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Recursive Bayesian filtering for multitarget
track-before-detect in passive radars

Frederic Lehmann

Abstract

This paper presents a Bayesian algorithm for joint detection and tracking in a multitarget setting. Raw measurements are
processed using the track-before-detect framework. We first establish a Bayesian recursion, which propagates a probability of
target existence along with a target state probability density per delay/Doppler bin. In order to handle the nonlinearity of the
observation model obtained for OFDM-based passive radar, asuitable Gaussian mixture implementation is proposed.

Index Terms
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I. I NTRODUCTION

During the last two decades, there has been a renewed interest in passive radar systems for civilian and military applica-

tions [1]-[3]. We will consider a bistatic configuration, where the antennas used for transmission and reception are located

at different positions. The main characteristic of passiveradars is that they use commercial broadcasters as illuminators of

opportunity. Among the advantages, the detection and localization of targets is covert, continuous and also inexpensive, since

the transmitter needs neither frequency allocation nor extra hardware. However, since the transmitted signal is not under

control, existing systems relying on analog TV or FM transmissions suffer from large and time-varying sidelobes in the

ambiguity function [4]. Recently, passive surveillance radars based on digital audio broadcasting (DAB) [5] or digital video

broadcasting (DVB) [6] have been investigated [7]-[9]. These systems rely on base stations transmitting COFDM (Coded

Orthogonal Frequency Division Multiplexing) signals withgood bistatic range resolution and lower sidelobes. Moreover, the

presence of a powerful error correcting code enables to reconstruct a quasi error free copy of the transmitted signal at the

reference antenna for the purpose of crosscorrelation withthe signal at the measurement antenna. This operation, alsocalled

matched filtering, is used to generate raw measurements.

In this paper, we consider multiple target detection and tracking, which is a challenging problem due to the presence of an

unknown and varying number of moving targets in the environment.

Classical methods generate so-called plots by thresholding the raw measurements, which incurs missed detections and false

alarms due to the presence of clutter. The data association problem, which stems from the unknown association of plots with

targets and clutter, must be solved. Traditional solutionsinclude the multiple hypotheses tracker (MHT) [10], which propagates
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a number of association hypotheses in time, the joint probabilistic data association filter (JPDAF) [11], which updateseach track

with plots weighted by the corresponding association probabilities and the probability hypothesis density filter (PHDF) [12],

which propagates the first-order statistic of the random finite set of the targets in time.

In all the aforementioned techniques, the thresholding stage generating the plots incurs a loss of information, so these methods

may be far from optimal for very low signal-to-noise ratio (SNR) targets. A well-known alternative, referred to as track-before-

detect (TBD), processes the raw measurements without thresholding. This technique has essentially two advantages. Firstly,

TBD circumvents the data association problem. Secondly, information in a track can now benefit from long coherent integration

over time, so that the decision can be postponed until the endof the processing chain. Therefore a target, which is too weak to

generate detections after classical thresholding of raw measurements, could still be detected using TBD. In the batch method

proposed in [13]-[16], TBD is implemented via dynamic programming for single target detection. A generalization to multi-

target environments is provided in [17]. The main drawback of the batch method is that the state-space needs to be discretized

over a discrete grid. Therefore the root mean square errror (RMSE) for any target is approximately equal to half the grid bin

size, irrespective of the target’s actual SNR. Recursive Bayesian particle-based solutions have also been proposed in[18]-[19]

for a single target scenario. Since a continuous-valued state-space is used, the RMSE decreases with the target SNR. The

main interest of these methods is the introduction of a target existence variable, whosea posteriori probability is estimated

jointly with the target state. An extension to multitarget scenarios, which estimates recursively the number of targets along

with their states, was presented in [20]. This particle-based method jointly estimates the targets by augmenting the dimension

of the state-space. An obvious limitation is that this approach suffers from the curse of dimensionality [21] when the number

of targets grows.

In this paper, we introduce a recursive Bayesian TBD solution to the multitarget detection and tracking problem. The proposed

structure is inherited from classical radar detection theory, where the delay/Doppler space is divided into regularlyspaced

intervals. The size of a delay (resp. Doppler) bin corresponds to the delay (resp. Doppler) resolution of the radar system [22].

Implicitly, we assume as in classical radar detection, thatonly one target can be resolved within a single delay/Doppler bin.

In [19], single target TBD was achieved by computing recursively the probability of target existence and the probability

distribution function (pdf) of the target state, conditioned on target existence. In order to obtain a multitarget detection and

tracking algorithm, we generalize this idea so that each delay/Doppler bin is associated with a probability of target existence

and a target state pdf, conditioned on target existence. Since the observation model is a nonlinear function of the target state,

the desired Bayesian recursion requires some form of approximation, since it involves multiplications and integrals that cannot

be expressed in closed form. Unlike the computationally intensive particle filtering solution retained in [19], we use asingle
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Gaussian per delay/Doppler bin to propagate the target state pdf in time, in the same spirit as the Gaussian sum filter [23].

The resulting algorithm performs a surveillance of the entire state-space, since at each instant of time, each delay/Doppler bin

estimates the probability that a target is present (which isakin to fixed grid target detection) along with the corresponding target

state pdf (which is akin to continuous-valued state tracking). Therefore, our mixed discrete-continuous state-spaceformulation

retains the best of both worlds.

Throughout the paper, bold letters indicate vectors and matrices, whileIm denotes them × m identity matrix and0n×m

the n × m all-zero matrix. A diagonal matrix, whose diagonal entriesare stored in vectora and whose off-diagonal entries

are zero, is denoted bydiag{a}. N (x : m,P) denotes a Gaussian distribution of the variablex, with meanm and covariance

matrix P. sinc(.) (resp.Πa(.)) denote the sinus cardinal function (resp. the rectangle function that is zero outside the interval

[−a/2, a/2] and unity inside). The dot product of two vectorsu = [u1, u2, . . . , un]T andv = [v1, v2, . . . , vn]T is defined as

u.v =
∑n

i=1 uivi.

This paper is organized as follows. First, Sec. II describesthe system model adopted for passive radar using OFDM signals.

In Sec. III, the problem is cast into a mixed discrete-continuous state-space formulation. In Sec. IV, we introduce our Bayesian

recursion for TBD mutitarget detection and tracking. In Sec. V, we propose a tractable Gaussian mixture implementation.

Sec. VI describes several benchmark algorithms, adapted tothe targeted passive radar application. Finally, in Sec. VII, the

performances of the proposed algorithm are assessed through numerical simulations and compared with existing methods.

II. PASSIVE RADAR SYSTEM MODEL

In Sec. II-A, we model the signal at the receive antenna, assuming that the transmitter is an illuminator of opportunity

sending a COFDM signal. Matched filtering is discussed in Sec. II-B. Then, in Sec. II-C, we propose an apodization technique

to reduce the sidelobe level at the matched filter output.

A. Signal Model

Figure 1: About here.

In passive radar systems, the transmit and receive antennasare not collocated, as illustrated by Fig. 1. The illuminator of

opportunity sends a continuous COFDM signal of bandwidthB, whose complex baseband equivalent signal is denoted by

s(t). At the receive antenna, the contribution of a moving targethas the form [24]

sr(t) = A(t)ejθ(t)ej2πν(t)ts(t − τ(t)) + w(t). (1)

The time-dependent parametersA, θ, ν and τ denote the amplitude, the phase, the Doppler frequency and the propagation

delay, respectively. For simplicity, the contribution of clutter and ambient noise is modeled as a zero-mean complex additive
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white Gaussian noise (AWGN)w(t), with varianceσ2. Let xe, xr andx(t) denote the position of the emitter, receiver and

target in a 3D cartesian coordinate system. Letv(t) denote the target velocity vector. Letfc be the carrier frequency of the

COFDM signal andc the speed of light, thenτ(t) andν(t) can be expressed as [1]

τ(t) =
||x(t) − xe|| + ||x(t) − xr||

c

ν(t) =
fc

c
v(t).

(

x(t) − xe

||x(t) − xe||
+

x(t) − xr

||x(t) − xr||

)

.

We make the following assumptions:

Assumption 2.1:If multiple targets are present in the environment, their contributions add up in (1).

Assumption 2.2:The contribution of the direct path and ground clutter is below the noise floor using the methods suggested

in [3], namely physical shielding, Doppler processing, high gain antennas, sidelobe cancellation, adaptive beamforming or

adaptive filtering.

Assumption 2.3:Assuming perfect knowledge of the propagation delay of the direct path between the emitter and the

receiver, the receiver has a reference channel able to recover s(t) perfectly, since quasi error free detection is made possible

for COFDM signals with powerful error correcting codes [5]-[6].

B. Matched filtering

Coherent integration is performed by cross correlating thereceived signal with the reference signalsref (t), shifted in

delay and frequency. This operation is called matched filtering and has the property of maximizing the peak SNR [22].

To cancel unwanted side-peaks, the reference signalsref (t) must be chosen as the transmitted signals(t) with the following

modifications [9]: guard interval blanking, pilot carriersequalization for intra-symbol peak mitigation and pilot carriers filtering

for intersymbol peak mitigation.

Let T denote the integration time. Assuming thatT is sufficiently small, the signal parametersA, θ, ν and τ can be

considered as constant during each integration window. During thek-th integration window, the output of the matched filter

corresponding to a delay shiftt and frequency shiftf is given by

rk(t, f) =
1

T

(k+1)T−T/2
∫

kT−T/2

sr(θ)sref (θ − t)∗e−j2πfθdθ (2)

Injecting (1) into (2), we obtain

rk(t, f) = Aejθ

×
1

T

(k+1)T−T/2
∫

kT−T/2

s(θ − τ)sref (θ − t)∗e−j2π(f−ν)θdθ

+ zk(t, f)

(3)
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wherezk(t, f) is the noise term

zk(t, f) =
1

T

(k+1)T−T/2
∫

kT−T/2

w(θ)sref (θ − t)∗e−j2πfθdθ. (4)

Using the change of variableu = θ − t − kT , (3) becomes

rk(t, f) = Aejθe−j2π(f−ν)(t+kT )

×
1

T

T/2−t
∫

−T/2−t

s(u + kT + t − τ)sref (u + kT )∗e−j2π(f−ν)udu

+ zk(t, f)

(5)

Define the generalized ambiguity function (GAF) as

χ(t, f) =
1

T

T/2
∫

−T/2

s(u + t)sref (u)∗e−j2πfudu

≈ L sinc(Bt) × sinc(Tf).

