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Abstract

This paper presents a Bayesian algorithm for joint detactiod tracking in a multitarget setting. Raw measuremerds ar
processed using the track-before-detect framework. We dstablish a Bayesian recursion, which propagates a pititipadif
target existence along with a target state probability ideneer delay/Doppler bin. In order to handle the nonlinganf the
observation model obtained for OFDM-based passive radsujtable Gaussian mixture implementation is proposed.
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I. INTRODUCTION

During the last two decades, there has been a renewed interpassive radar systems for civilian and military applica
tions [1]-[3]. We will consider a bistatic configuration, ete the antennas used for transmission and reception aatetbc
at different positions. The main characteristic of passagars is that they use commercial broadcasters as illuoraf
opportunity. Among the advantages, the detection andilatan of targets is covert, continuous and also inexpensince
the transmitter needs neither frequency allocation noraekfirdware. However, since the transmitted signal is naleun
control, existing systems relying on analog TV or FM trarssiuns suffer from large and time-varying sidelobes in the
ambiguity function [4]. Recently, passive surveillanceaes based on digital audio broadcasting (DAB) [5] or digitdeo
broadcasting (DVB) [6] have been investigated [7]-[9]. $&esystems rely on base stations transmitting COFDM (Coded
Orthogonal Frequency Division Multiplexing) signals wiginod bistatic range resolution and lower sidelobes. Maggahe
presence of a powerful error correcting code enables tonstagct a quasi error free copy of the transmitted signahat t
reference antenna for the purpose of crosscorrelation théhsignal at the measurement antenna. This operationcalkeml
matched filtering, is used to generate raw measurements.

In this paper, we consider multiple target detection andkiray, which is a challenging problem due to the presencenof a
unknown and varying number of moving targets in the envirenm

Classical methods generate so-called plots by threstpttie raw measurements, which incurs missed detectionsadsel f
alarms due to the presence of clutter. The data associatairem, which stems from the unknown association of plot wi

targets and clutter, must be solved. Traditional solutionkide the multiple hypotheses tracker (MHT) [10], whialopagates
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a number of association hypotheses in time, the joint pritibtb data association filter (JPDAF) [11], which updagash track
with plots weighted by the corresponding association poditi@s and the probability hypothesis density filter (PHD12],
which propagates the first-order statistic of the randontefinet of the targets in time.

In all the aforementioned techniques, the thresholdingesteenerating the plots incurs a loss of information, soetimesthods
may be far from optimal for very low signal-to-noise ratid\[8) targets. A well-known alternative, referred to as traefore-
detect (TBD), processes the raw measurements withouthiblidieg. This technique has essentially two advantagestlyi
TBD circumvents the data association problem. Secondiyrrimation in a track can now benefit from long coherent ird¢ign
over time, so that the decision can be postponed until theoétite processing chain. Therefore a target, which is tockwea
generate detections after classical thresholding of raasomements, could still be detected using TBD. In the batethod
proposed in [13]-[16], TBD is implemented via dynamic praguming for single target detection. A generalization to tinul
target environments is provided in [17]. The main drawbafcthe batch method is that the state-space needs to be discret
over a discrete grid. Therefore the root mean square efRBISE) for any target is approximately equal to half the grid b
size, irrespective of the target’s actual SNR. RecursivgeBian particle-based solutions have also been propodd@Jiil19]
for a single target scenario. Since a continuous-value#-sfzace is used, the RMSE decreases with the target SNR. The
main interest of these methods is the introduction of a teegistence variable, whos® posteriori probability is estimated
jointly with the target state. An extension to multitargeesarios, which estimates recursively the number of targking
with their states, was presented in [20]. This particlecblasiethod jointly estimates the targets by augmenting titeeiiion
of the state-space. An obvious limitation is that this apptosuffers from the curse of dimensionality [21] when thenbar
of targets grows.

In this paper, we introduce a recursive Bayesian TBD safuticthe multitarget detection and tracking problem. Theppeed
structure is inherited from classical radar detection theahere the delay/Doppler space is divided into regulapaced
intervals. The size of a delay (resp. Doppler) bin corresigsan the delay (resp. Doppler) resolution of the radar sy§22].
Implicitly, we assume as in classical radar detection, drdy one target can be resolved within a single delay/Dapipiie.

