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Abstract 

The .Java memory model described in Chapter 17 of the 
.Jwva Language Specification gives constraints on how 
t.hreads iut,eract, through memory. The Java memory 
model is hard to int,erpret, and poorly understood; it 
imposes coiist,raint,s t,lint. prohibit, common compiler op- 
t,imizatious and are expensive to implement on existing 
hardware. At least, one shipping optimizing Java com- 
piler violates the constraints of the existing Java mem- 
ory model. ‘These issues are part,icularly important for 
lligll-pc~rforln~\iice Java. applications, since they are more 
likely t.o llse and need aggressive opt,imizing compilers 
illltl plrdlel processors. 

111 atltlit,ion, programming idioms used by some pro- 
grammc~s and used within Sun’s Java. Development Kit 
is not. guarant,eed t,o be valid according the existing Java 
lllellloly 111otlcl. 

This paper reviews these issues and suggests replace- 
ment memory models for Java. 

1 Introduction 

The Java memory model, as described in chapter 17 of 
t.he Java Language Specification [GJS96], is very hard 
to underst,and. R.esearch papers that analyze the Java 
memory model int,erpret it, differently [GS97, CKRW97, 
CKRW98]. Guy St,eele (one of the authors of [GJS96]) 
was unaware that the memory model prohibited com- 
mon compiler opt,imizat,ions, but, aft,er several days of 
discussion a.t OOPSLA98 agrees that it does. 

Given the difficulty of understanding the memory 
model, t,here may be disagreements as to whether the 
memory model actua.lly has all of t-lie features I believe 
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it does. However, I don’t believe it would be profitable 
to spend much time debating whether it does have these 
features. I am convinced that the existing style of the 
specific&ion will never be clear, and that attempts to 
pat,& t(he existing specification by adding new rules will 
ma.ke even harder to understand. If we decide to change 
the Java. memory model, a completely new description 
of the memory model should be devised. 

In addition to the problem that the memory model 
is very hard t,o understand, it has two basic problems: 
it is too weak and it is too strong. It is too strong 
in that, it prohibits many compiler optimizations and 
requires many memory barriers on architectures such 
Sun’s Relaxed Memory Order (RMO). It is too weak in 
that much of the code that has been written for Java, 
including code in Sun’s JDK, is not guaranteed to be 
va,lid. 

2 The Java Memory Model 

In this section, I try to interpret JMM, the existing Java 
Memory Model, as defined in Chapter 17 of the Java 
Language Specification [GJS96]. The same definition 
also appears in Chapter 8 of the Java Virtual Machine 
Specification [LY96]. 

A number of terms are used in the Java memory 
model but not related to Java source programs nor the 
Java virtual machine. Some of these terms have been 
interpreted differently by various people. I have based 
my understanding of these terms on conversations with 
Guy Steele, Doug Lea and others. 

A Tln.ria.ble refers to a. static variable of a loaded class, 
a field of an allocated object, or element of an allocated 
array. The system must, maintain the following proper- 
ties with regards to variables and the memory manager: 

l It must be impossible for any thread to see a vari- 
able before it has been initialized to the default 
value for the type of the variable. 

l The fact that a garbage collection may relocate a 
variable to a new memory location is immaterial 



Initially: x = y = 0 

’ Thread n;ead 2 

/ ;I; / j::; 1 
Anomalous result: i\ = 1, 1) = 1 

Figure 1: Execution valid for Java ouly due t,o prescient, 
st,ores 

aiid iuvisible to the inemor,y iiiotlel. 

The existing Java memory n~odcl tliscusses T/,se! (I,s- 
sign, lock and dock actions: 

.A use a.ction corresponds t,o a getf ield, 
getstatic or array load (e.g., aaload) Java byte- 
code instruction. 

l Au ussic~71. action corresponds t,o a putf ield. 
putstatic or array store (e.g, aastore) Java byte- 
code inst,ructiou. 

l A lock: action correspouds to a monitorenter Java 
byt,ecode instruction. 

l A ~n.lo& action corresponds t,o >I monitorexit 
.Java bytecode instruction. 

2.1 Bug fixes 

The JMR,I suggests t1ia.t at thread teruliuation, a thread 
doesn’t need t,o writ,e back the results of assigns to main 
nlemory. This is obviously (t,o 11~:) a bug and I assunle it 
is fixed by saying that there niust, be a st,ore associated 
wit,11 t,lle la.st ilSSigl1 t,o a va.riable iii il tlirea.cl. 

The JMM also doesn’t. force a thread to pushed 
cached writes out to niain iiieuiory before st,art,iiig a. 
uew thread. This has bee11 i\ck~l~~~vletlg~~d as R bug. 

2.2 Interpretation 

Dur to t.hr: double indirection in t,lle .Java nleniory 
uiodel, it. is very hard to unclerst,antl. What features 
does it provide’? 