(6)

where the approximation, which is valid forT sufficiently large, is a consequence of the rectangular spectrum of the OFDM

signal [25]. The parameter0 < L < 1 is the power loss factor induced by guard interval and pilot carriers modification [9].

Again, if T is sufficiently large, (5) can be written as

rk(t, f) = Aejθe−j2π(f−ν)(t+kT )χ(t − τ, f − ν) + zk(t, f). (7)

The noise termzk(t, f) is Gaussian distributed and has the following first and second-order statistics (see Appendix E)

E[zk(t, f)] = 0

E[zk(t, f)zk(t − θ, f − ϕ)∗] =
σ2

T
χ(θ, ϕ)e−j2πϕ(t+kT ).

(8)

Remark 2.4:According to (6), the correlation of the Gaussian noise in the second equation of (8) is significant only for

|θ| < 1/2B and |ϕ| < 1/2T .

C. Reduction of sidelobes

The sine cardinal envelope of the matched filter output in notacceptable, since sidelobes can be mistaken for targets or

mask nearby weak targets [22]. Various apodization techniques have been proposed to suppress the sidelobes. Linear sidelobe

reduction techniques are weighting functions applied to the matched filter output in the time domain [22]. These techniques are

simple to implement, but they cause an increase in the mainlobe width. Therefore, it is preferable to use nonlinear apodization.

We use the standard spatially variant apodization (SVA) technique [26], originally applied to in-phase (I) and quadrature (Q)

components of complex synthetic aperture radar (SAR) pixels. In our application, the SAR pixels are replaced by sampled

matched filter outputs. To achieve proper sidelobe cancellation with SVA, the sampling frequency on the delay and frequency

shift axis must be settled to a multiple of the Nyquist frequency [27]. That is, the matched filter output (7) is sampled at delay
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shifts and frequency shifts of the form

ti = t0 + i
1

RtB
, i = 0, . . . , I

fj = f0 + j
1

RfT
, j = 0, . . . , J

(9)

whereRt ∈ {1, 2} (resp.Rf ∈ {1, 2}) represents the integer delay (resp. frequency) shift oversampling factor. Note that an

efficient implementation of the discretized matched filter output using the fast Fourier transform (FFT) has appeared in[24],

where MUSIC or Basis Poursuit approaches where suggested toremove the sidelobes of the targets. More precisely, we use

the I&Q jointly SVA (also called Type 3 in [27]), since it was shown in [28] that this version of SVA introduces the smallest

distorsion on the noise pdf. Consequently, applying sampling and I&Q jointly SVA to (7), we obtain the following matrix of

noisy observations

yi,j
k = Aejθe−j2π(fj−ν)(ti+kT )χ̃(ti − τ, fj − ν) + ni,j

k , (10)

for i = 0, . . . , I and j = 0, . . . , J . Assuming that the remaining sidelobe contributions afterapodization are under the noise

floor, the apodized GAF becomes

χ̃(t, f) = L sinc(Bt)Π2/B(t) × sinc(Tf)Π2/T (t). (11)

Let yk = {yi,j
k } for 0 ≤ i ≤ I, 0 ≤ j ≤ J be the matrix of noisy observations at instantk, the collection of past and present

observations will be denoted byy1:k = {y1, . . . ,yk}.

Remark 2.5:We were able to verify experimentally that the noise termsni,j
k , for i = 0, . . . , I and j = 0, . . . , J can be

assimilated to a zero-mean Gaussian process, with only slighlty different variance and correlation properties with respect to

the original noise before SVA.

Remark 2.6:The delay and frequency resolution are independently determined by the bandwidthB and the integration time

T , respectively. Moreover, thanks to SVA apodization, the range and Doppler ambiguities have been removed.

III. D ISCRETE-TIME DYNAMICAL SYSTEM MODEL

Since our objective is to perform Bayesian multitarget detection and tracking, we introduce a suitable state-space represen-

tation (see Sec. III-A). In each bin (to be defined), a discrete-valued random variable models the presence or absence of a

target and a continuous-valued random variable models the kinematic state of the target.

Then, we will turn our attention to the dynamics of the proposed model by considering two cases. In the first case, we study

the dynamics of the proposed system within a given bin (see Sec. III-B). This is the standard behavior, since when a target

appears in a given bin, it will typically remain in that bin for a number of consecutive time steps. Then, we treat the case

when a target crosses the boundaries of a bin (see Sec. III-C). Indeed, proper boundary conditions must be provided, so that

that a target crossing bin boundaries is not lost.
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A. State-space representation

Figure 2: About here.

The discretization of the delay and frequency shifts in (9) defines an implicit partition of the delay/frequency plane into

bins, as illustrated by Fig. 2. We define thei-th delay bin as the interval[ti−1, ti], for i = 1, . . . , I. Similarly, define thej-th

frequency bin as the interval[fj−1, fj ], for j = 1, . . . , J . The delay/frequency bin(i, j) is then defined as[ti−1, ti]× [fj−1, fj].

We associate a target existence variableei,j
k to the delay/frequency bin(i, j). At the discrete instantk, ei,j

k = 0 (resp.ei,j
k = 1)

corresponds to the absence (resp. presence) of a a target in bin (i, j). We noteP i,j
b (resp.P i,j

d ) the prior probability of target

birth (resp. death) in bin(i, j).

We now turn our attention to the target’s kinematic state. Assume the presence of a point target in bin(i, j), with delayτk,

Doppler frequencyνk and Doppler rateζk during thek-th integration window. After SVA apodization, the matchedfilter output

response to a single target corresponds to a thumbtack ambiguity diagram [22]. Therefore the only significant radar signal

returns corresponding to the presence of a target in bin(i, j) areyi−1,j−1
k , yi,j−1

k , yi−1,j
k andyi,j

k . Consider the four complex

SVA outputs in (10)yi−1,j−1
k , yi,j−1

k , yi−1,j
k andyi,j

k and let us ignore the noise contribution for the moment. According to

(10), yi−1,j−1
k , yi,j−1

k correspond to the same frequency shift samplefj−1, and the phase rotation between them is negligible,

considering that1/RtB ≪ 1 for OFDM signals. We letaI
k + jaQ

k be the common complex amplitude ofyi−1,j−1
k andyi,j−1

k .

With the same reasoning, we letbI
k + jbQ

k be the common complex amplitude ofyi−1,j
k andyi,j

k . Collecting all these variables,

we obtain the kinematic state vectorxk = [aI
k, aQ

k , bI
k, bQ

k , τk, νk, ζk]T .

B. Intra-bin dynamics

Considering that the Doppler frequency is proportional to the first-order derivative of the delay and using a constant

acceleration model, the dynamics of the target, at the discrete time instantk, are described by






τk = τk−1 − νk−1
T
fc

νk = νk−1 + ζk−1T
ζk = ζk−1

(12)

Using the dynamical model for the complex amplitude introduced in [29], we obtain

8

>

>

>

<

>

>

>

:

aI
k = cos [2π(νk−1 − fj−1)T ] aI

k−1 − sin [2π(νk−1 − fj−1)T ] aQ
k−1

a
Q
k = sin [2π(νk−1 − fj−1)T ] aI

k−1 + cos [2π(νk−1 − fj−1)T ] aQ
k−1

bI
k = cos [2π(νk−1 − fj)T ] bI

k−1 − sin [2π(νk−1 − fj)T ] bQ
k−1

b
Q
k = sin [2π(νk−1 − fj)T ] bI

k−1 + cos [2π(νk−1 − fj)T ] bQ
k−1

(13)

(12) and (13) can be written as a discrete-time process equation

xk = f(xk−1) + uk, (14)

where the process noiseuk ∼ N (07×1,Q) accounts for unmodeled perturbations and is assumed independent of the observation

noise. Therefore, for the most common target behavior, thatis when a target continues to exist in bin(i, j) for two consecutive
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time instants

p(xk|xk−1, e
i,j
k = 1, ei,j

k−1 = 1) = N (xk : f(xk−1),Q) (15)

A kinematic state birth pdf can be defined in a similar way as

p(xk|e
i,j
k = 1, ei,j

k−1 = 0) = N
(

xk : xi,j
b ,Pi,j

b

)

, (16)

where the mean
x

i,j
b = [0, 0, 0, 0, (ti−1 + ti)/2, (fj−1 + fj)/2, 0]T

is located at the middle of a bin(i, j) and the covariance matrix

P
i,j
b = diag{[σ2

a, σ2
a, σ2

a, σ2
a, ((ti − ti−1)/10)

2, ((fj − fj−1)/2)
2, σ2

ζ ]}

accounts for the initial uncertainty on the state variableswithin bin (i, j). In particular,σ2
a andσ2

ζ are related to the dynamic

range of the target amplitude and of the Doppler rate, respectively.

C. Inter-bin dynamics

We first introduce a few useful notations. LetN(i, j) = {(i, j), (i−1, j), (i+1, j), (i, j−1), (i, j+1)} be the set containing

(i, j) and the first-order neighborhood of(i, j). Since a target can migrate from time to time from a bin(m, n) ∈ N(i, j)\(i, j)

to bin (i, j), boundary conditions must be defined for the dynamics.

We begin with the definition of transition probabilities forthe discrete-valued target existence variable. LetP (i, j|m, n,y1:k−1)

be the probability that a target present in bin(m, n) ∈ N(i, j) \ (i, j) at instantk − 1, travels to bin(i, j) at instantk, given

y1:k−1 and given that it does not die out. For simplicity, we proposean expression which depends only onτ̂m,n
k−1|k−1 and

ν̂m,n
k−1|k−1, which are respectively the delay and Doppler estimate, conditional on a target existence in bin(m, n) and on all

the observations seen so fary1:k−1. For a frequency bin crossing, we choose

P (i, j|i, j − 1,y1:k−1) = exp

(

−αν

∣

∣

∣
ν̂i,j−1

k−1|k−1 − fj−1

∣

∣

∣

2
)

P (i, j|i, j + 1,y1:k−1) = exp

(

−αν

∣

∣

∣
ν̂i,j+1

k−1|k−1 − fj

∣

∣

∣

2
) (17)

whereαν is a real parameter of choice. The proposed expression has the desirable property that the transition probability is

close to1 when ν̂i,j±1
k−1|k−1 approaches a frequency bin boundary and vanishes exponentially otherwise. Similarly, delay bin

transition probabilities have the form

P (i, j|i − 1, j,y1:k−1) = exp

(

−ατ

∣

∣

∣
τ̂ i−1,j
k−1|k−1 − ti−1

∣

∣

∣

2
)

P (i, j|i + 1, j,y1:k−1) = exp

(

−ατ

∣

∣

∣
τ̂ i+1,j
k−1|k−1 − ti

∣

∣

∣

2
)

.