In [19], single target TBD was achieved by computing recuglsi the probability of target existence and the probapilit
distribution function (pdf) of the target state, conditimhon target existence. In order to obtain a multitargetdiete and
tracking algorithm, we generalize this idea so that eachydBoppler bin is associated with a probability of targeistsnce
and a target state pdf, conditioned on target existenceeShe observation model is a nonlinear function of the tastae,
the desired Bayesian recursion requires some form of appation, since it involves multiplications and integraist cannot

be expressed in closed form. Unlike the computationallgrisive particle filtering solution retained in [19], we ussimgle



Gaussian per delay/Doppler bin to propagate the target piditin time, in the same spirit as the Gaussian sum filter. [23]
The resulting algorithm performs a surveillance of therengtate-space, since at each instant of time, each delpgl&abin
estimates the probability that a target is present (whiakis to fixed grid target detection) along with the correqing target
state pdf (which is akin to continuous-valued state tragkiiherefore, our mixed discrete-continuous state-sfpareaulation
retains the best of both worlds.

Throughout the paper, bold letters indicate vectors andiceat whileI,, denotes then x m identity matrix and0,, .,
the n x m all-zero matrix. A diagonal matrix, whose diagonal entrées stored in vectoa and whose off-diagonal entries
are zero, is denoted hjiag{a}. V'(x : m, P) denotes a Gaussian distribution of the variablevith meanm and covariance
matrix P. sinc(.) (resp.IL,(.)) denote the sinus cardinal function (resp. the rectangietfon that is zero outside the interval
[~a/2,a/2] and unity inside). The dot product of two vectars= [u1,us, ..., u,|T andv = [vy,ve,...,v,|T is defined as
wv =>" uv;.

This paper is organized as follows. First, Sec. |l describessystem model adopted for passive radar using OFDM signal
In Sec. lll, the problem is cast into a mixed discrete-camims state-space formulation. In Sec. 1V, we introduce @yeBian
recursion for TBD mutitarget detection and tracking. In .Sé¢c we propose a tractable Gaussian mixture implementation
Sec. VI describes several benchmark algorithms, adaptéketdargeted passive radar application. Finally, in Sed, ¥
performances of the proposed algorithm are assessed thraugerical simulations and compared with existing methods

Il. PASSIVE RADAR SYSTEM MODEL

In Sec. II-A, we model the signal at the receive antenna, gy that the transmitter is an illuminator of opportunity
sending a COFDM signal. Matched filtering is discussed in 8e8. Then, in Sec. II-C, we propose an apodization techaiq
to reduce the sidelobe level at the matched filter output.

A. Signal Model
Figure 1. About here.
In passive radar systems, the transmit and receive antemaasot collocated, as illustrated by Fig. 1. The illumimatb

opportunity sends a continuous COFDM signal of bandwiBthwhose complex baseband equivalent signal is denoted by

s(t). At the receive antenna, the contribution of a moving tatges the form [24]
sp(t) = A(t)e??De2™ Ot gt — (1)) + w(t). 1)

The time-dependent parametets 6, v and = denote the amplitude, the phase, the Doppler frequency lenghropagation

delay, respectively. For simplicity, the contribution déitter and ambient noise is modeled as a zero-mean comp@itivad



white Gaussian noise (AWGN)(t), with varianceo?. Let x., x,, and x(t) denote the position of the emitter, receiver and
target in a 3D cartesian coordinate system. 1zgf) denote the target velocity vector. Lét be the carrier frequency of the

COFDM signal and: the speed of light, them(¢) andv(t) can be expressed as [1]
o) = IO =%l + [x(0) x|

c

y(t)_ﬁv(t).( x(t) = x| x(t) =% >

c [e(t) = el [x(t) — %]

We make the following assumptions:

Assumption 2.11f multiple targets are present in the environment, theimtdbutions add up in (1).

Assumption 2.2The contribution of the direct path and ground clutter ioolhethe noise floor using the methods suggested
in [3], namely physical shielding, Doppler processing,thigain antennas, sidelobe cancellation, adaptive beanrigror
adaptive filtering.

Assumption 2.3 Assuming perfect knowledge of the propagation delay of thectl path between the emitter and the
receiver, the receiver has a reference channel able toees@y perfectly, since quasi error free detection is made passibl

for COFDM signals with powerful error correcting codes [6]-
B. Matched filtering

Coherent integration is performed by cross correlating réeeived signal with the reference signal;(t), shifted in
delay and frequency. This operation is called matched ifileand has the property of maximizing the peak SNR [22].
To cancel unwanted side-peaks, the reference signal(t) must be chosen as the transmitted sigr(a) with the following
modifications [9]: guard interval blanking, pilot carriexgualization for intra-symbol peak mitigation and pilotroers filtering
for intersymbol peak mitigation.

