
The Role of Natural Language in Requirements Engineering

Kevin Ryan

Dept. of Computer Science & Information Systems
University of Limerick

Ireland

Abstract
It is argued that the potential role of natural language

processing in the requirements engineering process has
been overstated in the past, possibly due to fundamental
misunderstandings of the requirements engineering process
itself. Since more realistic ambitions are likely to lead to
less disappointment in the future, an effort is made to
identify some phases and tasks where natural language
processing may usefully be applied. It is suggested that
the validation of requirements must remain an informal,
social process.

1. Introduction

The history of natural language processing (NLP), in
relation to the specification of systems and programs has
been bedevilled with many unrealistic suppositions and
presumptions. Given the critical and expensive nature of
current approaches to requirements engineering (RE) the
prospect of a support system that would automatically
understand a user's needs is, naturally, very appealing.
Numerous research projects have proposed to derive and
validate system requirements knowledge by means of a
natural, or "near natural" conversation with the prospective
client [eg 11, 121. This facility, it is fondly believed, is
both feasible and desirable and would make specification of
systems both easier and more accurate. Unfortunately this
belief is incorrect on both counts. In this brief paper, I
wish to assert that natural language processing does not
now, nor will it in the foreseeable future, provide a level
of understanding that could be relied upon, and even if it
could, it is highly questionable that the resulting system
would be of great use in requirements engineering.

2 Communication and language

One cause of these misconceptions about NLP may be
the view of RE as being essentially a problem in
interlanguage communication. The task of the systems
analyst, or latterly the knowledge engineer, is portrayed as
one of translation between the two specialist worlds of
computing and the application domain. There is no doubt

0-8186-3120-1/92 $3.00 Q 1992 IEEE

that the language of the application domain, and its
specialist jargon, is important in systems specification and
so the specifier/designer must exhibit some fluency in it if
the client is to have confidence in the result. But mere
understanding of the syntax or even the specific semantics
of a specialised language is not the most crucial factor in
bridging the communications gap. Of far greater
significance are the unstated assumptions that reflect the
shared ("common sense") knowledge of people familiar
with the social, business and technical contexts within
which the proposed system will operate [eg 11. The
intrinsic difficulty of modelling common sense knowledge
is well illustrated by the painfully slow progress in the
Cyc project [8]. Neither is it realistic to expect the client
to learn another language, the language of computing, so
that he or she may understand fully some arcane
specification language. This is not realistic for two
reasons. Firstly, because there is not just one but many
languages to be learned. Secondly, and mainly, because the
clients of other professionals (eg lawyers, architects) rely
on the professional to interpret their wishes and to
translate it as necessary into the specialised jargon. For all
these reasons, and with the wisdom of hindsight, we
would be well advised to avoid promises of systems that
will "understand" language in any meaningful way.
However, although the computing professional will not be
replaced by a super-intelligent natural language interface,
there are still a number of realistic uses for NLP in the RE
process.

3. NLP in the initial phases

The supposition, implicit in many NLP-based
requirements capture proposals [eg 133, that all
requirements for a future system normally exist in textual
form, is not borne out in reality. It is true that some
information occurs naturally as text, typically process
descriptions or predefined procedures, but much more is to
be found in diagrams or in the physical reality surrounding
the client. To rely solely on the text as a source of
knowledge or to expect the client to reduce all his or her
demands to a textual form is clearly impracticable.
Assuming however that the requirements definition task is

240

being performed by an intelligent human and that a
substantial body of machine readable text is available,
there is no doubt that tools to scan, search, browse and tag
that text could assist in developing a full and accurate
statement of needs [eg 91. This would definitely not imply
the automatic understanding of free text.

4. NLP in systems specification

The benefits of formal languages for requirements
specification have been well established and, increasingly,
formal verification is being required for critical systems
[3]. Natural language therefore can not be relied upon in
the development of a system specification. At the same
time however we must recognise that some important
requirements are difficult to quantify and may be
impossible to express in current formal specification
languages. For example, demands that a user interface be
"user-friendly", that a piece of code be "easily maintained"
or that a future alternative application be "bome in mind"
during a design can be crucial in meeting the business
needs of a client. Such demands are likely to be expressed
early on in the lifecycle but can easily be "refined out"
during the specification phase, mostly because they can
not easily be formalised. It would be preferable however,
to provide a requirements tracing facility that would tag
such requirements at an early stage, to guard against their
being lost, and would allow them to be incorporated in the
formal specification as natural language comments or
links in hyperdocuments. [see eg 71
It is also the case that descriptive textual and graphical

material greatly assists human understanding, not least
when it provides an alternative viewpoint on a formal
specification as advocated by Finkelstein [6]. Textual
material from the early phases of a project, when suitably
tagged and indexed, can provide the background
information and contextual clues that a human developer
or maintainer requires so as to understand the design goals
and decisions implicit in the finished system [141.