(18)

On the contrary,P (i, j|i, j,y1:k−1), the probability that a target present in bin(i, j) at instantk − 1 remains in bin(i, j) at

instantk, given y1:k−1 and given that it does not die out, should be close to one far from the boundaries of bin(i, j) and
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vanish exponentially in the vicinity of the boundaries. Thus we can use

P (i, j|i, j,y1:k−1) = 1−max

(

exp

„

−αν

˛

˛

˛

ν̂i,j
k−1|k−1 − fj−1

˛

˛

˛

2
«

+ exp

„

−αν

˛

˛

˛

ν̂i,j
k−1|k−1 − fj

˛

˛

˛

2
«

,

exp

„

−ατ

˛

˛

˛

τ̂ i,j
k−1|k−1 − ti−1

˛

˛

˛

2
«

+ exp

„

−ατ

˛

˛

˛

τ̂ i,j
k−1|k−1 − ti

˛

˛

˛

2
«

)

.

(19)

According to the discussion on complex amplitudes at the endof Sec. III-A, the kinematic state transition pdf for a delay

bin transition needs no modification with respect to (15)

p(xk|xk−1, e
i,j
k = 1, ei−1,j

k−1 = 1)

= p(xk|xk−1, e
i,j
k = 1, ei+1,j

k−1 = 1) = N (xk : f(xk−1),Q) .

(20)

However, for a frequency bin transition, the kinematic state transition pdf needs a slight modification, as indicated inAp-

pendix A, to take into account the occurrence of a sharp phasejump.

D. Observation likelihood

From the discussion in Sec. III-A, the likelihood of the noisy observations considered for an existing point target in bin

(i, j), conditioned onxk can be written as

p
(

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |ei,j
k = 1,xk

)

= N
(

y
i,j
k : hi,j(xk),R

)

,

(21)

where

y
i,j
k =



























Re(yi−1,j−1
k )

Im(yi−1,j−1
k )

Re(yi,j−1
k )

Im(yi,j−1
k )

Re(yi−1,j
k )

Im(yi−1,j
k )

Re(yi,j
k )

Im(yi,j
k )



























is the vector of real observations associated with bin(i, j). The observation noise covariance matrixR and the nonlinear

observation functionhi,j(.) are derived from (10). Namely, the observation function hasthe form

hi,j(xk) =

























aI
kχ̃(ti−1 − τk, fj−1 − νk)

aQ
k χ̃(ti−1 − τk, fj−1 − νk)
aI

kχ̃(ti − τk, fj−1 − νk)

aQ
k χ̃(ti − τk, fj−1 − νk)

bI
kχ̃(ti−1 − τk, fj − νk)

bQ
k χ̃(ti−1 − τk, fj − νk)
bI
kχ̃(ti − τk, fj − νk)

bQ
k χ̃(ti − τk, fj − νk)

























. (22)

Similarly, we have

p
(

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |ei,j
k = 0

)

= N
(

y
i,j
k : 08×1,R

)

.

(23)
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Remark 3.1:The covariance matrixR is obtained straightforwardly from (8), if one assumes thatSVA apodization has a

negligible impact on the noise statistics. Alternatively,one can estimate the covariance matrix using the technique proposed

in [15].

IV. BAYESIAN RECURSION FORTBD MULTITARGET DETECTION AND TRACKING

Our objective is to perform a global surveillance of the entire state-space without omission, at each instant of time. To

achieve this, we propose to estimate the probability that a target is present (which is akin to target detection) along with

the corresponding target kinematic state pdf (which is akinto target tracking) in each delay/frequency bin. Since Bayesian

filtering is of interest in the present paper, we must calculate thea posteriori target existence probability,P (ei,j
k = 1|y1:k),

along with the pdf of an existing target’s kinematic statep(xk|e
i,j
k = 1,y1:k), for each bin(i, j). From an implementation

point of view, it is desirable to derive this filter in a recursive form. Sec. IV-A shows how to propagate thea posteriori target

existence probability in time for each bin. Similarly, Sec.IV-B shows how to propagate thea posteriori pdf of an existing

target’s kinematic state in time for each bin. The issues of target detection and post-processing are discussed in Sec. IV-C and

IV-D, respectively. Fig. 3 illustrates the complete TBD multitarget detection and tracking processing chain.

Figure 3: About here.

To derive the desired recursions we also need two simplifying assumptions:

Assumption 4.1:At most one target can be located in a given bin.

Assumption 4.2:A target present in bin(i, j) at instantk − 1, has either died out or is surviving in one of the bins

(m, n) ∈ N(i, j) at instantk.

Considering the system model of Sec. II, assumption (4.1) issubstantiated by the fact that the size of a bin corresponds

to the delay/frequency resolution of the radar system. Assumption (4.2) is justified by the limited speed of the targets,which

cannot instantly travel through multiple delay/frequencybins.

A. Target existence probability

Under assumptions (4.1) and (4.2), the predicted target existence probability in bin(i, j) can be expanded over the presence

of targets in bins(m, n) ∈ N(i, j) at the previous time instant and the birth of a target in bin(i, j) at the current time instant

P (ei,j
k = 1|y1:k−1)

= P (ei,j
k = 1, ei,j

k−1 = 0|y1:k−1)+
X

(m,n)∈N (i,j)

P (ei,j
k = 1, em,n

k−1 = 1|y1:k−1)

= P i,j
b P (ei,j

k−1 = 0|y1:k−1)+
X

(m,n)∈N (i,j)

P (i, j|m, n, y1:k−1)(1− P m,n
d )P (em,n

k−1 = 1|y1:k−1)

(24)
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The birth, death and bin transition probabilitiesP i,j
b , Pm,n

d andP (i, j|m, n,y1:k−1), for (m, n) ∈ N(i, j) have been defined

previously in Sec. III.

The Bayesian correction step proceeds as follows

P (ei,j
k = 1|y1:k) ≈

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1,y1:k−1)

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |y1:k−1)

× P (ei,j
k = 1|y1:k−1).

(25)

As explained in Appendix B, this formula, although not exact, leads to a tractable solution. We also provide a justification of

this approximate Bayesian correction step, relying on the apodization introduced in Sec. II-C.

The numerator in the first line of the right-hand side (RHS) of(25) can be evaluated by marginalizing out the kinematic

state

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1,y1:k−1)

=

Z

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k ,xk|e
i,j
k = 1,y1:k−1)dxk.

Applying Bayes’s rule, we obtain

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, y1:k−1)

=

Z

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, xk)

× p(xk|e
i,j
k = 1,y1:k−1)dxk.

(26)

The first term in the integrand is (21) and the second term is the predicted pdf of an existing target’s kinematic state in bin

(i, j), whose expression will be calculated in Sec. IV-B. Now, applying the total probability theorem to the denominator in the

first line of the RHS of (25)

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |y1:k−1) =

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, y1:k−1)P (ei,j

k = 1|y1:k−1)+

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 0, y1:k−1)P (ei,j

k = 0|y1:k−1),

(27)

which is obtained by combining (26) with (23) and (24).

B. pdf of an existing target’s kinematic state

Under assumptions (4.1) and (4.2), the predicted target kinematic state pdf in bin(i, j) can be expanded over the presence

of targets in bins(m, n) ∈ N(i, j) at the previous time instant and the birth of a target in bin(i, j) at the current time instant

p(xk|e
i,j
k = 1, y1:k−1) =

P i,j
b P (ei,j

k−1 = 0|y1:k−1)

P (ei,j
k = 1|y1:k−1)

p(xk|e
i,j
k = 1, ei,j

k−1 = 0)

+
X

(m,n)∈N (i,j)

P (i, j|m, n,y1:k−1)(1− P m,n
d )P (em,n

k−1 = 1|y1:k−1)

P (ei,j
k = 1|y1:k−1)

× p(xk|e
i,j
k = 1, em,n

k−1 = 1,y1:k−1).

(28)

The proof is postponed to Appendix C.

Thus the predicted target kinematic state pdf in bin(i, j) can be interpreted as the weighted sum of several terms:

• the birth densityp(xk|e
i,j
k = 1, ei,j

k−1 = 0), defined previously as (16)
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• the continuing densityp(xk|e
i,j
k = 1, ei,j

k−1 = 1,y1:k−1), corresponding to a target that already existed in bin(i, j) at

instantk − 1

• the migration densitiesp(xk|e
i,j
k = 1, em,n

k−1 = 1,y1:k−1), corresponding to targets existing in adjacent bins(m, n) ∈

N(i, j) \ (i, j) at instantk − 1 and migrating to bin(i, j) at instantk.

The continuing density is evaluated by marginalizing out the kinematic state at the previous time instant

p(xk|e
i,j
k = 1, ei,j

k−1 = 1,y1:k−1)

=

Z

p(xk,xk−1|e
i,j
k = 1, ei,j

k−1 = 1, y1:k−1)dxk−1

=

Z

p(xk|xk−1, e
i,j
k = 1, ei,j

k−1 = 1)

× p(xk−1|e
i,j
k−1 = 1, y1:k−1)dxk−1,

(29)

where in the third line,p(xk|xk−1, e
i,j
k = 1, ei,j

k−1 = 1) is the intra-bin kinematic state transition pdf of Sec. III-B and

p(xk−1|e
i,j
k−1 = 1,y1:k−1) is the target kinematic state pdf in bin(i, j) at the previous time instant. Similar expressions are

obtained for the migration densities when(m, n) ∈ N(i, j) \ (i, j)

p(xk|e
i,j
k = 1, em,n

k−1 = 1, y1:k−1) =
Z

p(xk|xk−1, e
i,j
k = 1, em,n

k−1 = 1)p(xk−1|e
m,n
k−1 = 1, y1:k−1)dxk−1,

(30)

wherep(xk|xk−1, e
i,j
k = 1, em,n

k−1 = 1) is the inter-bin kinematic state transition pdf of Sec. III-C andp(xk−1|e
m,n
k−1 = 1,y1:k−1)

is the target kinematic state pdf in bin(m, n) at the previous time instant.