Let T' denote the integration time. Assuming tHatis sufficiently small, the signal parametess 6, v and r can be
considered as constant during each integration windowinguhe k-th integration window, the output of the matched filter

corresponding to a delay shiftand frequency shiff is given by

(k+1)T-T/2
1 % _—j2mf0
re(t, f) = T 5r(0)Sref(0 —1t)"e de 2
ET—T/2
Injecting (1) into (2), we obtain
Tk (ta f) = Aeje
(k+1)T—T/2
1 P
X 7 5(0 — T)spef (0 — t) 7210 g (3)
KT —T/2



wherez(t, f) is the noise term
(k+1)T-T/2
at D=7 [ 0@, (4)
ET—T/2
Using the change of variable=6 — ¢t — kT, (3) becomes
ri(t, f) = Aedl e—32m(f—v)(t+KT)

T/2—t
1 e
X / s(u—+ kT 4+t — 7)spef (u+ kT)*e 32 =ugy, (5)
—T/2—t
+ 2k (ta f)
Define the generalized ambiguity function (GAF) as
T/2
x(t, f) = 1 / s(u 4 t)Spes(u) e 92 dy
) T ref (6)
—-T/2

~ L sinc(Bt) x sinc(T'f).

where the approximation, which is valid f@rt sufficiently large, is a consequence of the rectangulartpacof the OFDM
signal [25]. The parametdr < L < 1 is the power loss factor induced by guard interval and pifotiers modification [9].

Again, if T is sufficiently large, (5) can be written as
Tk(ta f) = Aeljee_jQﬂ-(f_V)(t-‘_kT)X(t - T, f - I/) + Zk(ta f) (7)

The noise termey(t, f) is Gaussian distributed and has the following first and séewder statistics (see Appendix E)

Elzi(t, )] = 0
o - ®)
Elzk(t, far(t =0, f — )] = ?X(97(p)e—,727w(t+kT).

Remark 2.4:According to (6), the correlation of the Gaussian noise im $kecond equation of (8) is significant only for

6] < 1/2B and|p| < 1/2T.
C. Reduction of sidelobes

The sine cardinal envelope of the matched filter output in aumeptable, since sidelobes can be mistaken for targets or
mask nearby weak targets [22]. Various apodization teclasdave been proposed to suppress the sidelobes. Linekrbsd
reduction techniques are weighting functions applied eorttatched filter output in the time domain [22]. These teaesgare
simple to implement, but they cause an increase in the nmanladth. Therefore, it is preferable to use nonlinear apatitin.

We use the standard spatially variant apodization (SVAhneue [26], originally applied to in-phase (1) and quadret(Q)
components of complex synthetic aperture radar (SAR) pixXel our application, the SAR pixels are replaced by sampled
matched filter outputs. To achieve proper sidelobe cartmgilavith SVA, the sampling frequency on the delay and fremye

shift axis must be settled to a multiple of the Nyquist freqgie[27]. That is, the matched filter output (7) is sampledelag



shifts and frequency shifts of the form

1
ti=to+i——, i=0,...,1
O—i-thB 1
. )

ﬂ:ﬁ+jET,j:Qqu
whereR, € {1,2} (resp.R; € {1,2}) represents the integer delay (resp. frequency) shiftsawvepling factor. Note that an
efficient implementation of the discretized matched filtatput using the fast Fourier transform (FFT) has appeard@4h
where MUSIC or Basis Poursuit approaches where suggestasirtove the sidelobes of the targets. More precisely, we use
the 1&Q jointly SVA (also called Type 3 in [27]), since it was shown[R8] that this version of SVA introduces the smallest
distorsion on the noise pdf. Consequently, applying sampdind &Q jointly SVA to (7), we obtain the following matrix of

noisy observations

y! = A0 e TIOR8y — 7 fy —v) 4y, (10)

fori=0,...,7 andj = 0,...,J. Assuming that the remaining sidelobe contributions adj@odization are under the noise

floor, the apodized GAF becomes
)Nc(t, f) =L SlnC(Bt)HQ/B(t) X sinc(Tf)Hg/T (t) (11)

Letyy, = {y};’j} for 0 <i<1I,0<j<J be the matrix of noisy observations at instantthe collection of past and present
observations will be denoted by, = {y1,...,¥x}-

Remark 2.5:We were able to verify experimentally that the noise temzﬁ%, fori =0,...,Tandj = 0,...,J can be
assimilated to a zero-mean Gaussian process, with onliltsligifferent variance and correlation properties witlspect to
the original noise before SVA.

Remark 2.6:The delay and frequency resolution are independently ehéed by the bandwidti® and the integration time
T, respectively. Moreover, thanks to SVA apodization, thegeaand Doppler ambiguities have been removed.

[1l. DISCRETETIME DYNAMICAL SYSTEM MODEL

Since our objective is to perform Bayesian multitarget déd@ and tracking, we introduce a suitable state-spacesep-
tation (see Sec. IlI-A). In each bin (to be defined), a digetatlued random variable models the presence or absence of a
target and a continuous-valued random variable modelsitiematic state of the target.

