overheads by monitoring only a few objeetthear than all. In particular, sampling
should dramatically reduce the amount of additional heaage needed, but this is clearly impossible

if the size ofeveryobject must be increased. Now, approach 3 gives sometlkigig li

1. aspect ptWaste pertarget(call(*.new(..)))

2. State theState = new State();

3. before(Object o) : target(o) && (set(public !static *x %) ||

4. get(public !static * ok x) ||

5 call(public !static * x % () {

6. ..

7.}

The pertarget(X) specifier declares that a separate instance of the aspadtidh® created

for every object that is the target of the join points ideatfiby X. Thus, a separate instance of
the ptWaste aspect will be created for every constructible object. Eaohlld be created the first
time its corresponding object is the target of some invokeddce. This allowstheState to be
shared between invocations of advice on the same object.ae ddready seen that tleall join
point captures method invocation. In this case, we have tatew it to specify that only public,
non-static methods should be captured. Likewise,ghe/set join points capture all public, non-
static field read / writes. Thus, these join points taken ttogredefine what it means for an object
to be used. Unfortunately, this approach of uspeytarget fails as there are no valid target
objects for acall(*.new(..)) — meaning thepertarget(call(*.new(..))) specifier
does not match anything. This arises because the targett @bjeot considered to exist until after the

call(*.new(..)) pointcut. Using other pointcuts for theertarget(...) specifier (such as

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITHASPECT) 15

get(), set() andcall()) does not help because these will not match objects whicbraeted
but not used. This constitutes our second limitation with ¢hrrent AspectJ implementation. As this
behaviour was intentional, it is perhaps more significaantthe others identified so far. In particular,
it remains uncertain whether or not it can be resolved.

The second approach, which useter-Type Declarations (ITQ)provides a manual implementation

of the above:

1. aspect itdWaste {

2. private interface WI { }
3. declare parents: * && ljava.lang.Object implements WI;
4. State Wl.theState = new State();

5. before(Object 0): target(o) &&

6 (set(public !static * ok %) ||
7 get(public !static * k%) ||
8 call(public !static * x % () {
9. if(o instanceof WI)

Wl w = (WI) o;

10. ... Il access WL.thState directly

11. } else {

12. ... Il use map

13.33

© <

Here, line 3 is an ITD which declares every class to implemenérface WI (except
java.lang.Object , as this is prohibited by the current AspectJ implementatiavhile line 4
introducegheState into WI. The effect of all this is to introduce a new instanegiablethe State
into every user-defined class in the class hierarchy (set8ét1 for more on why only user-defined
classes are affected). This ensures that every corresppoldject has exactly one caopgf theState
and, through this, we can associate each object with a umigtence ofState . Only user-defined
classes are affected by the ITD because, in practice, slasgske standard library cannot be altered
using the current AspectJ implementation (Section 7.1udises the reasons for this in more detail).
The pointcut for the advice matches all uses (including wethvocation) of any object. In the case of

a user-defined object (i.e. an object implementing WI), wiaiolconstant-time accesstireState

*Note, Aspect] does not introduce a field F into a class whogertspe is also a target for the introduction of F. Thus, an
instance of any class can have at most one copy of F, rathepthitantially one for every supertype in its class hierarchy

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

16 D.J. PEARCEET AL. SR:E

(since it is a field). For other objects, we use a map to aswottia necessary state as a fall back (this
is outlined in more detail below) . To complete the designmuest also advise aiew calls to record

creation time and include our technique from the previostiae for catching object death.

We now consider our final design, which uses a map to assostate with each object. A key
difficulty is that the map must not prevent an object from beajarbage collected. Thus, we use weak
references to prevent this, which adds additional overh®&ae main body of our implementation is
detailed in Figure 2 and the reader should find it similar twsthdiscussed so far. Note the use of
sampling to reduce the number of objects being tracked. ifipisoves space consumption as fewer
state objects are instantiated, although it has little ichpgoon runtime overhead. In fact, our ITD
implementation also uses sampling for this reason, alth@ugust still pay the cost of an extra word

per user-defined object (ftheState).

The astute reader may notice something slightly odd aboutnoplementation of Figure 2 — it
contains a bug! The problem is subtle and manifests itsdif amen the target program contains
objects with user-definethtashCode() implementations that read/write public fields. It arises
becauséVeakKey invokes an object'tdashCode() method, which is needed to ensure different
WeakKeys referring to the same object match in thashtable . This invocation will correspond to
a use of the object iiashCode() reads/writes public fields. The invocation itself is not a,usince
it occurs withinWasteAspect and this is explicitly discounted usingithin(..) . The problem
causes an infinite loop where looking up the state assoacidthdn object is a use of it, which triggers
thebefore() advice, which again tries to lookup the state and so on. Tameind this is not trivial.
We cannot use an alternative map, suchifemeMap, since this uses the object®mpareTo()
method, leading to the same problem. We could, however, @midpect'scflow() construct to
include in our definition of an object use the constraint thatethod withirWWasteAspect cannot
be on the call stack. Unfortunately, this would almost datyaimpose a large performance penalty
[17]. Thus, we choose simply to acknowledge this problethgrathan resolving it, since it is unlikely

to occur in practice.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECT) 17

1. public final aspect WasteAspect {

2. static int counter = O;

3. static int period = 100;

4. static Map R = new Hashtable();

5. static ReferenceQueue Q = new ReferenceQueue();
6

7

8

9

after() returning(Object newObject) : call(* .new(..))
&& l'within(WasteAspect) && if(++counter >= period) {
WeakKey wk = new WeakKey(newObject,Q);

10. R.put(wk,new State(thisJPSP, System.currentTimeMil lis()));

11. counter = O;

12. }

13.

14. before(Object o) : target(o) && !within(WasteAspect) & & (
15. call(public !static * x % ()

16. set(public !static * x x) || get(public !static * % x)) |

17. Object t = R.get(new WeakKey(0));
18. if(t = null) {

19. State s = (State) t;

20. s.lastUse = System.currentTimeMillis();

21. if(s.firstUse == -1) { s.firstUse = s.lastUse; }

22}

23.