From Bayes’s rule, we have

p(xk|e
i,j
k = 1,y1:k) =

p(yk|e
i,j
k = 1, xk, y1:k−1)

p(yk|e
i,j
k = 1,y1:k−1)

× p(xk|e
i,j
k = 1, y1:k−1).

Now, applying the same approximation as in Appendix B (see Appendix D), a tractable Bayesian correction formula for the

kinematic state pdf in bin(i, j) follows

p(xk|e
i,j
k = 1,y1:k)

≈
p(yi−1,j−1

k , yi,j−1
k , yi−1,j

k , yi,j
k |e

i,j
k = 1, xk)

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, y1:k−1)

× p(xk|e
i,j
k = 1, y1:k−1).

(31)

The second line of (31) is a measurement likelihood ratio, whose numerator is given by (21) and whose denominator has been

calculated as (26). The third line of (31) is the predicted kinematic state pdf in bin(i, j) given by (28).

Conditional on a target existence in bin(i, j), we definex̂
i,j
k|k = [âI

k|k
i,j , âQ

k|k
i,j , b̂I

k|k
i,j , b̂Q

k|k
i,j , τ̂ i,j

k|k, ν̂i,j
k|k, ζ̂i,j

k|k]T as the

minimum mean-square error (MMSE) estimate of the kinematicstate, containing thea posterioriestimate of the amplitudes,

the delay, the Doppler and the Doppler rate. The expression of x̂
i,j
k|k is given by

x̂
i,j
k|k =

∫

xkp(xk|e
i,j
k = 1,y1:k)dxk. (32)
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C. Target detection and state estimation

In convential multitarget detection algorithms, the detection stage takes place before Bayesian filtering. TBD algorithms, on

the contrary, perform detection and kinematic state estimation at the output of a Bayesian filter fed with raw measurements,

to avoid information loss. A maximum posterior mode (MPM) approach for target detection is applied in each bin, followed

by a MMSE criterion for kinematic state extraction, as described in Table I. The output of the algorithm is a list of bins

containing detected targets,Dk, and the corresponding list of kinematic state estimates,Ek. Note that inconsistent bins, where

the a posteriori delay estimatêτ i,j
k|k (resp. Doppler estimatêνi,j

k|k) falls outside the prescribed boundaries of the bin within a

margin of±tmarg (resp.±fmarg), are discarded.

Dk = ∅
Ek = ∅
for i = 1 to I do

for j = 1 to J do
ComputeP (ei,j

k = 1|y1:k) according to (25)
Compute
x̂

i,j
k|k = [âI

k|k
i,j , âQ

k|k
i,j , b̂I

k|k
i,j , b̂Q

k|k
i,j , τ̂ i,j

k|k, ν̂i,j
k|k, ζ̂i,j

k|k]T

according to (32)
if τ̂ i,j

k|k /∈ [ti−1 − tmarg, ti + tmarg] or

ν̂i,j
k|k /∈ [fj−1 − fmarg, fj + fmarg] then

P (ei,j
k = 1|y1:k) := 0

p(xk|e
i,j
k = 1, y1:k) := N

`

xk : xi,j
b ,Pi,j

b

´

end if
if P (ei,j

k = 1|y1:k) > 0.5 then
Dk := {Dk, (i, j)}
Ek := {Ek, x̂i,j

k|k}
end if

end for
end for

TABLE I
TARGET DETECTION AND KINEMATIC STATE ESTIMATION PROCEDURE AT INSTANT k.

D. Track classification

There are several issues associated with the simple detection scheme proposed in Sec. IV-C, which need to be treated. These

issues can be related to the observation model, given by (21)and (23).

Firstly, this model is valid only if the apodized GAF (11) is negligible outside the extent of the delay/frequency bin where

the hypothesized target is located. This assumption is valid for the low SNR targets of interest in TBD, but is violated for

high SNR targets, especially when the delay and Doppler oversampling factorsRt and Rf are greater than one. Thus high

SNR targets create redundant false tracks in neighboring bins, which must be detected and cancelled. This phenomenon is

even amplified by the target existence probability prediction equation (24), which shows an inherent tendency for high SNR

targets to “leak” into adjacent bins, especially when a target gets close to the boundaries of the bin in which it is located.
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The second issue is the absence of superposition model for the observations in our work. Unlike the model retained in [20],

there is no explicit way in (21) and (23) to model the fact thata given observation takes into account the contribution of

several closely spaced targets. This implies that closely spaced targets cannot be allowed, so they must be merged, at least

temporarily, to a single track.

A simple remedy to the issue of redundant and partially overlapping tracks which makes engineering sense, is to use guard

bands [30]. Consider a given detected bin(i, j) ∈ Dk containing a potential target (i.e. whose probability of target existence

exceeds50% according to the detection rule of Sec. IV-C), we assign the same class to all the detected bins located within

2Rt delay bins and2Rf frequency bins. The resulting classification algorithm is explicited in Table II. Then, among all

detected bins having the same class, the valid track is chosen as the one located in bin(i, j), which maximizes thea posteriori

instantaneous energy defined as

Ei,j
k|k =

(

âI
k|k

i,j
)2

+
(

âQ
k|k

i,j
)2

+
(

b̂I
k|k

i,j
)2

+
(

b̂Q
k|k

i,j
)2

.

Initialize a classification tableC = 01×|Dk|

class:=1
while at least one element of tableC is equal to0 do

Let dfirst be the index of the first element in tableC
such thatC[dfirst] = 0
Retrieve the bin(i, j) ← Dk[dfirst] containing a target
detection
for d = 1 to |Dk| do

(m, n)← Dk[d]
if |i−m| ≤ 2Rt and |j − n| ≤ 2Rf then

C[d] :=class
end if

end for
class:=class+1

end while

TABLE II
CLASSIFICATION OF THE DETECTED BINS AT INSTANTk.

V. GAUSSIAN MIXTURE IMPLEMENTATION

In TBD systems, the observation model is in general nonlinear in the target state. In particular for the passive radar

application of interest in the present paper, the observation model (21), conditional on a target existence in a given bin, is

nonlinear. Therefore, the Bayesian recursion of Sec. IV requires some form of approximation, since the multiplication(31) in

the correction step and the prediction integrals (29)-(30)cannot be expressed in closed form.

In the same spirit as the Gaussian sum filter [23], we approximate the target kinematic state pdf in each delay/frequency

bin by a Gaussian mixture. Thus (32) is just the mean of the Gaussian mixture in the corresponding bin, which also greatly

simplifies the target kinematic state extraction.
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A. Prediction of the kinematic state

Assume that at instantk − 1, the target kinematic state pdf in any delay/frequency bin(i, j) has the form

p(xk−1|e
i,j
k−1 = 1, y1:k−1) = N (xk−1 : xi,j

k−1|k−1,P
i,j
k−1|k−1). (33)

Then, for(m, n) ∈ N(i, j), the expressions (29)-(30) have the form

p(xk|e
i,j
k = 1, em,n

k−1 = 1,y1:k−1)

=

Z

p(xk|xk−1, e
i,j
k = 1, em,n

k−1 = 1)

×N (xk−1 : xm,n
k−1|k−1,P

m,n
k−1|k−1)dxk−1,

where the kinematic state transition pdfp(xk|xk−1, e
i,j
k = 1, em,n

k−1 = 1) is given byN (xk : f(xk−1),Q) according to Sec. III-B

and Sec. III-C (with a slight modification off(.) andQ indicated in Appendix A whenm = i andn = j±1). We recognize that

the prediction integrals (29)-(30) correspond to the prediction step of the well-known extended Kalman filter [31], consequently

∀(m, n) ∈ N(i, j)
p(xk|e

i,j
k = 1, em,n

k−1 = 1,y1:k−1) ≈ N (xk : xm,n
k|k−1, P

m,n
k|k−1), (34)

where 

















x
m,n
k|k−1 = f(xm,n

k−1|k−1)

F
m,n
k =

∂f(xk−1)

∂xk−1

˛

˛

˛

xk−1=x
m,n

k−1|k−1

P
m,n
k|k−1 = F

m,n
k P

m,n
k−1|k−1F

m,n
k

T + Q

Injecting (16) and (34) into (28), we obtain a Gaussian mixture form for the prediction of the kinematic state pdf in bin(i, j)

p(xk|e
i,j
k = 1, y1:k−1) ≈

P i,j
b P (ei,j

k−1 = 0|y1:k−1)

P (ei,j
k = 1|y1:k−1)

N
“

xk : xi,j
b ,Pi,j

b

”

+
X

(m,n)∈N(i,j)

P (i, j|m, n,y1:k−1)(1− P m,n
d )P (em,n

k−1 = 1|y1:k−1)

P (ei,j
k = 1|y1:k−1)

×N (xk : xm,n
k|k−1,P

m,n
k|k−1).

(35)

B. Correction of the kinematic state

Using (21) and (35), the numerator of the Bayesian correction equation (31) becomes

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, xk)p(xk|e

i,j
k = 1,y1:k−1) ≈

P i,j
b P (ei,j

k−1 = 0|y1:k−1)

P (ei,j
k = 1|y1:k−1)

N
“

xk : xi,j
b ,Pi,j

b

”

N
“

y
i,j
k : hi,j(xk),R

”

+
X

(m,n)∈N(i,j)

P (i, j|m, n,y1:k−1)(1− P m,n
d )P (em,n

k−1 = 1|y1:k−1)

P (ei,j
k = 1|y1:k−1)

×N (xk : xm,n
k|k−1,P

m,n
k|k−1)N

“

y
i,j
k : hi,j(xk),R

”

.