Then, we will turn our attention to the dynamics of the pragbmodel by considering two cases. In the first case, we study
the dynamics of the proposed system within a given bin (s&e I8eB). This is the standard behavior, since when a target
appears in a given bin, it will typically remain in that binrfa number of consecutive time steps. Then, we treat the case
when a target crosses the boundaries of a bin (see Sec..lldyed, proper boundary conditions must be provided, ab th

that a target crossing bin boundaries is not lost.



A. State-space representation

Figure 2: About here.

The discretization of the delay and frequency shifts in (8jirees an implicit partition of the delay/frequency plan&in
bins, as illustrated by Fig. 2. We define thé¢h delay bin as the intervdt;_,¢;], fori = 1,...,I. Similarly, define thej-th
frequency bin as the intervgf;_1, f;], for j = 1,..., J. The delay/frequency biy, j) is then defined ag;_1, ;] X [fj—1, f]-
We associate a target existence variabfeto the delay/frequency bii, j). At the discrete instark, ¢}’ = 0 (resp.e}’ = 1)
corresponds to the absence (resp. presence) of a a target (fy . We notePlf’j (resp.Pj’j) the prior probability of target
birth (resp. death) in biri, j).

We now turn our attention to the target’s kinematic statesuiise the presence of a point target in biny), with delay 7y,
Doppler frequency;, and Doppler rat€;. during thek-th integration window. After SVA apodization, the matcHatgér output
response to a single target corresponds to a thumbtack aitybijagram [22]. Therefore the only significant radar sign
returns corresponding to the presence of a target ibif) arey, "7/ ~', y/ 7", yi~ "7 andy.’. Consider the four complex
SVA outputs in (10)y; /7!, y;’ 7, y; "7 andy}? and let us ignore the noise contribution for the moment. Aditg to
(10),y; 7", yi7 7" correspond to the same frequency shift samfle, and the phase rotation between them is negligible,
considering that / R; B < 1 for OFDM signals. We let:] + ja% be the common complex amplitude gf "7 ~' andy’/ .
With the same reasoning, we I+ jb% be the common complex amplitude gf '/ andy;”. Collecting all these variables,
we obtain the kinematic state vector = [al, a®, bl b9 7., vk, Ci]T.

B. Intra-bin dynamics

Considering that the Doppler frequency is proportional e first-order derivative of the delay and using a constant

acceleration model, the dynamics of the target, at the elisdcime instank, are described by

Th = Tho1 = Vk—17-
Vg = Vgp—1 + Ce1T (12)
Ck = Cr—1

Using the dynamical model for the complex amplitude intretliin [29], we obtain

al =cos[2m(vi_1 — fj—1)T]al_, —sin[2m(vk—_1 — fj—1)7T] a§71

a,? = sin[2r(vp_1 — fi—1)T]al_| 4+ cos[2m(vp—1 — fj—1)T] a;?,l

13
bl = cos [2m(vg_1 — f;)T) L | —sin[2n(vg_1 — f;)T)bL_, (13)
bg =sin[2m(vp—1 — f;)T] b} _, + cos 2m(vp—1 — f5)T] b;?,1
(12) and (13) can be written as a discrete-time process iequat
xp = f(Xp—1) + ug, (14)

where the process noisg, ~ A (07«1, Q) accounts for unmodeled perturbations and is assumed indepeof the observation

noise. Therefore, for the most common target behavior,ishahen a target continues to exist in i j) for two consecutive



time instants

pxplxp—1, e’ =1 ep!  =1) =N (xi: f(x6-1), Q) (15)
A kinematic state birth pdf can be defined in a similar way as

(xk|e,C =1 e,C 1—0):N(xk xb ,P”) (16)

where the mean
=10,0,0,0, (tim1 +t:)/2, (fi—1 + f3)/2,0]"

is located at the middle of a bifi, j) and the covariance matrix
PLJ = dlag{[0a70270270a7 ((t —li- 1)/10) ((f] - fj*l)/2)27o-g]}
accounts for the initial uncertainty on the state variabiéhin bin (i, j). In particular,c2 andag are related to the dynamic

range of the target amplitude and of the Doppler rate, rasehe
C. Inter-bin dynamics

We first introduce a few useful notations. L¥t(i, j) = {(¢, ), (i —1,j), (i+1,4), (¢,7—1), (i, 7+ 1)} be the set containing
(i, 7) and the first-order neighborhood @f j). Since a target can migrate from time to time from abinn) € N (4, )\ (i, 5)
to bin (¢, ), boundary conditions must be defined for the dynamics.