24. class WeakKey extends WeakReference {

25. int hash;

26. WeakKey(Object o) { super(o); hash = o.hashCode(); }

27. WeakKey(Object o, ReferenceQueue q) { super(o,q); hash = o.hashCode();}

28. public int hashCode() { return hash; }

29. public boolean equals(Object 0) {

30. if (this == o) return true;

31. Object t = this.get();

32. Object u = ((WeakKey) o).get();

33. if (t == null) || (u == null)) { return false; }
34. return t == u;

37. private final class State {

38. long lastUse,firstUse = -1;

39. long creationTime;

40. JoinPoint.StaticPart sjp = null;

41. State(JoinPoint.StaticPart s, long c) { creationTime = c; sjp =5s; }
42. 1}

Figure 2. The core parts of an aspect for profiling wasted .tifitne key features are théashtable which

associates state with an object and the use of counter-tssagling to reduce overhead. Note that, while

sampling does help reduce storage, it does not prevent @ ladk up on each field access. To complete this

design, a daemon thread must monifto catch object death and log usage information, as for EiguFinally,

WeakKey.equals() deals with two awkward problems: firstly, its hashcode mustdentical for identical

referents to allow correct look up from tladter() advice; secondly, look up must still be possible after the
referent is cleared.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

18 D.J. PEARCEET AL. SRE

6. PROFILING TIME SPENT

In this section, we consider time sampling, where the idéaperiodically log the currently executing
method. Thus, on termination, those methods with the mospkss (i.e. logs) accrued are considered
to be where most time was spent. Our approach is to track therdly executing method with AspectJ,
so it can be periodically sampled by a daemon thread. Thi®ie dy updating a global variable

whenever a method is entered (through normal entry/caltmgbor left (through normal exit/calling

another):
1. aspect CurrentMethodAspect {
2. static JoinPoint.StaticPart current;
3. before() : (execution(* x x(.)) || execution(*.new(..)))
4. && !'within(CurrentMethodAspect) {
5. current = thisJPSP;
6. }
7.
8. after() returning : (execution(* x _ x(.)) || execution(* .new(..)))
9. && 'within(CurrentMethodAspect) {
10. current = null;
11. }
12.
13. before() : (call(* x x(.) || call(*.new(..)))
14. && within(CurrentMethodAspect){
15. current = null;
16. }
17.
18. after() returning : (call(* x x()) || call(* .new(..)))
19. && !'within(CurrentMethodAspect) {
20. current = thisEJPSP;
21. B
Here, the uniqudoinPoint.StaticPart object is used to identify the currently executing

method. Notice thaturrent is assigned to null when a method is left. This may seem reafind
since it will be overwritten as soon as the next method ig€rgered. Indeed, if we could guarantee
that all methods were advised, this would be the case. Unfatély, we cannot necessarily make
this guarantee for reasons discussed in Section 7.1. Wjtirdeo multithreading, our approach can
be inaccurate as, following a context switch, a sample mataken beforeurrent is updated by

the newly executing method. This results in time being inectty charged to the method which was

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 19

running before the switch. Following [18], we argue thastld not a serious cause for concern as
sampling is inexact anyway and it is unlikely that such béhawvwould consistently affect the same
method. Certainly, synchronizing @urrent would cause greater problems and making it a thread
local means a thread lookup before/after every methocegaltution. Thus, we choose against either
of these on the grounds of efficiency.

Another interesting point is the use after() returning , instead of jusafter() advice.
The former only catches normal return from a method, wHilstlatter also catches thrown exceptions.
Our reason then, for choosirgjter() returning is that we have observed it offers better
performance (up to 20% in some cases), while the issues dfingigeturn by exception seem
negligible. Note, if this were considered important, thedter() could simply be used in place

of after() returning to ensureurrent was updated correctly after an exception.

7. EXPERIMENTAL RESULTS

In this section, we present and discuss the results of arriexgetal evaluation into the costs of using
the profiling aspects developed in the previous sectionsalf introducedjprof , a command-
line tool which packages these aspects together so theyeasdud without knowledge of AspectJ.
This was used to generate the results presented later on armpe it will eventually find future
use as a non-trivial Aspectd benchmark. Indeed, previouk tvas commented on the lack of such
benchmarks [17]. Thdjprof tool itself is available for download under an open sourcerise from
http://www.mcs.vuw.ac.nz/"djp/djprof

The benchmark suite used in our experiments consisted oh6hoearks from the SPECjvm98
suite [19] as well as 4 candidates which were eventually geddrom inclusion in it. Table | details

these. Where possible, we also compared the performangaraaidion ofdjprof againsthprof

TNote, the.222 _mpegaudio benchmark is also part of the SPECjvm98 suite. This couldbeaised due to a bug in the current
implementation of the new array join point.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

20 D.J. PEARCEET AL. SR:E

Benchmark|| Size (KB) | Time (s) | Heap (MB) | SPECjvm98| Multi-threaded
_227_mtrt 56.0 4.7 25 Y Y
_202_jess 387.2 6.5 17 Y N
_228 jack 127.8 55 17 Y N

_ 213 javac 548.3 12.3 31 Y N

_ 224 richards 138.5 7.4 18 N Y
_210_si 18.2 9.0 16 N N
_208_cst 23.2 17.8 30 N N
_201_compress 17.4 21.1 24 Y N
_209_db 9.9 351 28 Y N

_ 229 tsgp 7.7 36.5 26 N N

Table I. The benchmark suite. Size indicates the amounttetioge making up the benchmark, excluding harness
code and standard libraries. Time and Heap give the exectitiee and maximum heap usage for one run of the
benchmark.

(a well-known JVMTI profiler — see [8]) andjprof , a pure Java time profiler described below. In
doing this, our aim was twofold: firstly, to ascertain whethiee current AspectJ implementation is
competitive, compared with alternative approaches; sdlgpto validate the results produced by our
profiling aspects. We now provide further discussiodjpfof —andpjprof , detail the experimental

procedure used and present the results themselves.

7.1. THE DJPROF TOOL

In this section, we consider issues related to the deployoferur aspects as part of a general purpose
profiling tool. We believe it desirable that such a tool carubed on existing Java programs without
knowledge of Aspect]. One solution is for the tool to stdlijcaeave aspects behind the scenes. In
this case, they are combined with the original binaries talpce modified binaries in some temporary
location. However, the current AspectJ implementatioovedla more efficient mechanism, through a
feature known afoad-time weavingln this case, all weaving is performed by a special clasiba
allowing it to be done lazily — thereby reducing costs. There, we used this to implemedijprof
— a command-line tool which encompasses the profiling aspexctsidered in the previous sections.
Unfortunately, there is one significant drawback with therent load-time weaving implementation:

code in the standard libraries cannot be woven agaifbts is very restrictive and constitutes our third

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 21

limitation with the current AspectJ implementation. Intfaghile in theory it is possible to statically
weave against the standard libraries, we find this impralctioe to the massive amounts of time and
storage required. Furthermore, static weaving requiresyesiass in the standard libraries be woven
against, regardless of whether it is used or not. Thus, imsedear that, if this limitation with the
load-time weaver were overcome, then it would offer the lbggtroach as only classes actually used

by the program would be woven.