Regarding the products of Gaussians appearing in the previous formula, we easily recognize the correction step of the

classical extended Kalman filter [31]. Therefore,

N
“

xk : xi,j
b ,Pi,j

b

”

N
“

y
i,j
k : hi,j(xk),R

”

≈N
“

y
i,j
k : hi,j(xi,j

b ),Hi,j
b P

i,j
b H

i,j
b

T + R
”

×N
“

xk : x
(i,j)
b|k , P

(i,j)
b|k

”

,
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where,


































H
i,j
b =

∂hi,j(xk)

∂xk

˛

˛

˛

xk=x
i,j
b

K
i,j
b = P

i,j
b H

i,j
b

T
“

H
i,j
b P

i,j
b H

i,j
b

T
+ R

”−1

x
(i,j)
b|k = x

i,j
b + K

i,j
b

“

y
i,j
k − hi,j(xi,j

b )
”

P
(i,j)
b|k = P

i,j
b −K

i,j
b H

i,j
b P

i,j
b

Using the same reasoning, we have

N (xk : xm,n
k|k−1,P

m,n
k|k−1)N

“

y
i,j
k : hi,j(xk),R

”

≈N
“

y
i,j
k : hi,j(xm,n

k|k−1),H
m,n
k P

m,n
k|k−1H

m,n
k

T + R
”

×N
“

xk : x
(m,n)→(i,j)

k|k ,P
(m,n)→(i,j)

k|k

”

,

where,


































H
m,n
k =

∂hi,j(xk)

∂xk

˛

˛

˛

xk=x
m,n

k|k−1

K
m,n
k = P

m,n
k|k−1H

m,n
k

T
“

H
m,n
k P

m,n
k|k−1H

m,n
k

T + R
”−1

x
(m,n)→(i,j)
k|k = x

m,n
k|k−1 + K

m,n
k

“

y
i,j
k − hi,j(xm,n

k|k−1)
”

P
(m,n)→(i,j)
k|k = P

m,n
k|k−1 −K

m,n
k H

m,n
k P

m,n
k|k−1

It follows that the numerator of the Bayesian correction step (31) for the kinematic state in bin(i, j) can be written as the

Gaussian mixture

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, xk)p(xk|e

i,j
k = 1,y1:k−1) ≈

P i,j
b P (ei,j

k−1 = 0|y1:k−1)

P (ei,j
k = 1|y1:k−1)

×N
“

y
i,j
k : hi,j(xi,j

b ),Hi,j
b P

i,j
b H

i,j
b

T + R
”

×N
“

xk : x
(i,j)
b|k ,P

(i,j)
b|k

”

+
X

(m,n)∈N (i,j)

P (i, j|m, n,y1:k−1)(1− P m,n
d )P (em,n

k−1 = 1|y1:k−1)

P (ei,j
k = 1|y1:k−1)

×N
“

y
i,j
k : hi,j(xm,n

k|k−1),H
m,n
k P

m,n
k|k−1H

m,n
k

T + R
”

×N
“

xk : x
(m,n)→(i,j)

k|k ,P
(m,n)→(i,j)

k|k

”

.

(36)

Moreover, according to (26), the denominator of (31) is obtained by marginalizing outxk in (36)

p(yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, y1:k−1) ≈

P i,j
b P (ei,j

k−1 = 0|y1:k−1)

P (ei,j
k = 1|y1:k−1)

N
“

y
i,j
k : hi,j(xi,j

b ),Hi,j
b P

i,j
b H

i,j
b

T + R
”

+
X

(m,n)∈N(i,j)

P (i, j|m, n,y1:k−1)(1− P m,n
d )P (em,n

k−1 = 1|y1:k−1)

P (ei,j
k = 1|y1:k−1)

×N
“

y
i,j
k : hi,j(xm,n

k|k−1),H
m,n
k P

m,n
k|k−1H

m,n
k

T + R
”

.

(37)

We also remind that (37) is sufficient to calculate the correction step of the target existence probability in bin(i, j) (see (25)

and (27)).

Finally, to propagate the target kinematic state pdf at the next time instant, we need the Gaussian approximation (33) tohold

also at instantk, otherwise the number of Gaussian components would grow with time. In other words, the Gaussian mixture

approximation that we obtained for (31) must be collapsed toa single Gaussian of the form

p(xk|e
i,j
k = 1,y1:k) = N (xk : xi,j

k|k,Pi,j
k|k). (38)
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using a moment-preserving merge [32]. This makes engineering sense, since it is desirable to keep the same computational

complexity per bin at each time instant.

Remark 5.1:Note thatx(i,j)
b|k (resp.P(i,j)

b|k ) represent the kinematic state estimate (resp. covariancematrix) corresponding

to a target birth in bin(i, j) at instantk, given the present noisy observations. Similarly,x
(m,n)→(i,j)
k|k (resp.P(m,n)→(i,j)

k|k )

represent the kinematic state estimate (resp. covariance matrix) corresponding to a target present in bin(m, n) ∈ N(i, j) at

instantk − 1 and in bin(i, j) at instantk, given the past and present noisy observations. It appears that the computation of

these quantities in each bin, originates from a bank of 6 parallel extended Kalman filters, one corresponding to a target birth,

one corresponding to a target continuation in the same bin and 4 target migrations from adjacent bins. It is well known that the

complexity of one recursion of the extended Kalman filter isO(N3
x) [21], whereNx is the dimension of the target kinematic

state. Therefore, the computational complexity of the Gaussian mixture implementation of the Bayesian multitarget detection

and tracking algorithm of Sec. IV can be evaluated asO(6IJN3
x) per iteration.

VI. B ENCHMARK ALGORITHMS FOR MULTITARGET DETECTION/ TRACKING

A. Batch processing TBD for multitarget detection and tracking

An interesting benchmark algorithm for our method is the batch processor proposed in [17]. Indeed, this TBD algorithm

detects automatically the number of targets present in the environment and also jointly tracks their trajectories. This method

relies on discretizing the state-space with a fixed grid. In our passive radar application, the state-space is the delay /frequency

shift plane and the fixed grid is defined by (9). The total number of discrete states is therefore(I +1)× (J +1). Joint tracking

and detection of multiple targets is achieved using a generalized likelihood ratio testing strategy (GLRT) [17], whichreduces

to a Viterbi tracking algorithm (VTA) [14], whose cost metric is the raw matched filter output associated with each discrete

state. Due to the limitations in the target dynamics, we assume that each discrete state(i, j) can experience a state transition

only towards one of the nine states centered on(i, j), from scank to scank + 1. Coherent integration is performed over

consecutive scans indexed byk = 1, . . . , M , whereM is a parameter of choice equal to the depth of the VTA.

Assume that the maximum number of targets is fixed toKmax. In order to maintain a reasonable complexity without

sacrificing the performances,Kmax prospective targets are found using a suboptimum strategy,known as the single-pass

successive-target-cancellation VTA (SP-STC-VTA) (we refer the reader to [17] for details). Basically, the method finds the

Kmax best admissible paths terminating at depthM using backtracking, with the constraint that two targets cannot be located at

the same position at the same scan. In order to perform fair comparisons, we enforce the same constraint as in the classification

algorithm of Table II: if there exists a scan1 ≤ k ≤ M , for which the current best tentative path is in state(m, n), while

one of the previous best validated paths is in a state(i, j), such that|i − m| ≤ 2Rt and |j − n| ≤ 2Rf , then the current best

tentative path is discarded, otherwise it is validated.
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The number of targets in the environment is estimated using the generalized Neyman-Pearson method proposed in [17].

The method depends on a Lagrange multiplier, whose value is chosen so as to achieve a fixed probability of false alarm. The

selected tracks correspond to the best paths among theKmax validated paths at the output of the SP-STC-VTA.

Once a batch ofM consecutive scans has been processed, the next batch is processed in exactly the same way. Fig. 4

illustrates the operations performed by the TBD batch processor.

Ignoring the contribution of backtracking and estimation of the number of targets, the computational complexity of thebatch

processor can be evaluated asO(9IJ) per scan.

Figure 4: About here.

B. JPDAF multitarget tracking

The JPDAF [11] is an interesting benchmark algorithm for ourTBD method for several reasons. Firstly, the JPDAF is a well

established classical method that uses thresholded matched filter outputs as observations. This will enable us to checkthe benefit

of TBD on the passive radar application of interest in this paper. Secondly, JPDAF performs multitarget tracking, assuming that

the correct number of targets is known. This will enable to check whether the proposed TBD algorithm, which has no prior

knowledge on the time-varying number of targets, can detectautomatically the birth and death of targets in the environment.

Thirdly, the JPDAF is an assumed-density algorithm, very similar in spirit to the Gaussian mixture implementation of the

proposed TBD algorithm. Based on all measurements that are likely to be assigned to a given target, the JPDAF computes

the posterior distribution of the kinematic state as a Gaussian mixture, which is collapsed to a single Gaussian using moment-

matching to ensure a constant complexity per iteration, exactly in the same way as in Sec. V.

Fig. 5 illustrates the complete detection and JPDAF multitarget tracking processing chain. After matched filtering andSVA

apodization, at instantk, the set of raw measurements are thresholded to form the listDk containing the(i, j) such that

|yi,j
k | > λ, where the thresholdλ corresponds to the desired probability of false alarm,Pfa. It is well-known that each target is

detected with probabilityPd, which depends onPfa and on the SNR. Since the derivation of the JPDAF enforces theconstraint

that each thresholded measurement can be assigned to at mostone target [11], it is necessary to ensure that this constraint is

verified for the application of interest. As mentioned previously in Sec. IV-D, this assumption is likely to be valid for the low

SNR targets, but may be violated for high SNR targets, especially when the delay and Doppler oversampling factorsRt and

Rf are greater than one. A simple workaround is to apply the classification algorithm of Table II to the listDk, in order to

avoid unwanted multiple measurements per target. Then, among all detected bins having the same class, the valid measurement

is chosen as the one located in bin(i, j), which maximizes the instantaneous energy|yi,j
k |2. A set of thresholded measurements

D̃k is formed by associating each retained bin(i, j) to the noisy delay/Doppler measurement(t0 + i 1
RtB

, f0 + j 1
Rf T ). Using a
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state-space representation similar to the one proposed in Sec. III-A, the new kinematic state vectorx̃k = [τk, νk, ζk]T follows

the linear model

{

x̃k = Fx̃k−1 + ũk

ỹk = Hx̃k + ñk, with ỹk ∈ D̃k
(39)

where the process and measurement noisesũk andñk are modeled as zero-mean independent, white Gaussian processes with

covariance matrices̃Q and

R̃ = diag{[(ti − ti−1)
2/12, (fi − fi−1)

2/12]},

respectively. Moreover, the transition and measurement matrices are given by

F =





1 − T
fc

0

0 1 T
0 0 1



 (40)

and

H =

[

1 0 0
0 1 0

]

. (41)

Figure 5: About here.