Consicler the example in Figure 1. Goutmakher and 
Schuster [GS97] state that this is au execution trace 
tha.t is illegal for Java, but. they are incorrect because 
they do uot consider prescient st,ores [GJS96, 517.81. 
Without prescient stores, the actions and ordering con- 
straints required by the JMM arp sllowu in Figure 2. 
Siuce the write of y is required to c:onw after the read 
of x, aud the write of x is required t.o conle after the 
read of y: it. is inlpossible for both the write of x to 
colne before the read of x aud for the write of y to conic 
before the read of y. 

With prescient stores, the st0r.e actioiis are iiot re- 
quired to coiiie after the assl:g~e actions: iii fact, the store 

1 read\y 1 

23 
use x 

4 
assign y 

4 

store y 

+ 
assign x 

4 

store x 

write x 

Figure 2: Actious and orderings for Figure 1 without, 
prescient stores (with prescient stores, delete ortlcriugs 
from assign actions t,o store actions) 

// p and q might be aliased 
int i = p.x 
// concurrent write to p.x 
// by another thread 
int j = 9.x 
int k = p.x 

Figure 3: Exaruple showing that reads kill 
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act,ions can b(b t,he very first. actions in c~~cli t,lircatl. This 
inalws it. legal for the WY&: actions for both x w.nd y t,o 
colllc before either of t,llc rWl,d actions. illltl for execmion 
to result. in a = b = 1. 

What t.hc JMhI tlocs rcquirc is Col~rc~ce [ABJ+93]. 
Informally. for each variable iii isolwtion, the uses and 
assigns to t.hat, variable must. appear as if they acted di- 
rectly on global mcniory in some order t,liat respects the 
order within each t,lnciid (i.e., cilch variable in isolation 
is sccliicntiirlly consistent). A proof t,hat. the Ja,va mem- 
ory motlcl requires Coherence is given in [GS97]. That. 
paper tlithi’t consider prescient~ stores, but it doesn’t im- 
pact. the proof t.1~a.t the .JMM requires Coherence; even 
wit.11 prescient, &ores, t,he load and st,ore actions for a 
particular variable cannot be reordered. 

In discussions, Guy Steele stated that he 1la.d in- 
t.cndcd t,hc .JMM model t,o have this property, because 
hc felt it was t,oo non-imuitive for it. not. to. However, 
Guy was iinaware of the implications of Coherence on 
coinpilcr opt,iinizat,ioiis (below). 

2.3 Coherence means that reads kill 

Consitlcr the code fragment, in Figure 3 Since p and 
q only niiglit~ bc aliased: but, are not. definitely aliasecl, 
t,lirn t,lic usr of q . x caimot be opt,iniized away (if it were 
lanolin that p and q pointed t,o t,lie same object, t,hen 
it. wouh1 be legal t,o replace the assignments to j and k 
with assignments of t.he value of i). Consider the case 
where p antI q are in fact, aliased. and another t,hread 
writ,cs to the memory location for p/q. x between the 
first iisc of p . x and t,lie use of q. x; t,lie use of q. x will 
SW the new va.lue. It will be illegal for t,he second use of 
p .x (stored into k) to get the same value as was stored 
int,o i. However, a fairly standard compiler optimiza- 
tion would involve eliminating the getfield for k and 
replacing it with a reuse of the value stored into i. Un- 
fort~unat,ely, that optimization is illegal in any language 
that, requires Coherence. 

One way to think of it is tl1a.t since a. read of a mem- 
ory locat.ion may cause t,he thread to become aware of 
a writ,e by another threa.d, it. must, be t,reated in the 
compiler aS a possible write. 

In t~allting with a mmiber of people at OOPSLA98, 
I found t1la.t most people were not a.ware of the impli- 
cations for compilers of Coherence in the JMM, a.nd at 
least, one shipping commercial .Java compiler violates 
Coherence. 

2.4 JMM is stronger than Coherence 

Initially? I tried to derive a proof that,, excluding locks 
and volat,ile variables, the -Java memory model is exactly 
Coherencr. Instead, I came up wit,11 a c:ount,er-exatmple. 
Consider the code fragment, in Figure 4, and t,he sce- 
nario in which p and q are aliased (ahhough we a.re not 

// p and q might be aliased 
int i = r.y 
int j = p.x 
// concurrent write 
// to p.x by another thread 
int k = q.x 
p.x = 42 

Figure 4: Counter example to JMM z Coherence 

4 read r.y 1 

Figure 5: JMM actions for Figure 4 

able t,o prove it), and another write happens to update 
the value of p/q. x between the read of p . x and the read 
of q. x, so tha,t the use of p/q. x sees a different value 
than the use of p .x. The actions corresponding this 
execution, and their ordering constraints, are shown in 
Figure 5. 