At this point, we must clarify how this limitation affectselresults produced by our tool. The
inability to weave against the standard libraries meansdjpaof cannot report results for methods
within the libraries themselves. For heap and lifetime yaate results are still obtained for all objects
allocated in the target application. However, for wasiatetprofiling, uses of objects allocated in the
target application which occur in library methods are mds3éhis, in theory at least, could affect the
precision of the wasted-time results (if a significant numdfeises occur in library methods), although
it remains unclear whether this really happens in practicaat. Finally, for time-spent profiling,
accurate results are obtained for all methods in the tamtcation (subject to the issues of multi-

threading already discussed in Section 6).

Aside from issues of imprecision, the inability to weave iagathe standard libraries also gives
djprof aninherentadvantage ovgorof andpjprof , since they must pay the cost of profiling all
methods wherdjprof does not. While this does compromise our later performaongarison of
djprof againstiprof andpjprof ,itdoesnotrenderitcompletely meaningless. Thisis becae
are still able to make general observations about the paéoce ofdjprof and, hence, the current
AspectJ implementation (namely, that it is not outragepskiw in most cases and, most likely, will

be competitive should this limitation be overcome).

The output produced byjprof consists of a list of methods, along with the amount of thdilec
guantity (e.g. bytes allocated) used by them. The outputisred so that methods consuming the most
appear first. As suchjprof does not provide any additional context (i.e. stack-tradeymation. In

contrasthprof is capable of providing context-sensitive information eminformation is reported

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

22 D.J. PEARCEET AL. SR:E

for individual stack-traces (to a given depth). This infation can be more useful in practice, as it
can help determine the circumstances (if there are any)ruvitieh a method performs badly. In fact,
djprof can easily be extended to record such information, althauglihnave opted against doing
this to simplify our evaluation. Since recording this aifial context information can be expensive,
we restrict the amount of context recordedhyrof to a depth of one (which is equivalent to that
recorded byjprof) to ensure a fair comparison. This is achieved usinglédpth=1 command-line

switch tohprof .

7.2. PJPROF - A PURE JAVA TIME PROFILER

The ability to write a time profiler without AspectJ is madespible in Java 1.5 with the new
Thread.getAllStackTraces() and Thread.getState() methods. The former allows a
daemon thread to iterate, at set intervals, the stack trbal ather threads to record their currently
executing method. In doing thi¥hread.getState() is used to ignore those which are blocked,
as samples should not be recorded for them [20, 8]. This wasdajged by us in the course of this work
and is the first pure Java time profiler we are aware of. A cotaheplementation, which we refer to

aspjprof , can be found in Appendix A.

7.3. EXPERIMENTAL PROCEDURE

The SPECjvm98 benchmark harness provides an autorun éegltawing each benchmark to be run
repeatedly for N iterations in the same JVM process. Gelyespkaking, the first run has higher
overhead than the others as it takes time before JIT opfiimisaare applied and it also includes the
weaving time. Therefore, we report the average of five ruamfa six iteration autorun sequence
(we discard the first run), using a problem size of 100. Weebelithis reflects the overheads that
can be expected in practice, since most real world prograenager running than our benchmarks

(hence, these startup costs will be amortised) and, fott shioning programs, such overheads will be

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 23

insignificant anyway. In all cases, the variation coeffitigr. standard deviation over mean) for the
five measured runs was 0.15 — indicating low variance between runs.

To generate time-spent profiling data ushygof , we used the following command line:

java -Xrunhprof:cpu=samples,depth=1,interval=100 ...

The interval indicateqprof should record a sample every 100ms (the same value was used fo
djprof andpjprof). The depth value indicates no context information showddrdrorded (as
discussed in Section 7.1), whilst the cutoff indicates thecision (as a percentage) of information

whichhprof should report. To generate heap profiling data, we used tlosving:

java -Xrunhprof:heap=sites,depth=1,cutoff=0.0 ...

Thehprof tool produces a breakdown per stack trace of the live bytesakd (i.e. those actually
used), as well as the total number of bytes allocated. Thdtseare ranked by live bytes allocated,
rather than total bytes allocated. Howevmrof does not report stack traces where the number of live
bytes allocated, relative to the total number of live bytiéscated overall, is below a certain threshold
(this is thecutoff ~ value). Sincaljprof reports total bytes allocated only, a discrepancy can occur
between the profilers when a method allocates a large nunfilbsttes which are not considered live
by hprof (since these will be reported ldjprof , but cut off byhprof). Settingcutoff=0.0
ensures a fair comparison widliprof |, since it forcesprof to report all results. Note, this does not
in any way affect the performance loprof .

The output oldjprof ~ andpjprof is similar, providing a breakdown of the total allocated bhgle
method. A script was used to convégrof ’'s output into a form identical to that afjprof and
pjprof . A slight complication is that, in the case of heap profilinging a depth of 1 witthprof
also does not provide comparable information vdjprof . This is becausbprof charges storage
allocated for a typeX to its constructor (indeed, its supermost constructothetathan the method
callingnew X(..) (asdjprof does). Therefore, to ensure the fairest comparison pessit ran

hprof twice for each benchmark when generating the heap profilatg: dhe first hadlepth=1

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

24 D.J. PEARCEET AL. SR:E

and was used to generate the performance data (djpoaf does not record context information);
the second hadepth=5 and was used to compare the outputdpfof anddjprof (since the
additional context allowed the true calling method to beedatned).

Finally, to determine the maximum amount of heap storage bgethe VM (used to measure a
profiler's space overhead), we used a simple program to giiesilly parse/proc/PID/stat and
record the highest value for the Resident Set Size (RSS)kXperiments were performed on a 900Mhz
Athlon based machine with 1GB of main memory, running Makdrainux 10.2, Sun’s Java 1.5.0

(J2SE 5.0) Runtime Environment and AspectJ version 1.5.2.

7.4. DISCUSSION OF RESULTS

Before looking at the results, we must detail our metricendioverhead was computed 45—t
for each benchmark, wheflg- andTy, are the execution times of the profiled and unprofiled vession

respectively. Space overhead was computed in a similar way.

7.4.1. HEAP PROFILING

Figure 3 looks at the overheads (in time and space) of the nediting implementation developed in
Section 3, as well as those bprof . Regardingdjprof , perhaps the most important observations
are: firstly, time overhead is quite low — especially on theger-running benchmarks; secondly, space
overhead is comparatively higher. We suspect the lattenssfeom our implementation ofizeof
which indefinitely caches the size of previously seen typeshprof , we see significantly higher
time overheads, while the space overheads are (roughlggadme magnitude dgprof . The exact
reasons behintdprof ’'s poor runtime performance remain unclear. A very likelplexation is that

the additional costs of instrumenting standard librandsi¢h are not profiled bgjprof) is to blame.