By performing gating, the correct measurement for a given target, if detected, lies within the gate with probability close to

one. This procedure makes the JPDAF efficient, since unlikely candidate measurements for association inD̃k are disregarded.

Finally, the JPDAF [11] calculates the marginal posterior density of the kinematic state for each target as a Gaussian mixture,

where each Gaussian component accounts for the fact that either one of the gated measurements inD̃k is correct or none of

the gated measurements is correct. The mixture weights correspond to the association probabilities. Next, the Gaussian mixture

is merged to a single Gaussian.

VII. S IMULATION RESULTS

A. Parameters

The position of the receive antenna in a 3D cartesian coordinate system is given byxr = [0, 0, 0]T and the position of

the emitter is given byxe = [−50 × 103,−50 × 103,−3]T , where all quantities are expressed in meters. The illuminator of

opportunity sends a DAB signal using transmission mode I [5].

It follows that the duration of the useful part (resp. the guard interval) of an OFDM symbol is 1 ms (resp. 246µs). So

the duration of an OFDM symbol is 1246µs. The number of transmitted subcarriers is 1536, thereforethe total bandwidth is

B = 1.536 MHz. Each subcarrier uses quadrature phase shift keying (QPSK) modulation. The carrier frequency is set to 230

MHz. We use a constant amplitude model (Swerling0), which is reasonable considering that in the VHF frequencyband, the

target radar cross section (RCS) changes slowly with respect to the aspect angle [33].



20

Matched filtering is performed with an integration timeT , corresponding to 32 consecutive OFDM symbols, which amounts

to an integration gain of47.87 dB. The matched filtering oversampling factor for the delay shift (resp. frequency shift) is

chosen asRt = 1 (resp.Rf = 2). This results in a delay bin of sizeTs = 1/RtB ≈ 0.65µs and a frequency bin of size

1/RfT ≈ 12.54 Hz. This validates the point target model adopted in this paper, since the bistatic range resolution isc/B ≈ 195

m. The first delay shiftt0 = 257/RtB corresponds approximately to the propagation delay of the direct path between the

emitter and the receiver and the extent of the surveillance volume is determined by the number of other delay shift samples,

I = 1150. Due to the limitations imposed on target velocities, the frequency shifts of interest are in the interval[−400, 400]

Hz, so we setf0 = −400 andJ = 64.

For the proposed TBD method of Sec. IV, in the absence of priorinformation, we choose a uniform probability of target

birth (P i,j
b = 10−5) and a uniform probability of target death (P i,j

d = 10−5) over all bins. Regarding the parameters of the

intra-cell dynamics, the kinematic birth pdf is such thatσa = 100, which corresponds approximately to a40 dB SNR difference

between the target with lowest and highest possible SNR, andσζ is set to 5 Hz/s, so as to track targets with acceleration jumps

up to severalg’s, whereg denotes the acceleration of gravity. Similarly, in (14) which corresponds to the process equation of

a continuing target, the autocorrelation matrix of the process noise is set to

Q = diag{[0, 0, 0, 0, 0.012, 0.012, σ2
ζ ]}.

The parameters of the inter-cell dynamics were set by experimentation toατ = 100 × (RtB)2 andαν = 1. Also, for the bin

boundary margins of Sec. IV-C,tmarg = 0 andfmarg is equal to 5 percent of the size of a frequency bin.

The batch TBD method of Sec. VI-A uses the same matched filter and SVA apodization as the proposed TBD algorithm,

followed by a SP-STC-VTA with depthM = 5 consecutive scans and backtracking overKmax = 8 prospective targets. The

generalized Neyman-Pearson method for estimating the number of targets in the environment uses a Lagrange multiplier,whose

value is chosen so as to achieve a fixed probability of false alarm equal to10−4.

The JPDAF method of Sec. VI-B also uses the same matched filterand SVA apodization as the proposed TBD algorithm,

followed by a thresholding step such that the false alarm rate is fixed toPfa = 10−5. In order to test both methods in the

same conditions, the autocorrelation matrix of the processnoise in (39) is set to

Q̃ = diag{[0.012, 0.012, σ2
ζ ]}.
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TABLE III
TARGET PARAMETERS FOR THE CONSTANT VELOCITY SCENARIO.

SNR (dB) Initial position (km) Velocity (m/s) Birth Death

Target per sample x(t = 0) v(t) instant (s) instant (s)

Target 1 −34 [70, 70, 10]T [200, 150, 0]T 0.4 1.6

Target 2 −14 [−70,−70, 10]T [100, 100, 55]T 0.4 1.6

Target 3 −14 [10,−60, 5]T [−100,−200, 20]T 0.4 1.4

Target 4 −34 [50,−50, 0]T [−100,−40, 50]T 0.4 1.6

Target 5 −34 [−50,−50, 2]T [70, 200, 60]T 0.4 1.6

Target 6 −34 [30, 40, 20]T [180,−180,−50]T 0.4 1.4

TABLE IV
TARGET PARAMETERS FOR THE MANEUVERING SCENARIO.

SNR (dB) Initial position (km) Initial Velocity (m/s) Peak

Target per sample x(t = 0) v(t = 0) acceleration

Target 1 −34 [70, 70, 10]T [200, 150, 0]T 4 g

Target 2 −34 [−70,−70, 10]T [100, 100, 55]T 4 g

Target 3 −34 [10,−60, 5]T [−100,−200, 20]T 4 g

B. Constant velocity scenario with a time-varying number oftargets

We first consider a scenario with a time-varying number of targets with constant velocity in the surveillance region. The

parameters of the targets are given in Table III.

The proposed TBD method with Gaussian mixture implementation and the batch TBD method have no prior knowledge

on the birth/death instants and kinematic state of the targets. On the contrary, the JPDAF method has perfect knowledge of

the birth/death instants for each target. At the birth of each target, the JPDAF starts a new track with perfect kinematicstate

initialization. At the death of each target, the JPDAF dropsthe corresponding track. Targets with SNR per sample of -34 dB

(resp. -14 dB ) are detected with probabilityPd ≈ 0.8 (resp.Pd ≈ 1) corresponding toPfa = 10−5. Thus, the prior information

available to the JPDAF is equivalent to ideal target detection, so that the JPDAF merely performs multitarget tracking.For

that reason, JPDAF serves as a benchmark to assess the performance of the TBD method, whose task is to perform multitarget

detection and tracking jointly.

Fig. 6 (resp. Fig. 7) shows the true and estimated normalizedbistatic delay (resp. Doppler shift) using the proposed TBD

method for the scenario of Table III. We observe that the proposed algorithm detects all targets and that the birth and death

instants are recovered satisfactorily. In general, the kinematic state is estimated with with good precision, except for a few

time instants for the targets with lowest SNR. Indeed, we note that target 4 has one missed detection aroundt = 0.86 s and

for target 6, the Doppler shift exhibits a small outlier around t = 0.82 s. A simple data association post-processing, similar to

the association algorithms implemented in classical radartracking (for example in the JPDAF), would easily solve the missed

detection and outlier problem, though.
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Fig. 8 (resp. Fig. 9) shows the true and estimated normalizedbistatic delay (resp. Doppler shift) using the batch TBD method

for the scenario of Table III. Thanks to the coherent integration overM consecutive scans, the batch TBD algorithm has good

detection performances, since the number of targets along with the birth and death instants are recovered satisfactorily. However,

the state estimates are either jagged around the correct trajectory (see for instance target 1 and 6 on Fig. 9) or experience a

bias (see for instance target 2 and 3 on Fig. 9) . This phenomenon, visible on the Doppler estimates, is due to the fact that the

SP-STC-VTA is forced to choose its sequence of state estimates among discrete values. Although not included due to lack of

space, a zoom on the bistatic delay estimates would show exactly the same phenomenon.

Fig. 10 (resp. Fig. 11) shows the true and estimated normalized bistatic delay (resp. Doppler shift) using the JPDAF method

for the scenario of Table III. The JPDAF has an inherent capacity to correct the missed detections and the outliers in addition

to false alarm filtering, by performing data association. However, it is assumed that the time-varying number of targetsis

perfectly known. Another drawback of the JPDAF method comesfrom the discretization of the thresholded measurements into

delay and frequency bins, which can introduce a relatively high bias and/or variance in the estimation of the kinematic state.

This phenomenon is particularly apparent on the Doppler estimates of target 2 in Fig. 11.

Moreover, note that the SVA apodization step is very effective, otherwise the sidelobes of the two high SNR targets would

have created false double tracks and also would have masked the weaker targets for all methods.

C. Maneuvering scenario

We also consider a maneuvering scenario with three targets subject to an acceleration jump. The characteristics of the targets

are given in Table IV.

Fig. 12 (resp. Fig. 13) shows the true and estimated normalized bistatic delay (resp. Doppler shift) using the proposed TBD

method for the maneuvering scenario of Table IV. The missed detection observed for target 1 aroundt = 0.6 s is not due to

a loss of target track, as one may expect. This rather exemplifies an occasional behavior of the TBD algorithm, which can

be explained as follows. When a target crosses the boundary of a frequency bin, occasionally the posterior target existence

probability (25) temporarily drops below the0.5 threshold imposed by the detection rule of Table I. A few (typically one ore

two) time steps later, the posterior target existence probability will rise again above the threshold, thanks to the information

gathered from future observations. A possible remedy for this occasional behavior could be to lower the detection threshold

artificially for targets about to cross a frequency bin, or apply a simple data association post-processing to suppress the missed

detections, as already advocated in Sec. VII-B. Nevertheless, a zoom on target 1 provided in Fig. 14 and Fig. 15, confirms that

the detection of targets crossing several delay or frequency bins is in general not a problem, thanks to an appropriate choice

of inter-bin dynamics in Sec. III-C. Also, the proposed TBD method is quite robust to severe acceleration jumps, despitethe
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fact that a simple near constant acceleration model was adopted to model the target dynamics.