The boxes and arrows in this diagram arise for the 
following reasons: 

a [GJS96, $17.3, bullet 11: All use and assign actions 
by a given thread must occur in the order specified 
by the program being executed. 

b [GJSOG, $17.3, bullet 41: . . . must perform a load 
before performing a. use 

c Since the use of p/q. x sees a different value than the 
use of p . x, there must be a separate load instruc- 
tion for the use of p/q. x, which must precede the 
use of p/q. x and follow the use of p .x. 

d [GJS9G, $17.8, bullet 31: No load of V intervenes be- 
tween the relocated [prescient] store and the as- 
sign. 

e [GJS96, $17.3, second list of bullets, 1st bullet]: For 
each load, there must be a corresponding preced- 
ing read 
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J read p.x h 

Fiuure 6: JMM actions for Figure 4 aftrr re-ordering b 
use of r.y and use of p.x 

f [GJS96, $17.3, second list of bullet,s, 2nd bullet]: For 
each store, there must be a corresponding follow- 
ing writ.? 

g [GJSDB, 517.2, 2nd bullet]: actions performed by 
main memory for any one variable are totally or- 
dcred 

[GJS96, 517.3, second list of bullets, 3rd bullet]: 
edges between load/store actions on a variable V 
and thts corresponding read/write actions ca.nnot 
cross 

h Since, we consider the situa.tion where p and q are 
aliased and the use of p/q. x sees a different value 
t,llall t.hta use of p. x, there must have been an in- 
tcrvcniug writ,e to p. x by auother t.1lrea.d between 
tlicl load of p. x iliitl the load of p/q. x. 

I sl~owcd this example to Guy St,eele and he ten- 
tntivtl,v agreed that the JMM imposed the constraints 
showu iu Figure 5, although he did not. double check it 
ilt length. 

This ordering colkstraints was definitely not, in- 
tended, and has a substantial impact on optimizing Java 
compilers and on Java programs running on aggressive 
processor archit,ectures. 

2.4.1 Reorderings are not closed under composition 

In Figure 5 it would be legal for the read r . y action 
to occur after the read p.x act.ion. But if we tried to 
perform this transformation at the bytecode level (mov- 
ing the getf ield r . y instruction t,o after the getf ield 
p.x action), we get the actions shown in Figure G. In 
these set of actions, it ,would be legal t,o perform the 
read r . y a.ction after t,he write p. x action. So the set. 
of legal t,rallsforiilat,iolls on -Java programs are not closed 
under composition. You can’t p~‘rform a t.r~~llsfornlatioll 

at the bytecode level without reasoning about whether 
or not there might exist any downstream component 
that might perform a reordering that, when composed 
with your reordering, produces an illegal reordering of 
the memory references. 

This pret,ty much prohibits any bytecode transfor- 
mations of memory references. 

There may be other strange constraints imposed by 
the existing .JMM, but at this point we switch from 
t,rying to decipher the existing JMM to deciding what 
features we want in a new Java. memory model. 

3 Reality 

We would like the Java memory model to interfere as 
little as possible with compiler optimizations and t,o not 
require memory barrier instructions on hardware with 
loose memory models, such as the Spare V9 R.elaxed 
Memory Order (RMO) [WG94]. 

Here are some of the issues that drive us to weaken 
the memory model. All of these are in t,he absence of 
explicit synchronization: 

We want to give the compiler/optimizer freedom 
to reorder instructions that could be reordered in 
a single threaded environment. 

We want to allow the compiler/optimizer to do 
forward substitution / scalar replacement (e.g., re- 
place a getfield instruction with R reuse of the value 
last stored into that. variable). 

We want to allow the processor t,o reorder instruc- 
tions during execut,ion. 

We want to allow the processor to us0 a write- 
buffer. 

As it t,urns out, issue 1 is largely equivalent to issue 3, 
and issue 2 is largely equivalent to issue 4. 

3.1 Instruction Reordering 

In memory models such as the Spare-V9 Relaxed Mem- 
ory Order (RMO) [WG94, Chap. 81, the processor ex- 
ecute instruct,ions out of order, so long as it does so in 
a way that would not be detectable in absence of any 
shared memory intera.ction wit,11 other processors. In 
cloing so, the processor is allowed t,o rename registers 
(allowing it to ignore output and anti depenclences on 
registers) and perform control-speculation on loads so 
as to reduce the ordering constra.ints. However, it does 
have t,o respect output, and anti dependences for mem- 
ory locations. 
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Init.iilll3T: :I.[()] = i\[l] = 2 

~~ 

Anomi11o11s rt!sult: s - ; = 2 

Fig;llrcl 7: Excbcution only possil+ t111c-, to writ.? buffel 

3.2 Write Buffers 

‘The mfmory n~.~lels for most, processors ignore the 
c:~h~: inst.rllctions call be reordered, but. when t,he in- 
structions (axccut,e, they update main memory immedi- 
;ltely (this is, of course?. only a model). Directly fol- 
lowing this model would be exl)ensive, so most memory 
n~~lels ar(’ relaxed fmther by allowing a write buffer. 
When a writ,e is initiat,cd, it. goes int,o t,he write buffer. 
Thri writ,r is not, considered to actually occur until it 
rcaches main memory. If a read occurs for a. memory 
locat,ion in the writ.? buffer, the read gets t,he value in 
tlica nirniory bliffer. In essence, this allows the processor 
to ignore flow dependences on memory locations when 
reordering instructions, and yet, still get, the right an- 
sw~r. Figure 7 shows a program execution legal only 
tlrir to t.lir exist,encr of a write buffer in the memory 
model (wit,hout a writ.e buffer, flow dependences would 
ortlcr the st~;1t,enlent,s in l?ilC~ll t.lirewd). 