Figure 4 details our attempts to validate the output of threpharofiling aspect againkprof . To

do this, we compare the profilers against each other usingricralledoverlap percentaggl8]. This

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITHASPECTJ 25

Heap Profiling Overheads

(6734%) (5845%) (4187%) (2281%) (4734%) (1244%) (442%)
200 A
R
< 150 A
©
4]
=
(]
>
O 100 A
]
E
|_
50 4
O - . H T
mtrt jess jack javac richards si cst compress db tsgp
djprof ——— hprof
160 A
140 A
X 120 ~
ko]
Py -
2 100 A —
g o
6 80 ~
3
S 60 A
Q
n
40 -
20 4
O - I . . T
mtrt jess jack javac richards si cst compress db tsgp

Figure 3. Experimental results comparing the overheadr(ia aind space) of our heap profiling implementation
againsthprof using theheap=sites switch. Note, empty columns (e.g. faompress) do not indicate
missing data — only that the relevant value was very small.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

26 D.J. PEARCEET AL. SR:E

Heap Profiling Accuracy
100 +—

60 -

Overlap %

40 A

O T T T T T T T T T T

mtrt jess jack javac richards si cst compress db tsgp

Figure 4. Experimental results comparing the precisioruot@ap profiling implementation agairgirof using

the heap=sites switch. The overlap metric indicates the amount of sintyaletween the output of the two

profilers (see Section 7.4.1 for more discussion on this).ighdr value indicates greater similarity, with the
maximum being 100% overlap.

works as follows: first, the output of each profiler is norrsedl to report the amount allocated by each
method as a percentage of the total allocémgdny method in the target application, not including the
standard libraries second, each method is considered in turn and the minimone ggven for it by
either profiler is added to the overlap percentage. For el@nigjprof reports thatoo.bar()
accounts for 25% of the total storage allocated, whifstof gives it a score of only 15%, then the
lower value (i.e. 15%) is counted toward the overlap peagat Thus, two profilers with identical
results produce an overlap of 100%, whilst completely déffe: results have no overlap. We can think
of the overlap percentage as timersectionof the scores given by the two profilers. Methods in the
standard libraries are not included in the calculation beedjprof ~ cannot profile them (see Section

7.1 for more on why). In general, we find this is a useful wayvaleate profiler precision.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECT) 27

Object Lifetime Profiling Overheads (period = 100 objects)

120 - (126%)
Time ——
Space
100 A
S 80 A
ko]
©
g 60 -
o
>
O 40 -
20 4
O - T T T T T T T T T
mtrt jess jack javac richards si cst compress db tsgp

Figure 5. Experimental results looking at the overheads wf abject lifetime implementations. The period
indicates that every00*" object was monitored. Again, empty columns (e.g.jémk) do not indicate missing
data — only that the relevant value was very small.

Looking at Figure 4 we see that on all benchmarksof anddjprof have an overlap of over
90%, indicating an excellent correlation between them. V@ald not expect identical results since

djprof estimates object size (recall Section 3.1), whHegyef does not.

Our overall conclusions from these results are mixed. Gletire inability to profile the standard
libraries makes it difficult to properly compare the perfamoe ofdjprof —andhprof . In spite of
this, the results are still interesting since they indi¢h#: firstly, the performance afjprof is not
outrageously bad, compared wihprof , and, hence, could well be competitive should this limatati

be overcome; secondly, that the precision obtainedjjpyof (when ignoring methods in the standard

libraries) is good.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

28 D.J. PEARCEET AL. SRE

7.4.2. OBJECT LIFETIME

Figure 5 looks at the overheads of the lifetime profiling t@qne developed in Section 4. The main
observations are, firstly, that similar but consistentlydo time overheads are seen compared with
heap profiling. Secondly, that the space overheads are iatdlars but consistently higher. The first
point can most likely be put down to the cost of ussigeof (as the lifetime aspect does not use
this) which is non-trivial, especially for previously umsetypes. The second point almost certainly

arises because we are associating additional state withdodl object instances.

7.4.3. WASTED TIME

Figure 6 details the overheads of using the two wasted-tinpeimentations of Section 5. The main
observation is that the Member Introduction (MI) approaeheyally performs better than just using a
Map (ava.util.HashTable in this case). Indeed, although its overhead is still lavgefeel the
MI approach works surprisingly well considering it is admgs every public field and method access.
As expected from its implementation (where an extra fielddidesl to every used-defined object), the

storage needed for the Ml approach is consistently grelaaerfor the Map approach.

7.4.4. TIME-SPENT PROFILING

Figure 7 compares the overheads of our time-spent profiimgementation againgtprof and
pjprof . The results show that the overheadsdjgrof are much higher than for either of the
other two profilers. However, there are several other issuesnsider: firstlypjprof — only works in
Java 1.5; secondly, in other experiments not detailed inerdyave found the performance lgbrof

on Java 1.4 environments to be significantly worse ttlignof . The reason for this latter point is
almost certainly due to the fact that, under Java liptof uses the JVMPI whilst, under Java 1.5, it

uses the more efficient JVMTI (see Section 8.3 for more or).tihile these points are only relevant

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 29

Wasted Time Profiling Overheads (period = 100 objects)

(3240%) (4034%3561%) (4087%)(3420%) (TO)(TO) (7225%) (10491%)

1600 -
1400
1200
800
600 -
400 1
200 1
0 [

mtrt jess jack javac richards si cst compress db tsgp

-

o

o

o
1

Time Overhead %

Map ——— M| o
800

700 H

600 -

500 -

400 -

300 -

Space Overhead %

200 +

”fﬁ]ﬂ ﬂﬂ"mnﬂn

jess jack javac richards si compress tsgp

Figure 6. Experimental results looking at the overheads wf wasted-time implementations. Herglap

corresponds to approach 1 from Section 5, wiMs{(short for Member Introduction) corresponds to approach 2.

TO indicates the benchmark had not completed after 1 hautifneout) and the period indicates that evasg"
object was monitored.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

30 D.J.PEARCEETAL. SRE

Time Sampling Overheads (period = 100ms)

(278%) (212%)
100 ~
hprof ——
djprof
pjprof m—
80
X
o
S 60 A
=
()
>
o
o 40 A
£
|_
20 A

mtrt jess jack javac richards si cst compress db tsgp

180 A hprof ——
djprof
160 A pjprof m—
140 A
120 A
100 A
80

60 -

Space Overhead %

mtrt jess jack javac richards si cst compress db tsgp

Figure 7. Experimental results looking at the overheadsnie {top) and space (bottom) of our time profiling
implementation, compared withprof and pjprof . Again, empty columns (e.g. farst) do not indicate
missing data — only that the relevant value was very small.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

PROFILING WITHASPECT) 31

Time Sampling Accuracy (period = 100ms)
100

80 -

60

Overlap %

mtrt jess jack javac richards si cst compress db tsgp

hprof-djprof ——3 hprof-pjprof djprof-pjprof m—
Figure 8. Experimental results looking at the precision of time profiling implementation, compared with
hprof andpjprof . The overlap metric indicates the amount of correlatiorween the output of the two

profilers (see Section 7.4.1 for more discussion on this)ighdr value indicates a better correlation, with the
maximum being 100% overlap.

to those using the older Java 1.4 VM’s, we expect this usse-baremain significant for some time to
come.