We begin with the definition of transition probabilities the discrete-valued target existence variable 2@t j|m,n,y1.x-1)
be the probability that a target present in lfin,n) € N(3, ) \ (¢,7) at instantk — 1, travels to bin(s, j) at instantk, given
yv1.x—1 and given that it does not die out. For simplicity, we propaseexpression which depends only ﬁﬁﬁkq and
z?,’f_’?lk_l, which are respectively the delay and Doppler estimateditional on a target existence in bim,») and on all

the observations seen so faf.,_1. For a frequency bin crossing, we choose

2
Vk l\k — Ji- 1‘
Vk l\k 1 fJ’ )

whereq,, is a real parameter of choice. The proposed expression badetirable property that the transition probability is

P(’Lv.”lv] - 17}’1:1%1) = exp <
(17)

P(’Lv.”lv] + 17}’1:1%1) = exp <

~1,7E1

close tol when i, ” k-1 approaches a frequency bin boundary and vanishes expalheitherwise. Similarly, delay bin

transition probabilities have the form

P(i,jli —1,7,y1:6-1) = exp (

z 1,7 2
Ti— 1’\/@ 1_ti*1‘ )
(18)
~i41,7 —t
7

2
Te—1lk—1 — L |-

On the contraryP(i, jli, j,y1.k—1), the probability that a target present in Hiiyj) at instantk — 1 remains in bin(z, j) at

P(Z,]ll + 17jayl:k—l) = €Xp ( Qr

instantk, giveny;.x—1 and given that it does not die out, should be close to one &an fthe boundaries of bifi, j) and



vanish exponentially in the vicinity of the boundaries. $hme can use
P, 44,4, y1:k—1) =1 — max{

2
exp (_ay ) , (19)

- 2 2
exp (—oe, 721:11%71 — tifl‘ ) + exp (—ozT ) }

According to the discussion on complex amplitudes at the @n8ec. IlI-A, the kinematic state transition pdf for a delay

i g
Vil 1)k—1 i

o 2
~1,] . _
Vel1lk—1 — frll ) + exp < Ay

A1, _t.
Th1jk—1 — ti

bin transition needs no modification with respect to (15)

p(Xk|Xk71,82j = 1,827_11”- =1)
(20)
= p(xklxe1, e = Le 1 =1) =N (xx: f(xx1), Q).

However, for a frequency bin transition, the kinematic estaansition pdf needs a slight modification, as indicated\m

pendix A, to take into account the occurrence of a sharp pjumsp.

D. Observation likelihood

From the discussion in Sec. llI-A, the likelihood of the noisbservations considered for an existing point target m bi

(i,4), conditioned onx; can be written as

i—15=1  ig—1  i—1j i i _
p(yk » Yk » Yk » Yk |€k —17Xk)

(21)
=N (yZ’] b (xk),R) ,

where ~ L
Re(y, 7
Im(y, ™)

Re(y,” )
g — | i
Re(y, )
Im )

Y
(y;'c—lu’

Re(y;”)
Im(y;”)
is the vector of real observations associated with (ij). The observation noise covariance matRxand the nonlinear

observation functiorh®/(.) are derived from (10). Namely, the observation function thesform

ralx(ticn — 7, fj—1 — k)]
aPX(tio1 — Ty fi—1 — k)
aéf((ti — ks [j—1 — Vi)
ij _ | e x(t = e, fi—1 — k)
h i) bEX(tic1 — iy f5 — k)

bEX(tioy — i, £ — )
bEx(ti — Ty fj — vi)
L bER(t — s f5 — )

(22)

Similarly, we have
11 igel ilj i id
p(yi TN TH ’,yijlffZJ:O)
(23)

:N(YZJ : O8><17R) .
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Remark 3.1:The covariance matriR is obtained straightforwardly from (8), if one assumes tB%A apodization has a
negligible impact on the noise statistics. Alternativelpe can estimate the covariance matrix using the technigueoped
in [15].

V. BAYESIAN RECURSION FORTBD MULTITARGET DETECTION AND TRACKING

Our objective is to perform a global surveillance of the en8tate-space without omission, at each instant of time. To
achieve this, we propose to estimate the probability thadrget is present (which is akin to target detection) alonth wi
the corresponding target kinematic state pdf (which is a&itarget tracking) in each delay/frequency bin. Since Baye
filtering is of interest in the present paper, we must cateuthea posterioritarget existence probability?(ei’j = 1ly1:k)s
along with the pdf of an existing target's kinematic St@(&ﬂei’j = 1,y1.x), for each bin(i, j). From an implementation
point of view, it is desirable to derive this filter in a recuesform. Sec. IV-A shows how to propagate tagosterioritarget
existence probability in time for each bin. Similarly, S&¢-B shows how to propagate the posteriori pdf of an existing
target’s kinematic state in time for each bin. The issuesuafet detection and post-processing are discussed in\&€cahd
IV-D, respectively. Fig. 3 illustrates the complete TBD titakget detection and tracking processing chain.