3.3 Coherence is difficult 

As noted above, the existing Java memory model en- 
forces Coherence. Unfortunately, Coherence cannot be 
enforced on architectures such as Spare RMO without 
n~~llory Ijarriers. The Spa.rc R.1\40 doesn’t not guar- 
ant,ee t,hat. reads of the same memory location will be 
cxccut,ecl in their original order. To enforce this, a 
load/load memory barrier is required between any two 
successive loads of the same memory location. It is un- 
clcwr if any existing implementa.t,ions of t,he Spa.rc RMO 
wo111d act,ually violat,e Coherence. 

As mrnt,ioned earlier (Section 2.3), Coherence also 
interferes with a number of compiler optimizations. 

3.4 Flushing memory is expensive 

The semant,ics of t,he lock and unlock actions in the 
.JMT\II are t,ha.t they ca.use a thread to flush all dirty 
variables from t,he thread’s working memory (registers, 
cache, . .) t,o main memory, and a. lock a.ction a.lso 
causes a thread empty all variables from the thread’s 
working memory, so that, they have to be reloaded from 
main incmory before they can be used. 

Some have suggested that, particularly in a multi- 
processor server, this will be expensive. An a.lt,erna- 

t,ivr would be to say that only memory accessed inside 
thp synchronized block is flushed/emptied. This would 
probably IX a good idea if you were designing a memory 
model from scrat.tch, adt~hough more analysis is needed. 
However, people writing to the current memory model 
might. expect that 

synchronized(unsharedObject) {} 
would have the effect. of a memory barrier. Careful 
t,hought is required about the amount of existing code 
that would break if this change were made. 

4 A New Proposal 

In this section, I propose a new Java memory model. 
This model is closely coupled to the Java virtual ma- 
chine. The rules for Java source programs can be de- 
rived by a simple and naive translation from Java source 
to Javca bytecode, and t,hen using the rules of this model. 
A *Java thread executes read, write, lock, unlock and 
think i&ions: 

A read action corresponds to a getfield, getstatic 
or arrayload Java. bytecode instruction. 

An write action corresponds to a putfield, put- 
static or arraystore Java bytecode instruction. 

A lock action corresponds to a monitorenter Java 
bytecode instruction. 

A unlock action corresponds to a monitorexit Java 
bytecode instruct,ion. 

A think action corresponds to all other Java byte- 
code instructions. 

A memory action is either a read or write action. 
Within a thread, there is a direct dependence order- 

ing between two actions A and B if A occurs before B 
in the original program, and: 

1. there is a flow dependence from A to B (i.e., the 
value computed/read/written by A effects the ac- 
tion performed by B). Issues such as stack depth 
ant1 stack manipulation instructions (e.g., swap) 
are ignored in determining flow dependences. 

2. A and B are lock and memory actions (either or- 
der). 

3. A is a write action and B is an unlock action 
(either order). 

4. A and B are both memory actions on the same 
varia.ble and at least one of them is a write action. 

5. A and B are both memory action on volatile vari- 
ables. 
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The required dependence ordering of actions is the tran- 
sit,ive closure of direct, dependence ordering. Actions 
within a thread can be ordered in any way that respects 
t,hese orders. These constraints make it, impossible to 
determine that a threads actions have been reordered, 
except t,hrough interaction with another t.hread or other 
external agent (e.g., a debugger). 

Control Speculation Not,e that there is no require- 
ment. t.ha.t the ordering of act,ions respect cont,rol de- 
pendences (there is A. control dependence when one in- 
struction influences whether another instruction will be 
performed). The Spare RMO memory model allows re- 
ordering of loads that doesn’t, respect cont,rol depen- 
dences (e.g., speculat,ive loads), but, doesn’t allow spec- 
ulative stores (since you can’t, undo them). Defining 
control dependence in Java is a lit.tle tricky, since many 
inst,ructions (and all memory actions) can throw an ex- 
ception that prevent following instructions from occur- 
ring). If we included such exceptions in computing con- 
trol dependence, then we wouldn’t be able to perform 
iIll>’ reordering of writes at all. 