Figure 8 details our attempts to validate the output of theetprofiling aspect againkprof and
pjprof . Again, overlap percentage is used to make the comparigtneach profiler normalised to
report the time spent by each method as a percentage of #ispent by any in the target application,
not including the standard libraries. As there are three torofilers, we compared each against the
others separately in an effort to identify their relative@@cy. Looking at Figure 8, we see that
hprof andpjprof have consistently higher overlaps when compared with etlwr.dr his suggests
djprof is the least precise of the three. Since time spent in thelatdribraries is not included in
the overlap scoregjprof s inability to profile them does not explain this observati@Vhile the
other inaccuracies mentioned in Section 6 may be a factobelieve the main problem is simply that

djprof causes the most perturbation on the target program. To sgeedall that our time profiling

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

32 D.J. PEARCEET AL. SR:E

implementation adds advice before and after every methedution and method call. Even if this
advice is inlined, its effect on short, frequently executezthods will still be quite high and this would

skew the results significantly.

Our overall conclusion from these results is thdjprof and, hence, the current Aspect]
implementation is not well-suited to this kind of profilinig. fact, should the restriction on profiling
the standard libraries be overcome, we would only expecpéntormance ofljprof to deteriorate

further.

8. RELATED WORK
We now consider two categories of related work: AspectJ/ADB profiling. We also examine the

JVMPI/IVMTI in more detail.

8.1. ASPECTJAND AOP

Aspect-Oriented Programming was first introduced by Kiezat al. [10] and, since then, it has
received considerable attention. Many language impleatiomis have arisen, although their support
for AOP varies widely. Some, such as AspectC [21], Aspect{2#} and AspectC# [23], are similar
to AspectJ but target different languages. Others, likeetih}[24] and Jiazzi [25], are quite different
as they do not integrate AOP functionality into the souregieage. Instead, they provide a separate
configuration language for dictating how pieces of code m sburce language compose together.
AspectWerkz [26] and PROSE [27] focus on run-time weavingese aspects can be deployed (or
removed) whilst the target program is executing. The adgmis that, when the aspect is not applied,
no overheads are imposed. While static weaving technicauregicable/disable their effect at runtime,
there is almost always still some overhead involved. In, et ideas of run-time weaving share much

in common with Dynamic Instrumentation (e.g. [5, 28, 29])ldnetacbject Protocols [30].

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 33

Several works have focused on Aspect] itself. In particulasfour et al. investigated the
performance of AspectJ over a range of benchmarks [17]. Badlchmark consisted of an aspect
applied to some program and was compared against a hand»weguévalent. They concluded that
some uses of Aspect], specificallgrtarget andcflow , suffered high overheads. In addition,
after() returning() was found to outperformaround() advice when implementing
equivalent things. A detailed discussion on the implent@niaf these features can be found in [31],

while [32] focuses on efficient implementationsavbund() advice.

Hanenberget al. [33] considerparametric introductionswhich give member introductions access
to the target type. Without this, they argue, several commamples of crosscutting code, namely
the singleton, visitor and decorator patterns, cannot lopgrty modularised into aspects. In fact,
introductions share much in common with mixins [34] and optasses [35], as these also allow
new functionality to be added at will. Another extension tspact] is investigated by Sakusdial.,,
who propose a variant goertarget ~ which allows aspect instances to be associated with graups o

objects, instead of all objects [36].

8.2. PROFILING

Profiling is a well known topic which has been studied exteglgiin the past. Generally speaking we
can divide the literature up into those which use sampling. (@4, 1, 37, 18, 3]) and those which
use exact measurements (e.g. [28, 38]). However, exacturerasnts are well known to impose
significant performance penalties. For this reason, hydpjgtoaches have been explored where exact
measurements are performed on a few methods at a time, th#reall at once [28, 38]. However, it
remains unclear what advantages (in terms of accuracy)aaied. Most previous work has focused
on accounting for time spentin a program (e.g. [3, 37, 1, 8928, 38]). As mentioned alreadyprof

is perhaps the best known example [3]. It uses a combinafi@Pt) sampling and instrumentation to

approximate a call-path profile. That is, it reports timergfiy each method along with a distribution

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

34 D.J. PEARCEET AL. SR:E

of thatincurred by its callees. To generate thigrof assumes the time taken by a method is constant

regardless of calling context and this leads to imprecig3&h

DCPI uses hardware performance counters to profile withaadifying the target program [1].
These record events such as cache misses, cycles execdtedenand generate hardware interrupts
on overflow. Thus, they provide a simple mechanism for samgpévents other than time and are
accurate to the instruction level. More recent work has $eduon guiding Just-In-Time optimisation

of frequently executed and time consuming methods [37, 40].

Techniques for profiling heap usage, such as those devein&ettions 3, 4 and 5, have received
relatively little attention in the past. Rojemo and Runainfirst introduced the notions ¢dg, drag
anduse[16]. They focused on improving memory consumption in Hidgkegrams and relied upon
compiler support to enable profiling. Building on this, Shatet al. looked at reducing object drag
in Java programs [41]. Other works use lifetime informafionpretenuring (e.g. [14, 15]). Of these,
perhaps the most relevant is that of Agesen and Garthwaiteust phantom references (as we do) to
measure object lifetime. The main difference from our apphds the use of a modified JVM to enable

profiling.

The heap profilemprof requires the target application be linked against a mod#yestem library
[42]. Unfortunately, this cannot be applied to Java sineelt¥iM controls memory allocation. Another
heap profilermtrace++ , uses source-to-source translation of C++ to enable profitt3]. However,
translating complex languages like C++ is not easy and wietaebuilding on tools such as AspectJ

offers considerable benefit.

We are aware of only two other works which cross the boundatywéen AOP and profiling. The
first of these does not use AOP to enable profiling, but insieadpable of profiling AOP programs
[44]. The second uses AspectJ to enable profiling, but facosethe visualisation of profiling data
rather than the intricacies of using AspectJ in this confé%}. Finally, there are many other types

of profiling which could be explored in conjunction with Asjté in the future. These includeck

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 35

contention profiling(e.g. [8, 44]),0bject equality profiling(e.g. [46]), object connectivity profiling
(e.g. [47]),value profiling(e.g. [48]) andeak detectiorfe.g. [13]).

Conversely, others sugath, vertexor edge profiling(e.g. [49, 50]) are perhaps not well suited to

AspectlJ, since they require instrumentation at the basitkllevel.