Fig. 16 to 19 show the results for the maneuvering scenario ofTable IV using the batch TBD method. In particular, the

zoom on target 1, provided in Fig. 18 and Fig. 19 shows that thediscrepency between the actual and estimated kinematic state

can be quite large due to the discretization of the state-space into delay and frequency bins. Comparing Fig. 18 and 19 with

Fig. 14 and 15, we notice that the batch TBD algorithm provides only a rough discretized estimate of the target trajectories,

while the proposed TBD method provides significantly bettertracking accuracy.

Fig. 20 to 23 show the results for the maneuvering scenario ofTable IV using the JPDAF method. Again the data association

performed by the JPDAF corrects the missed detections and the outliers and filters out the false alams. In particular, thezoom

on target 1, provided in Fig. 22 and Fig. 23, reveals the effect of the discretization of the thresholded measurements into delay

and frequency bins. The in-built Kalman filtering of the JPDAF is able to smooth out effectively the discretization effect on

the delay shift estimates, as can be seen from Fig. 22. However, comparing Fig. 15 and Fig. 23, the proposed TBD method

outperforms the JPDAF in terms of precision of the Doppler estimates. In particular, note that the proposed TBD algorithm

recovers quasi instantaneously from the severe acceleration jump aftert = 1.2 s, while the JPDAF will take time to do so.

These findings are confirmed by Monte Carlo simulations by simulating the maneuvering scenario of Table IV100 times

with independent observation noise realizations. The resulting performances in terms of RMSE are shown in Fig. 24 to 29.As

expected, the RMSE of the bistatic delay for the batch TBD method oscillates between0.03 (when the true continuous-valued

state variable is equal to a discrete state) and0.5 (when the true continuous-valued state variable is halfwaybetween two

discrete states) times the size of the bin used to discretizethe state-space. Regarding the JPDAF method, after the beginning

of the acceleration jump, the RMSE of the normalized delay shift experiences a severe overshoot for target 2 and 3, and

then stabilizes to a value between 0.05 and 0.1. For the proposed TBD method, after the begin of the acceleration jump, the

RMSE of the normalized delay shift experiences a moderate overshoot only for target 3, and then also stabilizes to a value

between 0.05 and 0.1. However, the Doppler RMSE for the JPDAFis generally more than twice the value of the RMSE of

the proposed method. Moreover, we observe that for target 1 in Fig. 29, the Doppler RMSE increases to a value almost equal

to the frequency bin size, after the end of the acceleration jump. This behavior can be attributed to the bias in the JPDAF

method mentioned before.

D. Comparison between the different approaches

The batch TBD processor is a fixed grid method able to detect targets accurately over the entire state-space. However, it

provides only a rough estimate of the target’s kinematic state as a byproduct, with unpredictable error spikes equal to half

the size of the discretization bins, even for high SNR targets. Therefore, the batch TBD processor is suitable for applications,
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where the detection of dim targets is of primary interest, while track accuracy is of secondary interest. Also, as for anybatch

algorithm, a processing latency equal toM scans must be tolerated before a new (resp. old) track can be detected (resp.

deleted).

The JPDAF assumes prior knowledge of the number of targets and prior knowledge of the kinematic state when a track

is initiated. Therefore, the JPDAF acts as a track maintenance algorithm. In practice, detection would have to be performed

separately using an additional track initiation and deletion method [35]. The limitation of this two-step procedure isdetermined

by the detection threshold. In order to detect the dim targets of interest in the present paper, the detection threshold must

be set to a low value, which has two consequences. Firstly, this results in many false tracks being initiated from clutter

measurements [35]. Secondly, the average number of scans needed to change the status (true or false) of a tentative trackwill

increase [35]. Regarding the tracking performances, unlike the batch TBD algorithm, the JPDAF is a continuous-valued state

estimation method, that delivers smoothed estimated target trajectories thanks to in-built Kalman filters. However, error spikes

occur in the delay and Doppler estimates during abrupt changes of the target acceleration. Also, the JPDAF is a recursive

method, which delivers new estimates at each scan without processing delay.

Thanks to its mixed discrete-continuous state-space representation, the proposed TBD method retains the best of both worlds,

by performing Bayesian detection of a unknown number of multiple targets over the entire state-space on a per bin basis and

joint tracking of the continuous-valued kinematic state within each bin. Also, the proposed TBD algorithm is recursive, thus

without processing latency. Another benefit of the proposedTBD method is its ability to track targets with high acceleration

jumps without the error spikes in the delay and Doppler estimates that one would expect to see for the simple near constant

acceleration kinematic model advocated in the paper. Therefore, the passive radar application under consideration does not

need multiple model approaches [34]. These benefits come at the cost of higher computational resources. On a 3.16 GHz Intel

Xeon machine with a Matlabc© implementation (without taking advantage of the high degree of parallelism that the methods

offer), the average running time for processing1.6 s of OFDM signal was equal to 190 min. for the proposed TBD method,

4.77 min. for the batch TBD method and 3.55 min. for the JPDAF method.

VIII. C ONCLUSIONS

In the context of passive radars using illuminators of opportunity sending OFDM signals, the generalized ambiguity function

(GAF) of the signal presents a high sidelobe level. For conventional radar techniques, based on thresholding the matched filter

output, the sidelobes of high SNR targets would typically create false double tracks and mask low SNR targets. The proposed

approach uses SVA apodization at the matched filter output sampled at a multiple of the Nyquist frequency, both in the delay

and frequency shift domain, in order to cancel the sidelobes. As a result, the low SNR targets are revealed as well, but the
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detection and tracking of such targets is known to be a difficult task. In this paper, we introduced a novel track-before-detect

(TBD) method suitable for multitarget detection and tracking of an unknown and time-varying number of targets. We introduce

a Bayesian framework based on a mixed discrete-continuous representation of the state-space in each delay/frequency bin

induced by the matched filter sampling. The proposed algorithm performs detection by calculating the posterior probability of

target existence, and tracking by computing the kinematic state probability density function conditional on a target existence,

on a per bin basis. A suboptimal implementation based on a Gaussian mixture approximation is then introduced in order

to get a tractable solution. Numerical experiments demonstrated the validity of the proposed approach for an illuminator of

opportunity sending a DAB signal, in a non-maneuvering and amaneuvering multitarget scenario. Future developments will

include the extension to passive multistatic and active monostatic radar systems.

Figure 6 to 29: About here.

APPENDIX A
K INEMATIC STATE TRANSITION PDF FOR A FREQUENCY BIN TRANSITION

For the frequency bin transition(ei,j
k = 1, ei,j−1

k−1 = 1), (12) is still valid, but (13) must be modified in the following manner

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τk = τk−1 − νk−1
T
fc

νk = νk−1 + ζk−1T
ζk = ζk−1

where the third and fourth equation take into account the sharp phase transition due to the frequency bin transition in a

conservative manner, by applying to the state variablesbI
k andbQ

k the same amplitude uncertainty as for a target birth, that is

the amplitude dynamical range. We deduce the slight modification of f(.) andQ required in (15) to obtainp(xk|xk−1, e
i,j
k =

1, ei,j−1
k−1 = 1).

Similarly, for the frequency bin transition(ei,j
k = 1, ei,j+1

k−1 = 1), (12) is still valid, but (13) must be modified in the following

manner
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τk = τk−1 − νk−1
T
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νk = νk−1 + ζk−1T
ζk = ζk−1

where the first and second equation take into account the sharp phase transition due to the frequency bin transition in a

conservative manner, by applying to the state variablesaI
k andaQ

k the same amplitude uncertainty as for a target birth, that is

the amplitude dynamical range. We deduce the slight modification of f(.) andQ required in (15) to obtainp(xk|xk−1, e
i,j
k =

1, ei,j+1
k−1 = 1).
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APPENDIX B
BAYESIAN CORRECTION FOR THE TARGET EXISTENCE PROBABILITIES

Using Bayes’s rule, we obtain
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wherey∗
k = yk \ {yi−1,j−1

k , yi,j−1
k , yi−1,j

k , yi,j
k }. This formula holds exactly, but is intractable, since it involves long range

dependencies between the matched filter outputs for a given integration window. Thanks to the thumbtack ambiguity diagram
imposed by the apodization of Sec. II-C, matched filter outputs corresponding to different bins can be considered as statistically
independent. Therefore, we can neglect the dependence ofyi−1,j−1

k , yi,j−1
k , yi−1,j

k , yi,j
k ony∗

k (see also the discussion in Rem 2.4
and 2.5). For similar reasons, the following approximationholds

p(y∗
k|e

i,j
k = 1, y1:k−1) ≈ p(y∗

k|y1:k−1)

(see the discussion in Sec. III-A).

Therefore, the desired result (25) follows.

APPENDIX C
PROOF OF THE TARGET KINEMATIC STATE PREDICTION FORMULA

Applying the total probability theorem, we have

p(xk|e
i,j
k = 1, y1:k−1) =

p(xk|e
i,j
k = 1, ei,j

k−1 = 0, y1:k−1)P (ei,j
k−1 = 0|ei,j

k = 1, y1:k−1)

+
X

(m,n)∈N(i,j)

p(xk|e
i,j
k = 1, em,n

k−1 = 1, y1:k−1)

× P (em,n
k−1 = 1|ei,j

k = 1,y1:k−1).

(43)

Note thatp(xk|e
i,j
k = 1, ei,j

k−1 = 0,y1:k−1) is the kinematic state birth pdf in bin(i, j), therefore the dependence ony1:k−1

can be dropped.

Let us first calculateP (ei,j
k−1 = 0|ei,j

k = 1,y1:k−1) using Bayes’s rule

P (ei,j
k−1 = 0|ei,j

k = 1,y1:k−1)

=
P (ei,j

k = 1|ei,j
k−1 = 0, y1:k−1)P (ei,j

k−1 = 0|y1:k−1)

P (ei,j
k = 1|y1:k−1)

.