Instead, we allow actions to be reordered as though 
t,he syst,em had exact knowledge of the path of program 
cxccut,ion. Loads may be done speculatively, and stores 
may be done in a manner that appears to be specula- 
tive. However, a store may not be performed unless it 
is guaranteed that the thread will execute the store (ex- 
cluding situations such as a VirtualMachineError or 
ThreadDeath error). This is intended to a.llow the com- 
piler to use any form of static or ruiitime analysis t,o 
predict, which paths will bc taken ancl which exceptions 
c~aiinot be t,hrown. 

Scalar Replacement If a memory action A and a read 
action B reference the same non-volatile varia.ble and A 
and B are reordered so that B immetliat~ely follows A, 
then B can be repla.ced with a think action that com- 
putes the same value as was rend/written by A. This 
rule subsm1les both scalar replacement by the compiler 
and writ.e buffers within a processor. For example, this 
rule, combined with the reordering rules above, allow 
for the behavior seen in Figure 7. Wit,hout, this scalar 
repla.cement rule, such behavior would be illegal. 

Dead Store Elimination If two write actions A and B 
reference the same non-volatile variable and A and B 
are reordered so tha.t. A immediately precedes B, then 
A can be deleted. 

4.1 Comparison with the Old JMM 

My proposed Java memory model is neither stronger 
nor weaker than the existing .Java mc~mor,v model. My 

Initially: a[O] = 3, a[l] = a[21 = 0 
Processor 1 Processor 2 

Thread 1 Thread 2 Thread 3 Thread 4 
a.[11 = 2 w = a[l] a[21 = 1 Y = 421 

x = a[wJ 2 = a/y] I 
Anomalous result: w = 2, x = 0, y = 1, z = 0 

Figure 8: Interference by other threacls on same proces- 
so1 

model requires that memory operations not be re- 
ordered in a way that violations the data dependences 
of the program, while the old model does not. However, 
it, is hard to imagine how one could take advantage of 
the additional freedom offered by the old model. 

On the. other hand, my model does not. require Co- 
herence nor does it impose anomalous constraints such 
as shown in Figures 4 -. 5. 

4.2 Enforcing Coherence 

The above proposal is designed so that in the absence 
of synchronization, it has no impact on compiler opti- 
mizations and can be executed on architectures such as 
the Spare V9 RMO without memory barriers. However, 
it does not enforce Coherence, while the originn.1 JMM 
did. The only effect this has is on successive reads of 
the same variable. 

The benifits of enforcing Coherence is unc1ea.r. But 
if is it desired, Coherence can be enforced by changing 
rule 4 so that there is a direct. dependence even if both 
A and B a.re read actions. 

4.3 Threads, not Processors 

One issue that needs to be addressed is t,hat. processor 
memory models are in terms of processors, while the 
Java memory model is in terms of threads and has no 
concept of processors. Consider the example in Figure 
8. Threads 2 and 4 should only be able to see the writes 
to a [I] and a [2] through main memory. Which write 
ha.ppenetl first in main memory? If y = 0, then we must, 
have w = 2 and the write of a[13 occurring before the 
write of a[2]. If z = 0, then we must have x = 2 and 
the write of a[21 occurring before the write of a [I]. 
This suggests that the result in Figure 8 can’t happen. 

However, unless we a.re careful; it can. Consider the 
case where, on processor 1, the write t,o a[11 is initi- 
ated first, followed by the instructions for thread 2. On 
processor 2, the write to a[21 is executed before the in- 
structions for thread 4. All of the inst,ructions in thread 
2 and 4 finish execution before the writes from threads 
1 and 3 exit. the writ,e buffers on processors 1 And 2. In 
this case, w and x will get their values from the write 
buffer. and y and z co~lld get their values from the cachr 
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Init,iallv: 1) = new Poiiit.( 1.2) Iuit,iallv: this.1, = new Point(l.21 
.s - I I 

Thread 1 / l’llrc?atl 2 

1) = nfw Point(3,4): 1 i\ = p.x 

i\ = 0 (!?), 1 or 3 

Figure> !J: Rc~ortlering of field iuit,i;rlizatioll and ref up- 
rhtr 

Initiallv: tliis.1) = new Point,(l,21 
l’lll.cil(l 1 ” - 

\ I 

Thread 2 

synchronized (this) { 
t1lis.p = new Point(3,4);} il = tl1is.p.x; 

a = 0 (!?), 1 or 3 

Figure 10: Synchronized reordering of field initialization 
ilIlt rcaf rIl,clilt~c 

(which is coherent, because the writ,es haven’t exited the 
writ.e buffer). 

One way to fix this is to require i\ memory barrier 
wlieii swit.ching threads on a processor. On a multi- 
processor t,ha.t implement,ed t,he Spa.rc RMO memory 
motl~~l. you would need a Membar #Lookaside instruc- 
tion as part of a cont,ext. switch. The cont,ext switch is 
~)lOl)iIl)ly cxl)ensivc enough that you won’t. notice the 
cost. of t.llcA Membar instruction. 