8.3. COMPARISON WITH JVMPI/JVMTI

An interesting question is what is gained with AspectJ ovhatican already be achieved through
the standard profiling interface found in JVM'’s. Prior to dadu5, this was thdava Virtual Machine
Profiler Interface (JVMPI) With Java 1.5 this has been replaced by daga Virtual Machine Tool
Interface (JVMTI)[9]. The latter is a refined version of the JVMPI, designedeaiwore flexible and

more efficient than its predecessor.

The JVMTI comprises two main features: an event call-backlmaaism and 8yte Code Insertion
(BCl)interface. The former provides a number of well-defined &retich can be set to automatically
call the JVMTI client when triggered. The latter allows das to be modified at the bytecode
level during execution. However, the BCI does not itselfyidle support for manipulating bytecodes
and, instead, the user must do this manually (perhaps via ghird-party library such as BCEL
[51]). Example events supported by JVMTI includéonitorWait |, triggered when a thread begins
waiting on a lockMethodEntry , triggered on entry to a Java/JNI method; &ieldAccessed
triggered when a predetermined field is accessed. In gerexahts supported by the JVMTI tend
to be those which cannot otherwise be implemented via the iB@lface. In particular, there is
no event for catching objects allocated by Java programghé&umore, while theMethodEntry
and MethodExit events exist, they are not recommended because they carlgewnepair VM
performance. Instead, using the BCI to catch method enxityghould be preferred since this gives
full-speedevents. That is, since the triggers inserted to catch methtrg/exit are simply bytecodes

themselves, they can be fully optimised via the JVM. Notés tipplies to other events such as

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

36 D.J. PEARCEET AL. SRE

FieldAccessed andFieldModified . Thus, it becomes apparent that AspectJ and the JVMTI

actually complement each other, rather than providingradtie solutions to the same problem.

The older JVMPI did not provide a Byte Code Insertion inteefamaking it less flexible. However,
it did provide some events not found in the JVMTI. In partanlithere was direct support for heap
profiling via theOBJECT_ALLOvent type, which caught all object allocations made by td.J
Finally, both the JVMPI/JVMTI can be used to profile synchisation issues. This is not currently
possible in AspectJ, as there is no join point$gnchronized blocks. However, this feature has
been requested as an enhancement and we hope this worklwiluhther motivate its inclusion in the

language.

9. CONCLUSION

Profiling tools typically restrict the user to a set of predefl metrics, enforce a particular profiling
strategy (e.g. sampling or exact counting) and require thelevprogram be profiled regardless of
whether this is desired or not. Aspect-oriented programynimguages offer an alternative to this
dogma by allowing the user to specify exactly what is to bdilea, how it is to be profiled and which
parts of the program should be profiled. In this work, we havestigated how well an aspect-oriented
programming language (namely AspectJ) lives up to thisrtlale have developed and evaluated
solutions to four well-known profiling problems in an efftatanswer this question. The results of our
investigation are mixed. On the one hand, we found Aspecibuficiently flexible to support the four
profiling examples and that it was reasonably efficient intneases; on the other hand, we uncovered
several limitations, some of which are quite severe, whiolild need to be addressed before AspectJ

could be considered a serious profiling platform. To sumseathese issues are:

1. Load-time weaving standard libraries - the inability to perform load-time weaving against the

standard libraries severely handicaps any profiler (sed®et.1). One solution to this problem

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 37

may be possible through the Java th&trument package and we hope this is explored in the
future.

2. State association- We found that associating state througtertarget failed as
pertarget(call(*.new(..))) does not match any join points (see Section 5). This
prevented us from usingertarget to provide a more natural implementation of the wasted
time aspect.

3. Synchronisation- We would like to have explored the possibility of profilingck contention
(among other things), but this is not possiblesyshronized blocks have no join point
associated with them. As this feature has already been staplby others, we feel this adds
further support for its inclusion.

4. Array allocation join point - The current version of AspectJ (1.5.2) does not supporatrey
join point by default — meaning array objects are not prof{leek section 3). A fix for this has
been recently included in the AspectJ implementation (agextdresult of this work) and we

hope this will be activated by default in future releases.

The limitations identified here are limitations with the @nt AspectJ implementation, rather than
Aspect-Oriented Programming (AOP). Nevertheless, weebelthat Aspect] — and AOP in general
— has much to offer the profiling community. For example, twWdle problems studied (namely,
object lifetime and wasted time) are not generally suppidvieprofilers in the main (such &prof),
and yet were easily expressed in AspectJ. Furthermorelibgilipon our techniques to develop more
powerful profilers should be straightforward and opens upyhpossibilities that would otherwise be

hard to achieve.

We do not expect AspectJ will excel at all types of profilinigce it operates on a fairly abstracted
program model which, most notably, ignores many detailsroéthod’s implementation. Profiling for
branch prediction is, therefore, impossible (since thermibranch join point). Likewise, profiling the
flow of values (e.g. reference values) through a programnspasied by the inability to monitor value

flow through local variables (this would require, at the viegst, an assignment join point). Of course,

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

38 D.J. PEARCEET AL. SRE

both of these would be possible with a language supportitcharr variety of join points. Thus, these
issues are not with AOP in general, rather they are artifaicésparticular language (i.e. AspectJ) and
we could easily imagine an AOP language tailored more spatiifito profiling.

In the future, we would also like to investigate how well Asfieapplies to other profiling problems,
such as those discussed in Section 8.2. We would also likevastigate the amount of perturbation

caused byljprof , although this is well-known to be a difficult undertakin@]5

ACKNOWLEDGEMENTS

We thank everyone on the Aspect] team at IBM Hursley for theip, as well as all members of the
aspectj-users mailing list. We also thank Prof. James Noble and the anomgn8P&E (and other) referees
for helpful comments on earlier drafts of this paper. FipaDr. Paul H. J. Kelly is supported by an Eclipse

Innovation Grant.

REFERENCES

1. J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Hagezi S. A. Leung, R. L. Sites, M. T. Vandervoorde, C. A.
Waldspurger, and W. E. Weihl. Continuous profiling: Whereehall the cycles gone? IRroceedings of the Symposium
on Operating Systems Principlgzages 1-14. ACM Press, 1997.

2. G. Ammons, T. Ball, and J. R. Larus. Exploiting hardwardgrenance counters with flow and context sensitive profiling
In ACM Conference on Programming Language Design and Impl&tien, pages 85-96. ACM Press, 1997.

3. S. L. Graham, P.B. Kessler, and M.K. McKusick. gprof: & gedph execution profiler. IACM Symposium on Compiler
Construction pages 120-126. ACM Press, 1982.

4. A. Srivastava and A. Eustace. ATOM: a system for buildingtemized program analysis tools. PRmoceedings of the
ACM Conference on Programming Language Design and Impl&tien pages 196-205. ACM Press, 1994.