Since P (ei,j
k = 1|ei,j

k−1 = 0,y1:k−1) represents thea priori probability of target birth in bin(i, j) at instantk, which is

independent of the past observations, we obtain

P (ei,j
k−1 = 0|ei,j

k = 1, y1:k−1) =
P i,j

b P (ei,j
k−1 = 0|y1:k−1)

P (ei,j
k = 1|y1:k−1)

. (44)
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In the same way, let us apply Bayes’s rule to calculateP (em,n
k−1 = 1|ei,j

k = 1,y1:k−1) when (m, n) ∈ N(i, j)

P (em,n
k−1 = 1|ei,j

k = 1,y1:k−1)

=
P (ei,j

k = 1|em,n
k−1 = 1, y1:k−1)P (em,n

k−1 = 1|y1:k−1)

P (ei,j
k = 1|y1:k−1)

,

whereP (ei,j
k = 1|em,n

k−1 = 1,y1:k−1) represents the probability of target existence in bin(i, j) at instantk, given that a target
exists at the previous instant in bin(m, n) ∈ N(i, j) and given the set of past observations. Using the notations and assumptions
introduced in Sec. III-C, we have

P (ei,j
k = 1|em,n

k−1 = 1, y1:k−1) = P (i, j|m, n,y1:k−1)(1− P m,n
d ).

Thus

P (em,n
k−1 = 1|ei,j

k = 1, y1:k−1)

=
P (i, j|m, n,y1:k−1)(1− P m,n

d )P (em,n
k−1 = 1|y1:k−1)

P (ei,j
k = 1|y1:k−1)

.
(45)

Injecting (44) and (45) into (43) completes the proof.

APPENDIX D
BAYESIAN CORRECTION FOR THE TARGET KINEMATIC STATE

Using Bayes’s rule, we obtain

p(yk|e
i,j
k = 1,xk,y1:k−1)

p(yk|e
i,j
k = 1, y1:k−1)

=
p

`

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k ,y∗
k|e

i,j
k = 1,xk,y1:k−1

´

p
`

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k ,y∗
k|e

i,j
k = 1, y1:k−1

´

=
p

`

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1,xk,y1:k−1, y

∗
k

´

p
`

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, y1:k−1,y∗

k

´

×
p

`

y∗
k|e

i,j
k = 1, xk,y1:k−1

´

p
`

y∗
k|e

i,j
k = 1,y1:k−1

´

(46)

Using the same arguments as in Appendix B, matched filter outputs corresponding to different bins can be considered as

approximately statistically independent. Therefore, we can neglect the dependence ofyi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k on y∗
k. Also,

y∗
k depends neither on the presence of a target in bin(i, j) nor on its kinematic state, so

p(y∗
k|e

i,j
k = 1,xk,y1:k−1) ≈ p(y∗

k|y1:k−1)

p(y∗
k|e

i,j
k = 1,y1:k−1) ≈ p(y∗

k|y1:k−1).

Therefore the following approximation is valid

p(yk|e
i,j
k = 1, xk,y1:k−1)

p(yk|e
i,j
k = 1,y1:k−1)

≈
p

`

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1,xk,y1:k−1

´

p
`

yi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k |e
i,j
k = 1, y1:k−1

´ .

Finally, considering (21), the matched filter outputsyi−1,j−1
k , yi,j−1

k , yi−1,j
k , yi,j

k conditioned onxk given thatei,j
k = 1 are

independent ofy1:k−1. Therefore, the desired result (31) follows.



28

APPENDIX E
NOISE STATISTICS AT THE MATCHED FILTER OUTPUT

The noise contribution before matched filteringw(t) is modeled as a zero-mean AWGN with varianceσ2. Thus

E[w(θ)] = 0

E[w(θ1)w(θ2)
∗] = σ2δ(θ1 − θ2).

(47)

Consider the noise contributionzk(t, f) at the matched filter output corresponding to a delay shiftt and a frequency shift
f , as given by (4). The expectation can be written as

E[zk(t, f)] =
1

T

(k+1)T−T/2
Z

kT−T/2

E[w(θ)]sref (θ − t)∗e−j2πfθdθ,

wheresref (t) is considered as a known deterministic signal, since we assume perfect recovery of the reference signal at the

reference antenna. Therefore, according to (47),E[zk(t, f)] = 0.

Moreover, we have

E[zk(t, f)zk(t− θ, f − ϕ)∗] =

E
n 1

T

(k+1)T−T/2
Z

kT−T/2

w(θ1)sref (θ1 − t)∗e−j2πfθ1dθ1

×
1

T

(k+1)T−T/2
Z

kT−T/2

w(θ2)
∗sref (θ2 − t + θ)ej2π(f−ϕ)θ2dθ2

o

=
1

T 2
E

n

(k+1)T−T/2
Z

kT−T/2

(k+1)T−T/2
Z

kT−T/2

w(θ1)w(θ2)
∗sref (θ1 − t)∗

× sref (θ2 − t + θ)e−j2πfθ1ej2π(f−ϕ)θ2dθ1dθ2

o

Exchanging the order of the expectation and the double integration, we obtain

E[zk(t, f)zk(t− θ, f − ϕ)∗]

=
1

T 2

(k+1)T−T/2
Z

kT−T/2

(k+1)T−T/2
Z

kT−T/2

E[w(θ1)w(θ2)
∗]

× sref (θ1 − t)∗sref (θ2 − t + θ)e−j2πfθ1ej2π(f−ϕ)θ2dθ1dθ2

Now, using (47), the double integral reduces to the following single integral

E[zk(t, f)zk(t− θ, f − ϕ)∗]

=
σ2

T 2

(k+1)T−T/2
Z

kT−T/2

sref (θ1 − t)∗sref (θ1 − t + θ)

× e−j2πfθ1ej2π(f−ϕ)θ1dθ1

=
σ2

T 2

(k+1)T−T/2
Z

kT−T/2

sref (θ1 − t)∗sref (θ1 − t + θ)e−j2πϕθ1dθ1
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Applying the change of variableu = θ1 − t − kT , we obtain

E[zk(t, f)zk(t− θ, f − ϕ)∗]

=
σ2

T 2

T/2−t
Z

−T/2−t

sref (u + kT + θ)sref (u + kT )∗e−j2πϕ(u+t+kT )du

=
σ2

T
e−j2πϕ(t+kT )

×
1

T

T/2−t
Z

−T/2−t

sref (u + kT + θ)sref (u + kT )∗e−j2πϕudu

=
σ2

T
e−j2πϕ(t+kT )

×
1

T

T/2−t
Z

−T/2−t

s(u + kT + θ)sref (u + kT )∗e−j2πϕudu,

where the last equation holds because, as mentioned in Sec. II-B, the reference signalsref (t) is nothing but the transmitted

signals(t) with guard interval and pilot carriers modification advocated in [9] to remove the side-peaks.
Finally, considering that for OFDM signalst ≪ T and that the GAF defined by (6) is invariant to a timing advanceof kT ,

we obtain
E[zk(t, f)zk(t− θ, f − ϕ)∗] =

σ2

T
χ(θ, ϕ)e−j2πϕ(t+kT ).
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Fig. 2. Delay/frequency plane partitioned into bins of equal size.
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Fig. 6. Normalized bistatic delay in the constant velocity scenario: true position (solid) and proposed TBD estimates (+).
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Fig. 7. Doppler shift in the constant velocity scenario: true position (solid) and proposed TBD estimates (+).
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Fig. 8. Normalized bistatic delay in the constant velocity scenario: true position (solid) and batch TBD estimates (+).
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Fig. 9. Doppler shift in the constant velocity scenario: true position (solid) and batch TBD estimates (+).
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Fig. 10. Normalized bistatic delay in the constant velocityscenario: true position (solid), thresholded measurements (x) and JPDAF estimates (+).
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Fig. 11. Doppler shift in the constant velocity scenario: true position (solid), thresholded measurements (x) and JPDAF estimates (+).
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Fig. 12. Normalized bistatic delay in the maneuvering scenario: true position (solid) and proposed TBD estimates (+).
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Fig. 13. Doppler shift in the maneuvering scenario: true position (solid) and proposed TBD estimates (+).
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Fig. 14. Normalized bistatic delay in the maneuvering scenario for target 1: true position (solid) and proposed TBD estimates (+). The horizontal dotted
lines represent the boundaries of the delay bins.
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Fig. 15. Doppler shift in the maneuvering scenario for target 1: true position (solid) and proposed TBD estimates (+). The horizontal dotted lines represent
the boundaries of the frequency bins.
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Fig. 16. Normalized bistatic delay in the maneuvering scenario: true position (solid) and batch TBD estimates (+).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−400

−300

−200

−100

0

100

200

300

400

t (s)

∆
f

(H
z)

Target 2

Target 1

Target 3

Fig. 17. Doppler shift in the maneuvering scenario: true position (solid) and batch TBD estimates (+).
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Fig. 18. Normalized bistatic delay in the maneuvering scenario for target 1: true position (solid) and batch TBD estimates (+).
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Fig. 19. Doppler shift in the maneuvering scenario for target 1: true position (solid) and batch TBD estimates (+).
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Fig. 20. Normalized bistatic delay in the maneuvering scenario: true position (solid), thresholded measurements (x) and JPDAF estimates (+).



37

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−400

−300

−200

−100

0

100

200

300

400

t (s)

ν
(H

z)

Target 1

Target 2

Target 3

Fig. 21. Doppler shift in the maneuvering scenario: true position (solid), thresholded measurements (x) and JPDAF estimates (+).
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Fig. 22. Normalized bistatic delay in the maneuvering scenario for target 1: true position (solid), thresholded measurements (x) and JPDAF estimates (+).
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Fig. 23. Doppler shift in the maneuvering scenario for target 1: true position (solid), thresholded measurements (x) and JPDAF estimates (+).
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Fig. 24. Normalized bistatic delay RMSE for the TBD method inthe maneuvering scenario.
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Fig. 25. Doppler shift RMSE for the TBD method in the maneuvering scenario.
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Fig. 26. Normalized bistatic delay RMSE for the batch TBD method in the maneuvering scenario.
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Fig. 27. Doppler shift RMSE for the batch TBD method in the maneuvering scenario.
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Fig. 28. Normalized bistatic delay RMSE for the JPDAF methodin the maneuvering scenario.
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Fig. 29. Doppler shift RMSE for the JPDAF method in the maneuvering scenario.