011 au archit,ccture such as the Tera, which has 
scary fast (:oiit,ext-swit,chiiig (between instructions), this 
co~~lcl prrwe to be more of a. problem. It might be pos- 
siljlr t,o weaken the memory model t,o allow for the exe- 
c,ution shown in Figure 8, but I’ll leave that for another 
time. 

5 The JMM is too weak 

Josllua Bloch of Javasoft was one of the first to recognize 
that mauy of the idioms used in writing Java programs 
were not guaranteed to be safe a.ccording to the JMM. 
Consider the example in Figure 9. The JMM given in 
[GJS!X, Chap 171 doesn’t require that the writes initial- 
izing t,he point, allocated by t.hrewd 1 be sent to main 
memory before the writ,e of the reference to the newly 
crcat.cd point, into p, nor does it require tha.t the read 
of p .x be done aft,er t-he rea.d of p. 

This is rat,her unpleasant,. For one things, final fields 
aren’t final. Even if a field is declared as a final, this 
100phole ~o111d FLIIOW allother tllreild accessing the object 
might, see the defanlt value for the field. In all kinds of 
code, ~011 would need to worry il.l)ollt; whether the ol,ject 
a met.hotl is invoked on is properly initialized. 

Note that. syilcllroniza.t~ion isn’t a. magic fix t,o this 
problem. If we add syiicliloiiizat.ioil t,o t,lie updat,e, but 
llot t,o t,hc rcatl (as in Figure lo), we still have the ex- 
act. same problem; both all writes need to be sent to 

Thread 1 ” - 1 T&&d 2 
synchronized (this) { 

I synchronized (this) { 
t,mp = new Point(3,4);} a = this.p.x; 

I t1iis.p = tmp: } 
a. = 0 (!?): 1 or 3 

Figure 11: More synchronization doesn’t help 

public MyFrame extends Frame c 
private MessageBox mb; 
private showMessage(String msg) c 

if (mb == null) { 
synchronized(this) { 

if (mb == null) 
mb = new MessageBox(); 

3 
mb . setMessage (msg) ; 
mb.pack(); mb.show(); 

3 
// more methods and variables . . . 

3 

Figure 12: Double-check a.nd lazy instantiation idioms 

main memory before the unlock action, but they can 
be sent in any order. You might think that putting a 
monitorexit between the creation of the Point and the 
storing of the Point into this .p might fix the problem; 
this is equivalent to making the constructor synchro- 
nized (see Figure 11). Unfortunately, this doesn’t fix 
the problem either, because in the existing JMM, the 
write to-this .p can be moved above the monitorexit 
instruction. The only way to fix this in the existing 
JMM is to require that the reader be synchronized. 

Now of course, you can always say ‘(Don’t write code 
with race conditions!” But if you were writing a li- 
brary that was sensitive from a security viewpoint, you 
would have to worry about other programmers using 
race conditions to attack your code. To fix this, we 
probably need to make all of the getFoo() methods 
synchronized (a getFoo0 method is one that provides 
controlled access to a field/attribute Foe of an object). 
In the java.*, java.*.* and java.*.*.* packages of 
Sun’s 1.2 distribution, there are a total of 829 getFoo() 
methods that, return object references, of which only 26 
arc synchronized. Also, encouraging programmers to be 
very aggressive about using synchronization could also 
introduce more problems with deadlock. 

Another example of a programming idiom Jhat is un- 
safe according to the current JMM is the double-check 
and lazy instantiation idioms, described in a recent ar- 
t,icle [BW99b] and book [BW99a, Chap. 91. Figure 
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12 shows this idiom. This idiom is unsafe because the 
writes that. initialize the MessageBox don’t need to be 
sent. to main memory before the st,oring of the reference 
to t.he MessageBox into mb. 

I am convinced that we must fix this problem by 
making it possible t,o enforce au order on the writes. 
Trying to solve this problem :jOlely by requiring syn- 
chronization whenever accessing shared data just isn’t. 
going to work. 

I don’t, believe that. there arc any current *Java im- 
plelnent,At,ions that, could exhibit, the behavior shown 
in Figures 9 - 11. As a result, few developers would 
bother avoiding idioms like that. feeling confident that 
they won’t get bit. However, with advanced optimiz- 
ing compilers and aggressive architectures, we might. 
see this behavior down the road, at which point a huge 
codeba.se of mlsafe code will exist. 

Before trying to fix the problem. we should explore 
it in more deta.il. The basic problem in Figure 9 is 
that there are two writes to global memory tha.t can be 
reordered, eit,her by compiler optimizations or by the 
processor. There is no dependence forcing one write 
t,o come after the other, so the ordering is feasible and 
plausible unless we forbid it. If these writes are re- 
ordered, it, could be detected by other threads, possibly 
wit,11 severe consequences. The reads might also be re- 
ordered, but this is more difficult because the memory 
location reacl by the second read is dependent on the 
value read by the first read. 