5. D. J. Pearce, P. H. J. Kelly, T. Field, and U. Harder. GilkDgnamic Instrumentation Tool for the Linux Kernel. In
Proceedings of the International TOOLS Conferemamges 220—-226. Springer-Verlag, 2002.

6. |. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: program sfammations for practical scalable software evolution. In
Proceedings of the IEEE International Conference on Saévngineering pages 625-634. IEEE Computer Society
Press, 2004.

7. E. Visser. Stratego: A language for program transformmatbased on rewriting strategies. Rroceedings of the

International Conference on Rewriting Techniques and isppbns pages 357—-362. Springer-Verlag, 2001.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 39

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

S. Liang and D. Viswanathan. Comprehensive profiling stpim the Java Virtual Machine. |froceedings of the

USENIX Conference On Object Oriented Technologies an@®ggtages 229-240. USENIX Association, 1999.

. K. O’Hair. The JVMPI transition to JVMTIhttp://java.sun.com/developer/technicalArticles/

Programming/jvmpitransition/ ,2004.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. kppeLoingtier, and J. Irwin. Aspect-oriented programming
In Proceedings of the European Conference on Object-OrieRtegramming pages 220-242. Springer-Verlag, 1997.

J. D. Gradecki and N. LesieckMastering AspectJ : Aspect-Oriented Programming in Jawéley, 2003.

R. Laddad.AspectJ in Action Manning Publications Co., Grennwich, Conn., 2003.

N. Mitchell and G. Sevitsky. LeakBot: An automated amghtweight tool for diagnosing memory leaks in large Java
applications. InProceedings of the European Conference on Object-OrieRtegramming pages 351-377. Springer-
Verlag, 2003.

O. Agesen and A. Garthwaite. Efficient object sampling wieak references. IRroceedings of the international
Symposium on Memory Managemegages 121-126. ACM Press, 2000.

P. Cheng, R. Harper, and P. Lee. Generational staclctofleand profile-driven pretenuring. Froceedings of the ACM
Conference on Programming Language Design and Implementatages 162—-173. ACM Press, 1998.

N. Rdjemo and C. Runciman. Lag, drag, void and use — heafilipg and space-efficient compilation revisited. In
Proceedings of the ACM International Conference on Fumetid®’rogramming pages 34—41. ACM Press, 1996.

B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittampaland C. Verbrugge. Measuring the dynamic behaviour of
Aspect] programs. IRroceedings of the ACM Conference on Object-Oriented Rwogning, Systems, Languages and
Applications pages 150-169. ACM Press, 2004.

M. Arnold and B.G. Ryder. A framework for reducing the tco$ instrumented code. I®roceedings of the ACM
Conference on Programming Language Design and Implementatages 168-179. ACM Press, 2001.

The Standard Performance Corporation. SPEC JVM98 beantis, http://www.spec.org/osg/jvm98 ,1998.

T. E. Anderson and E. D. Lazowska. Quartz: a tool for tgmuarallel program performance. Rroceedings of the ACM
Conference on Measurement and modeling of computer sygteges 115-125. ACM Press, 1990.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Usinge®$p to improve the modularity of Path-Specific customarati

in operating system code. Rroceedings of the Joint European Software Engeneeringetamce and ACM Symposium
on the Foundation of Software Engeneeripgges 88-98. ACM Press, 2001.

O. Spinczyk, A. Gal, and W. Schroder-Preikschat. Agpee: an aspect-oriented extension to the C++ programming
language. InProceedings of the Conference on Technology of Object @dehanguages and Systenmages 53-60.
Australian Computer Society, Inc., 2002.

H. Kim. AspectC#: An AOSD implementation for C#. Massehesis, Department of Computer Science, Trinity College,
Dublin, 2002.

H. Ossher and P. Tarr. Hyper/J: multi-dimensional s&fmar of concerns for Java. roceedings of the International

Conference on Software Engineerjges 734—-737. ACM Press, 2000.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

40

D.J. PEARCEET AL. SRE

25

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

. S. Mcdirmid and W. C. Hsieh. Aspect-oriented prograngmiith Jiazzi. InProceedings of the ACM Conference on
Aspect Oriented Software DevelopmeREM Press, 2003.

J. Bonér. What are the key issues for commercial AOPhae:does AspectWerkz address them?Ptoceedings of the
Conference on Aspect-oriented software developnpagtes 5-6. ACM Press, 2004.

A. Popovici, T. Gross, and G. Alonso. Dynamic weaving dspect-oriented programming. PRroceedings of the
Conference on Aspect-Oriented Software Developnpagies 141-147. ACM Press, 2002.

H. W. Cain, B. P. Miller, and B. J.N. Wylie. A callgraphgmal search strategy for automated performance diagnasis. |
Proceedings of the European Conference on Parallel Prangg&uro-Par) pages 108-122. Springer-Verlag, 2001.

K. Yeung, P. H. J. Kelly, and S. Bennett. Dynamic instratagon for Java using A virtual JVM. |IRerformance Analysis
and Grid Computingpages 175-187. Kluwer, 2004.

J. des Rivires G. Kiczales and D. G. Bobrdlihe Art of the Metaobject ProtocoMIT Press, 1991.

E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.Ptoceedings of the ACM Conference on Aspect-Oriented
Software Developmenpages 26—-35. ACM Press, 2004.

S. Kuzins. Efficient implementation of around-advice tfie aspectbench compiler. Master’s thesis, Oxford Usitxer
2004.

S. Hanenberg and R. Unland. Parametric introduction®rdceedings of the Conference on Aspect-Oriented Software
Developmentpages 80-89. ACM Press, 2003.

G. Bracha and W. Cook. Mixin-based inheritance. Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applicatipages 303—-311. ACM Press, 1990.

C. Clifton, G. T. Leavens, C. Chambers, and T. MillsteultiJava: Modular open classes and symmetric multiplpatish

for Java. InProceedings of the ACM Conference on Object-Oriented Rogning, Systems, Languages, and Applications
pages 130-145. ACM Press, 2000.

K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, arkb8iiya. Association aspects. Proceedings of the ACM
Conference on Aspect-Oriented Software Developnpagies 16—25. ACM Press, 2004.

J. Whaley. A portable sampling-based profiler for Javausll Machines. InProceedings of the ACM Java Grande
Conferencepages 78-87. ACM Press, 2000.

D. J. Brear, T. Weise, T. Wiffen, K. C. Yeung, S. A.M. Betinand P. H. J. Kelly. Search strategies for Java bottleneck
location by dynamic instrumentatiodEE Proceedings — Softwar&50(4):235-241, 2003.

M. Spivey. Fast, accurate call graph profilirgoftware — Practice and Experien@:249-264, 2004.

M. Arnold, M. Hind, and B. G. Ryder. Online feedback-dbedl optimization of Java. IfProceedings of the ACM
Conference on Object-Oriented Programming, Systems, Uages, and Applicationpages 111-129. ACM Press, 2002.
R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profilingsfmce-efficient Java. Rroceedings of the ACM Conference
on Programming Language Design and Implementatpages 104-113. ACM Press, 2001.