Figure 3: About here.

To derive the desired recursions we also need two simptifgissumptions:

Assumption 4.1:At most one target can be located in a given bin.

Assumption 4.2A target present in bin(é,j) at instantk — 1, has either died out or is surviving in one of the bins
(m,n) € N(i,7) at instantk.

Considering the system model of Sec. Il, assumption (4.kulsstantiated by the fact that the size of a bin corresponds
to the delay/frequency resolution of the radar system. dgdion (4.2) is justified by the limited speed of the targethjch

cannot instantly travel through multiple delay/frequebays.
A. Target existence probability

Under assumptions (4.1) and (4.2), the predicted targstendge probability in birfi, j) can be expanded over the presence

of targets in bingm,n) € N(i,j) at the previous time instant and the birth of a target in(®jr) at the current time instant
Pley” =1y1x-1)
=P}’ = 1,7, = Olyr—1)+
Z P(ei’j =1,e") = 1ly1:6-1)
(myn)EN (i,5) (24)
= P P(eg? ) = Olyrn—1)+

Z P(747J|m7 n, }’1:k71)(1 - P:’L’n)P(eZ’L;"{ = 1|y1:k71)
(m,n)eN(i,5)
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The birth, death and bin transition probabiliti€s’, P;" and P(i, j|m,n,y1.x—1), for (m,n) € N(i,j) have been defined
previously in Sec. Ill.

The Bayesian correction step proceeds as follows

i—1,7—1 i,7—1 i—1,5 7
i p(yk Yo Yk 7yk |6 —17y1:k71)
P( o 1|y ) 7 17] 1 4,75—1 _i—1,5

p(yk 7yk 7yk 7yk |y1:k71) (25)
x P(ey” = 1|yvu-1).

As explained in Appendix B, this formula, although not exdeads to a tractable solution. We also provide a justificatf

this approximate Bayesian correction step, relying on fmadaation introduced in Sec. II-C.

The numerator in the first line of the right-hand side (RHS)28) can be evaluated by marginalizing out the kinematic

State
Ty Ty Yy e = 1 ye-1)

_ i—1,j—-1 4,j—1 _i—1,j i, “J
_/p(yk ’ y Yk s Yk s Y ,Xk|€k —17y1:k71)ka-

Applying Bayes's rule, we obtain

p(y; b= 17ylzgj 17y,17; 1]7yk]|e =1 y1:k71)
:/p(y?fl’] Ly Ty i e =1, %) (26)

X p(xk|e;€’] =1,y1:6-1)dXk.

The first term in the integrand is (21) and the second termaspttedicted pdf of an existing target’s kinematic state im bi
(i,7), whose expression will be calculated in Sec. IV-B. Now, gjzyg the total probability theorem to the denominator in the

first line of the RHS of (25)

i—1,7—1 i, i—1, i,7
Py i) =
ply Yy Yy ey = L yie—1) Pley” = 1yin—1)+ 27)
10(?J/1LC b 17?!;2] 17?!;2 1]7ykj|€ —07Y1:k—1)P(€L’J =0|y1:11€71)7

which is obtained by combining (26) with (23) and (24).
B. pdf of an existing target's kinematic state

Under assumptions (4.1) and (4.2), the predicted targemhkatic state pdf in biré, j) can be expanded over the presence

of targets in bingm,n) € N(i,j) at the previous time instant and the birth of a target in(#jp) at the current time instant
p(xkley’ = 1,y1x-1) =
Pyl P(ey’ ) = 0lyir—1)
P(ey? = 1ly1r-1) 29)
z P(i, jlm,n, y1:6-1)(1 = Py"™)P(e;""] = 1|y1:6—1)
(m,n)eN (i,5) P(ezﬂ = 1|)’1:k—1)

p(xiley’ =1,e2, =0)

—+

X p(xﬂei’j =1le/"l =1, y1r-1).

The proof is postponed to Appendix C.
Thus the predicted target kinematic state pdf in @iry) can be interpreted as the weighted sum of several terms:

« the birth densityp(xy|e;’ = 1,¢;? | = 0), defined previously as (16)
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« the continuing density(xx|el’ = 1,ei’, = 1,y1.5—1), corresponding to a target that already existed in (i) at
instantk — 1

« the migration densitie$(xk|ef€’j = 1,e;,""] = 1,y1..—1), corresponding to targets existing in adjacent hingn) €
N(i,j)\ (4,4) at instantk — 1 and migrating to bin(i, j) at instantk.