In addition to arising in constructors, as shown in 
Figures 9 11, it also a.rises in the situat,ions shown 
in Figures 13 - 15. If we arc going t,o prohibit the 
anomalous beha.vior in Figures 9 - 11, we should also 
examine the beha.vior in Figures 13 15 and decide if 
t,hey need to be prohibit,ed. 

I am not going to give a definit,ive answer. Instead, I 
will suggest. several solutions, and discuss which behav- 
iors they prohibit n.ud their potent,ia.l impa.ct on com- 
piler optimizations. My suggestions are roughly or- 
dered from least protection/least cost t,o highest protec- 
tion/highest cost: except, making milock a bidirectional 
write-barrierl which I consider a necessary prerequisite. 

Unlock must be a bidirectional write-barrier The 
first fix tha.t must be ma.de to allow an ordering con- 
straint. to be imposed on writes. The existing JMM 
[GJS%& $17.G] prohibit,s moving a store/write to after 
an mllock action, but it. doesn’t prohibit a store/writ,e 
from being moved to before an unlock act,ion. The ex- 
isting Jh/IM can be pat,ched by making an rmlock action 
act as a bi-directional store/write barrier. In my pro- 
posecl new Java memory model. I have aheady make 
this change (item 3 of Section 4). 

Once this change is made, Figure: 11 can no longer 
exhibit. a.nomalous behavior. M)I~ might t,ry to fix t,lie 

p = new Point(l,l), q = new Point(2,2) 

Thread 1 Thread 2 
q.x = 3 

P=q a = p.x 
a = 1, 2 (!?) or 3 

Figure 13: Reor,dering of field update and ref update 

int a[] = {1,2}, b[] = {3,4} 
1 Thread 1 1 Thread 2 

I”F’_;:‘i=,r,l 
i = 1: 17 or 3 (?) 

Figure 14: Reordering of element updat,e and ref update 

problems in Figures 9 - 10 by declaring the constructors 
as synchronized. Unfortunately, that isn’t legal in Java. 
Without a.dditional changes, the only solution would be 
to put, synchronized blocks inside in each constructor. 
This would work, but. it would be a substant,ial pa.in. 

5.1 Don’t do that 

The easiest solution is to say “Don’t write programs 
with race conditions”, and to not prohibit any of the 
anomalous behavior. Although I think tha.t people need 
to be much more leery of race conditions than many 
are, I don’t recommend this approach. Among other 
problems, a package developer would have to worry too 
much about whether users were avoiding data ra.ces. 
A developer could put, synchronized blocks inside con- 
struct-ors to prohibit the behavior of Figures 9 - 10 on a 
case-by-case basis, but. I suspect few developers would. 

5.2 Allowing constructors to be synchronized 

By allowing programmers to specify that a const,ructor 
is synchronized, a developer could, on a case-by-case ba- 
sis, prohibit the behavior in Figures 9 10 This would 
be easier than putting synchronized blocks in construc- 
tor methods, but still I suspect few developers would 
bother doing so. 

5.3 Ordering writes across a constructor completion 

We could add the following rule to the set given in Sec- 
tion 4 

a if A and B are both writ,e actions, A writes to a field 
of an object X, B writes X into some variable, A 
occurs during some constructor C invoked to cre- 
ate X, and B occurs after C finishes, then there 
is a direct dependence ordering bet,ween A and B 
and they cannot. be reordered. 
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Notr tht siilcc tllew isil’t (alltl sllorlltlll’t Ix) 2Uly iICtiOl1 
correspo~lclillg to a. ccmpletion of a c:onst,rllctor, keep- 
ing track of this requirement, requires more t,han just 
looking at. t,llc> act,ions. In pa&c&r. if a construct01 
hits Imxi iiilinetl, then forcing tllcz itpImq)riate ordering 
coiistlwiiits might requir(a forcing sonic sort of memory 
barrier (i\S in Sc:ction 5.4). 

This will conlpletc~ prohibit t,llr> behavior Figure 9. It 
won’t compl&ly prohibit seeing pre-initialized values 
for fillill ficltls. If ;I construct,or passes this to another 
m&otl before all of the final fields arc initialized, the 
0thc>r inc~tlior! can set t,liein (blit, this is an evil prograni- 
ining styli’). This doesll’t. prohibit iany of the behavior 
in FigurcJs IS - 15. 

5.4 Forcing a write barrier after a constructor call 

117~ could say that t,lie completion of a constructor call 
ac:t,s as >I special barrier action. and add the rule: 

b if A i~utl B are a write action a.ntl a barrier action 
(either order), then there is a direct dependence 
ortlCng between A and B and they cannot. be re- 
OrdfIreC1. 

Tlic~ virt.uiil nii~cliine could (>nforce A rule that, the 
coinplet~ioii of a construct,or a.ct,etl as i\ write barrier, in 
thtl same way as a unlock action. This could apply to 
ill1 coiist.rrlct,ors, or the spec might. only require a write 
barrier at the coniple:tion of the out.erniost constructor 
(although put,ting one at, the completion of every con- 
structor would be allowed). 