B. Zorn and P. Hilfinger. A memory allocation profiler foradd Lisp programs. IfProceedings of the USENIX
Conferencepages 223-237. USENIX Association, 1988.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

SRE PROFILING WITH ASPECTJ 41

43,
44,

45.

46.

47.

48.

49.

50.

51.
52.

W. H. Lee and J. M. Chang. An integrated dynamic memogjrtggtool for C++. Information Scienced51:27-49, 2003.
R. Hall. CPPROFJ: aspect-capable call path profiling oitithreaded Java applications. Rroceedings of the IEEE
Conference on Automated Software Engineerpages 107-116. IEEE Computer Society Press, 2002.

M. Hull, O. Beckmann, and P. H. J. Kelly. MEProf: Modulatensible profiling for eclipse. IRroceedings of the Eclipse
Technology eXchange (eTX) Worksh8@M Digital Library, 2004.

D. Marinov and R. O’Callahan. Object equality profilingn Proceedings of the Conference on Object-Oriented
Programing, Systems, Languages, and Applicatipages 313-325. ACM Press, 2003.

M. Hirzel, J. Henkel, A. Diwan, and M. Hind. Understarglithe connectivity of heap objects. Rroceedings of the ACM
symposium on Memory managemeuaiges 36—49. ACM Press, 2002.

S. A. Watterson and S. K. Debray. Goal-directed valudilpg. In Proceedings of the Conference on Compiler
Construction pages 319-333. Springer-Verlag, 2001.

T. Ball and J. R. Larus. Optimally profiling and tracinggrams.ACM Transactions on Programming Language Systems
16(4):1319-1360, 1994.

D. Melski and T. W. Reps. Interprocedural path profililg.Computational Complexifypages 47-62, 1999.

Markus Dahm. Byte code engineering with the BCEL API. hfécal Report B-17-98, Freie Universitat Berlin, 2001.

A. D. Malony and S. Shende. Overhead compensation ironpeaihce profiling. InProceedings of the European

Conference on Parallel Processing (Euro-Parages 119-132. Springer-Verlag, 2004.

Copyright(© 2005 John Wiley & Sons, Ltd. Softw. Pract. Expe2005;00:1-1

Prepared usingpeauth.cls

42

D.J. PEARCEET AL.

SRE

APPENDIX A — PJPROF IMPLEMENTATION

class PureJavaTimeProfiler {

Hashtable totals = new Hashtable();
TimerThread timer = null;

long startTime; int period = 100; // 100ms

PureJavaTimeProfiler() {
startTime = System.currentTimeMillis(); timer = new Tim
timer.setDaemon(true); timer.start();

}

. void sample() { / do the sampling

Map<Thread,StackTraceElement[]> m = Thread.getAllSt
Iterator<Thread> i = m.keySet().iterator();
while(i.hasNext()) {
Thread t = i.next();
if(t = timer && t.isAlive() && t.getThreadGroup().get
&& t.getState() == Thread.State.RUNNABLE) {
StackTraceElement ste[] = m.get(t);
if(ste.length > 0) {
/I discard line number
StackTraceElement s = new StackTraceElement(ste[0].g
ste[0].getMethodName(), ste[0].getFileName(),-1);
getTotal(s).value++;

. Mutinteger getTotal(Object k)

Mutinteger s;

s = (Mutinteger) totals.get(k);

if(s == null) { s = new Mutinteger(0); totals.put(k,s); }
return s;

-}

. class TimerThread extends Thread {

public void run() {
while(true) { try { Thread.sleep(period); sample(); }
catch(InterruptedException e) {}

.

. public static void main(String argv[]) {

new PureJavaTimeProfiler();

try {

Class clazz = Class.forName(argv[0]);
Method mainMethod = clazz.getDeclaredMethod("main"”,
/I construct args array for target

String nArgv[] = new String[argv.length-1];
Object args[] = new Object[1];

for(int i=1;i<argv.length;++i) { nArgvli-1]=argv[i]
args[0] = nArgy;
mainMethod.invoke(null,args);

} catch(Exception e) {}

- B

erThread();

ackTraces();

Name() != "system"

etClassName(),

argv.getClass());

v}

Copyright(©) 2005 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls

Softw. Pract. Expe2005;00:1-1

SRE PROFILING WITH ASPECTJ 43

APPENDIX B — SIZEOF ASPECT

1. aspect SizeOf pertypewithin(*) {

2. static final private Hashtable cache = new Hashtable();

3. private int size = -1;

4,

5. after() returning(): staticinitialization(*) && !within(SizeOf) {
6 size = sizeof(thisJPSP.getSignature().getDeclaringT ype()) + 8;
7.}

8. public static int get(Object o) {

9. Class ¢ = o.getClass();

10. if(SizeOf.hasAspect(c)) {

11. SizeOf a = SizeOf.aspectOf(c);

12. return a.size;
13. } else { /I for classes which Aspect] cannot weave

14. Integer r = (Integer) cache.get(c);
15. if(r '= null) { return r.intValue(); }
16. else {

17. int x = sizeof(c,0) + 8;

18. cache.put(c,new Integer(x));

19. return X;

20. 1}

21. static public int sizeof(Class c¢, Object dims...) {
22. int tot = 0, m = 1;

23. if(c.isArray()) {

24, for(int i=0;i'=dims.length;++i) {

25. ¢ = c.getComponentType(); // move toward type held by arr ay
26. int d = ((Integer) dimsi]).intValue();

27. if(i '= (dims.length-1)) { tot += m * ((d *4) + 8); }

28. else { tot += m * ((d = primitiveSize(c)) + 8); }

29. m=m * d;

30. }} else {

31. Field fs[] = c.getDeclaredFields();
32. for(int i=0;i'=fs.length;++i) {
33. Field f = fs[i];

34. if(isinstance(f)) {

35. Class ft = f.getType ();
36. tot += primitiveSize(ft);
37. }}

38. Class s = c.getSuperclass();
39. if(s !'= null) { tot += sizeof(s); }

41. return tot;

42. }

42. static private boolean isInstance(Field f) {
43. return !'Modifier.isStatic(f.getModifiers());

44,

45, static private int primitiveSize(Class pt) {

46. if (pt == boolean.class || pt == byte.class) return 1;

47. else if (pt == short.class || pt == char.class) return 2;

48. else if (pt == long.class || pt == double.class) return 8;

49. else { return 4; } // object references, floats + ints

50. }}

Copyright(©) 2005 John Wiley & Sons, Ltd. Softw. Pract. ExpeR005;00:1-1

Prepared usingpeauth.cls