The continuing density is evaluated by marginalizing ot kimematic state at the previous time instant
p(xk|ef€’j = 1,62’{1 =1,y1:6-1)

= /p(x;c,x;cfllei’j =1,el? | =1, y1p-1)dx,—1
- - (29)
- /P(Xk|xk71762’] =le?, =1)

X p(xp-1let? | = 1, y1.6-1)dxp—1,

where in the third linep(xy|xx_1,e;’ = 1,ei?, = 1) is the intra-bin kinematic state transition pdf of Sec. Blland
p(xk,1|e};il = 1,y1.k—1) is the target kinematic state pdf in bin, j) at the previous time instant. Similar expressions are

obtained for the migration densities whém,n) € N (4, j) \ (¢, )

p(xiley’ =1,e]"T =1, y1.6-1) =

irj m,n mon (30)
/p(Xk|Xk71,€k"7 = 176k;1 = l)p(xk*1|ek;1 = 17y1:k—1)dxk*17

Whel’ep(xk|xk_1,efc’j = 1,e;""} = 1) is the inter-bin kinematic state transition pdf of Sec.@llandp(xx_1le;""} = 1,y1:6-1)
is the target kinematic state pdf in b{m,n) at the previous time instant.

From Bayes's rule, we have

p(yk|e,2j = 17Xk7}’1:k71)
p(yrley” = 1, y1e-1)

X p(xk|e§€"j =1,¥1:6-1)-

p(xiley’ =1,y1.4) =

Now, applying the same approximation as in Appendix B (sepehglix D), a tractable Bayesian correction formula for the

kinematic state pdf in biri, j) follows

p(xxler? =1,y1.x)

i—1,5—1  ig—1 i=1,j i i

P 7y Yy e = 1xa) (31)
o P T Ve oWk TV %

plu 7w e = Lyaea)

x p(xrler’ =1, y1k-1)-
The second line of (31) is a measurement likelihood ratiopsehnumerator is given by (21) and whose denominator has been
calculated as (26). The third line of (31) is the predicteeknatic state pdf in bit, j) given by (28).
Conditional on a target existence in bin, j), we definefcfc"jk = [di‘ki-ﬂ',dg‘ki-ﬂ',Bi‘ki-ﬂ',ngm,%Zﬁ;,ﬁ]i’ﬁ;,f,%]T as the

minimum mean-square error (MMSE) estimate of the kinemstte, containing tha posterioriestimate of the amplitudes,

the delay, the Doppler and the Doppler rate. The expressﬁoij;ﬁg is given by

lek = /ka(xklei’j =1, y1:)dxg. (32)
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C. Target detection and state estimation

In convential multitarget detection algorithms, the détetstage takes place before Bayesian filtering. TBD algors, on
the contrary, perform detection and kinematic state esiimat the output of a Bayesian filter fed with raw measuressien
to avoid information loss. A maximum posterior mode (MPMpegach for target detection is applied in each bin, followed
by a MMSE criterion for kinematic state extraction, as déxe in Table I. The output of the algorithm is a list of bins
containing detected target®y, and the corresponding list of kinematic state estimaigs,Note that inconsistent bins, where
the a posterioridelay estimateﬁ,zli (resp. Doppler estimaté;‘i) falls outside the prescribed boundaries of the bin within a

margin of £¢,,4rg (resp.=£fimarg), are discarded.

D=0

Er,=0

for i=1toI do

for j=1to J do

ComputeP(ey’ = 1|y1:x) according to (25)
Compute
Xk\k [ak\k’ ak\k bk\k’ ka\k ! TIZ\gwAli\k’Ck\k]
according to (32)

if 7 A;\i ¢ [tz 1— tma'rg7ti + tmarg] or
A;;‘]k ¢ [fJ 11— f7rza7'g7fj + fma'r'g] then
Plel? = 1ly1) =0

p(xiley’ = Lywr) =N (x : 3,7, PyY)

end if

if P(ey? =1ly1:x) > 0.5 then
Dy, :={Dy, (i, j)}
Ey = {Ey, %, }

end if

end for
end for

TABLE |
TARGET DETECTION AND KINEMATIC STATE ESTIMATION PROCEDURE & INSTANT k.

D. Track classification

There are several issues associated with the simple detesttheme proposed in Sec. IV-C, which need to be treategeThe
issues can be related to the observation model, given byai2d Y23).

Firstly, this model is valid only if the apodized GAF (11) isgligible outside the extent of the delay/frequency bin rghe
the hypothesized target is located. This assumption il Vali the low SNR targets of interest in TBD, but is violated fo
high SNR targets, especially when the delay and Dopplersavepling factorsk, and Ry are greater than one. Thus high
SNR targets create redundant false tracks in neighboring, bvhich must be detected and cancelled. This phenomenon is
even amplified by the target existence probability predicgquation (24), which shows an inherent tendency for higR S

targets to “leak” into adjacent bins, especially when adagets close to the boundaries of the bin in which it is lotate
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The second issue is the absence of superposition modeldatbervations in our work. Unlike the model retained in [20]
there is no explicit way in (21) and (23) to model the fact thagiven observation takes into account the contribution of
several closely spaced targets. This implies that closehiced targets cannot be allowed, so they must be mergedgsit le
temporarily, to a single track.