This is similar to allowing constructors to be syn- 
chronized. But. since it doesn’t. act,ually lock the object, 
it. co~~ltln’t~ possibly cause deadlock and would likely 
have minimal effect,s on performance. Thus, we don’t 
have to worry about, which const,ructors to synchronize; 
wcl just force il. write ba.rrier aRer every object is con- 
structed. It also doesn’t force A. thread to empty the 
t,ll~~~iltl’s working memory, so it may be less expensive 
than synchronization. 

This approach is a lit,tle simpler to explain than rule 
:I above, since it is simply expla.ined in terms of actions. 
However. in code t,hat created lots of light weight ob- 
,jects (particularly if thr *Java language is changed to 
provitlc bett,er support, for light. wright. object,s than 
Cilll lx+ unboxed): t.he large number of memory barri- 
crs gcnerat.ed could significant,l,v rcdl~ce t,he t,ransforma- 
Cons t.liwt could be applied to t,lir program. 

5.5 Ordering writes 

If we wiult t,o prohibit t,he anomalous behavior in Fig- 
11res 13 14, we can do it. by iniposiiig constraints on 
t,he reortlcring of writes (the reordering of the reads in 
t,hcsc> ox;~mples is prohibit,ed by t.he data dependence 
I)etwecii t,lie two reads). 

WY have a couple of options as to how strong we 
wa.nt. this constraint. to be. The basic, strong form of it 
is: 

c if A and B are both write actions, A writes to a field or 
element. of an object X, B writes X into some vari- 
able, then there is a direct dependence ordering 
bct,ween A and B and they camlot be reordered. 

This would prohibit the anomalous behavior in Fig- 
ures 9 - 14. We can relax this with any combination of 
the following two options: 

1. Enforce c only if the A writes is to a field, not, an 
element,. 

2. Enforce c only if the B writes X to a volatile vari- 
able. 

One of the problems with enforcing this ordering is 
that we have to enforce it whenever a write m.ight be to 
a field/element of an object being stored by the later 
write. Others I discussed this with expressed the opin- 
ion that this constraint should only be enforced if the 
writ,es involve the same variable, so that you know they 
reference the same object. In other words, if I write to 
p.x, then I write p into some variable, then I can’t re- 
order the writes. However, if I write to p. x, and then I 
write q into some variable, than I can reorder them even 
though p and q might reference the same object. The 
problem with basing this constraint on variable names 
is that while variable names are fairly obvious in Java 
source code, they are not present in the Java virtual ma- 
chine. When writing p, the value being stored comes off 
of the stack and might have gotten there through any 
number of stack manipulation instructions. Defining 

this constraint so that it only enforced the constraint 
when the same “variable” is involved would be very dif- 
ficult to define and implement at the JVM level. 

A decision to enforce one of these constraints should 
not be made without an understanding of the perfor- 
ma.nce impact. Particularly due to the problem with 
aliases, the impact could be substantial (e.g., you would 
pretty mucll have to insert a write barrier before any 
store of an j ava lang . Object, because it might refer- 
ence any object that you have previously updated. 

If we enforce this constraint only when the second 
write is to a volatile field, I suspect the performance im- 
pact. will not be substantial. It makes a certain amount 
of sense, because if you are playing with data races, 
making your va.riables volatile is appropriate. 

5.6 Prohibit all write reorderings 

If you waat t,o prohibit the anomalous behavior in Fig- 
ure 15, I think you would really have to prohibit all 
write reorderings. But. I don’t think this should be se- 
riously considered. This example is just a straw man 
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a =I {1,2}, i =Ll 

py=y 

j = 1, 2(?!) or i7 

Figure 15: Reordering of element update and index up- 
dat,e 

to suggest that we are going to have t,o accept some 
anomalous behavior due to write reordering. 

6 Conclusion 

In this paper, I have described some of the problems 
with the existing Java. memory model: it has unfore- 
seen impacts on compiler optimizations, requires mem- 
ory ba.rriers on architectures such as t,he Spare RMO 
even in the absence of synchronization, renders unsa.fe 
programming idioms commonly used, and is very hard 
to understand. 

Intentionally writing code with clata races is some- 
thing best reserved for low-level native implementa- 
tions of synchronization primitives. Most, programmers 
should just not count on any specific behavior in code 
containing data races. However, the expectation that all 
objects are properly initialized (assuming the construc- 
tors are written properly), seems a worthwhile property 
to guarantee. 

The existing Java memory model impacts both com- 
piler optimization and insertion of memory barriers. 
Unfortunately, I have no empirical data on the per- 
formance impact of these issues. Part, of the problem 
is that the impact may be minima.1 now, but grow as 
compilers and processor architect,ures become more ag- 
gressive. 

More debate is needed on the Java memory model, 
and I have no illusions that this paper will settle the 
issue. But I hope it will be an important step in dis- 
cussions leading to a solution. 
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