5. NLP in requirements validation

Validation of requirements is not the inverse of
requirements capture. That is to say that the objective is
not to generate a natural language script that fully
describes the system being specified and still less to
impute the corporate strategic goals that ultimately
motivate the proposed development. Instead, the objective
must be a social one, namely to demonstrate convincingly
the conformance of the specification to the client's needs.
Indeed it can be argued that all proofs are grounded in
social processes [8]. By definition an NLP system can
only be part of this process. However, we can envisage
systems that assist in various ways. A support system
might generate scripts of sample cases for the client's
approval. The cases could be chosen to reflect both
extreme (limiting) and average (expected) situations.

Graphics and animation, as used in prototyping systems,
would normally be needed to supplement any natural
language generated. A second promising approach is
critiquing, currently finding favour in expert systems
development. In the critiquing approach a system could
draw on previously processed cases, possibly stored as
schemas, and compare them to the emerging specification.
Where partial matches are found the differences are queried
and the specifier may then decide whether or not to accept,
and act on, the critique [see eg 5 , 103. This approach
would be greatly enhanced if a limited NL question and
answer facility were provided. This might deal, in a way
similar to rule-based expert systems, with questions such
as why, what-if, and why not. The answers to such
questions could be used by the client, or another domain
expert, to test and to validate the knowledge embodied in
the formal requirements specification.

6. The future of NLP in requirements
engineer in g .
The complexity of large scale systems is not a result of

specifying them accurately and completely but is, rather, a
reflection of their inherently complex nature. In this
regard, proposed "Just tell me" systems are a dangerous
illusion. Neither informal speech nor natural language text
is capable of expressing unambiguously the myriad facts
and behaviours that are included in large scale systems and
this would be true even if we had "solved" the problem of
natural language understanding, which we have not.
In fact, understanding in NLP seems to be a fractal-like

problem. As each small piece is closely examined it tums
out to be even harder than expected and to embody in it
many of the problems that were found at the earlier macro
stages. While it is conceivable that narrow domain
understanding of natural language may be achieved in the
medium term it would be foolish to depend on it to solve
the RE bottle-neck.
Instead we must accept that systems are, and will

increasingly be recognised to be, social organisms,
embodying everything from the deterministic microchip to
the emotional and personal needs of the people involved,
as argued, for example, by Checkland [2]. For future
systems we can expect that their technical performance
will be mathematically stated and verified but their
conformance to need will be judged, over time, within a
dynamic and essentially undefinable social context. It is in
supporting that social process, and not in supplanting it,
that natural language processing will have its proper role.

References

[I] B Adelson & E Soloway, '' The Role of Domain
Experience in Algorithm Design", IEEE Trans. on
Software Eng. V SE-11 No11 Nov.1985 pp 222-241.

[2] P Checkland, Systems Thinking, Systems Practice, John
Wiley, 1981

[3] B Cohen, "Justification of Formal Methods for System

24 1

Specification". IEE Software Engineering Journal,
(1)1989.

[4] R A de Millo, A J Lipton and A J Perlis, "Social Processes
and Proofs of Theorems and Programs" ,
Communications of the ACM, May 1979.
S F Fickas, "Automating the Analysis Process", 4th
Intemational Workshop on Software Specification and
Design, Calif. 1987

[6] A Finkelstein, "Multi-party Specifications", Proceedings
of 5th International Workshop on Software
Specification and Design", IEEE Pittsburg.

[7] J Kramer, K Ng, C Potts, K Whitehead, "Tool Support for
Requirements Analysis", IEE Software Engineering
Journal, (3)1988.

[SI D B Lenat, R V Guha, K Pittman, D Pratt and M Shepherd,
"Cyc: Toward Programs with Common Sense",
Communications of the ACM, [33][8] August 1990.

[9] P Loucopoulos P & R E M Champion, "Concept
Acquiisition and Analysis for Requirements

[5]

Acquisition", IEE Software Engineering Journal,
(2) 1990.

B Mathews & K Ryan, "Requirements Specification
using Conceptual Graphs", 2nd Intemational CASE
Conference, London UK, 1989.

P Punchello, P Tomgiani, F Pietri, R Burlon,B Cardile,
M Conti, ; "ASPIS : A Knowledge-Based CASE
Environment". IEEE Software, (5M21 March 1988. . . I . r

[121 C Rolland & C Proix, "A Natural h g u a g e Approach to
Requirements Engineering", 4th International CAiSE
Conference, Manchester UK, 1992

[13) M Saeki, H Horai, H Enomoto, "Sofitware Development
Process from Natural Language Specification", 1 lth
International Conference on Software Engineering,
1989.

[141 D Wile, "Program Developments: formal explanations
of implementations", Communications of the ACM
V26 No 11, November 1983.

242