A simple remedy to the issue of redundant and partially eyging tracks which makes engineering sense, is to use guard
bands [30]. Consider a given detected binj) € D, containing a potential target (i.e. whose probability of&t existence
exceeds50% according to the detection rule of Sec. IV-C), we assign #maes class to all the detected bins located within
2R, delay bins and®2R; frequency bins. The resulting classification algorithm iplieited in Table Il. Then, among all
detected bins having the same class, the valid track is orexséhe one located in bif, j), which maximizes tha posteriori

instantaneous energy defined as

g _ (o1 i\ (2@ 0\ (3 i) L (3@ i)
By = (%k ’J) + (%\k ’J) + (bk\k "7) + (bk|k ’J)

Initialize a classification tablé’ = 0, p, |
class:=1
while at least one element of tab{é is equal to0 do
Let dfirs: be the index of the first element in table
such thatClds,st] = 0
Retrieve the bin(i, j) < Dx[drs:] CONtaining a target
detection
for d =1 to |Ds| do
if i —m|<2R; and|j —n| < 2Ry then
C[d] :=class
end if
end for
class:=class+1
end while

TABLE Il
CLASSIFICATION OF THE DETECTED BINS AT INSTANTE.

V. GAUSSIAN MIXTURE IMPLEMENTATION

In TBD systems, the observation model is in general nontineathe target state. In particular for the passive radar
application of interest in the present paper, the obsematiodel (21), conditional on a target existence in a givem s
nonlinear. Therefore, the Bayesian recursion of Sec. I\iireg some form of approximation, since the multiplicat{@d) in
the correction step and the prediction integrals (29)-¢&0)not be expressed in closed form.

In the same spirit as the Gaussian sum filter [23], we appraténthe target kinematic state pdf in each delay/frequency
bin by a Gaussian mixture. Thus (32) is just the mean of thes&an mixture in the corresponding bin, which also greatly

simplifies the target kinematic state extraction.
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A. Prediction of the kinematic state

Assume that at instarit — 1, the target kinematic state pdf in any delay/frequency(biri) has the form

p(xk—1|6211 = 1,y1;k71) = N(Xk,1 :x;c’il\k—NP;c’il\k—l)' (33)

Then, for(m,n) € N(i,j), the expressions (29)-(30) have the form

p(xk|ef€’j =le"  =1,y1x-1)

=/p(x;g|x;€71,e§;’j =1l =1)
X N(kal : in;”ll‘k,l: lefﬁk,l)dxk—lv
where the kinematic state transition gﬁfcﬂxk_l,e};j =1,e/"" =1)isgiven byN (x; : f(xx—1), Q) according to Sec. II-B
and Sec. IlI-C (with a slight modification ¢f(.) andQ indicated in Appendix A whem = i andn = j+1). We recognize that
the prediction integrals (29)-(30) correspond to the i step of the well-known extended Kalman filter [31], sequently

V(m,n) € N(i,7)

p(xklel? = 1,e" = 1,y1.6-1) = N (x :xz‘b;ll, PZ‘L}Jil), (34)
Whel’e m,n _ m,n

Xilk—1 = f(xk—l\kfl)

pron _ 0 Gi1)

k - m,n
8)(]@71 xk—lzxkil‘kfl

m,n  __ pm,npm,n m,nT

Pk\k71 - Fk Pk—l\k—le + Q

Injecting (16) and (34) into (28), we obtain a Gaussian mixtiorm for the prediction of the kinematic state pdf in Binj)
p(xkle)’ =1, y1p-1) ~
Py7P(eg? ) = 0ly1k—1)

Pey? =1ly1x-1)

N (x;C : xZ’J,PZ’])

) P(i, jlm, o yie-1)(1 — P Pl = 1yrx_1) (35)
J
(m.n)EN (i,5) Pleg” =1ly1x-1)
X N (s X P,

B. Correction of the kinematic state

Using (21) and (35), the numerator of the Bayesian correatiguation (31) becomes

ply Ty Ty Ty e = 1 xi)p(xelel’ = 1, y1-1) &

PHipehd =0 e o . N

b (Z ;—1 [y 1k 1)N (Xk i xy7 PZ’J) N (y;,J :hM (x4), R)
P(ey’ = 1ly1:k-1)

+ Z P(i,jlm,n,y1.6-1)(1 = P"")P(er”"] = 1|y1:6-1)
(m.m)EN(i.5) P(ey’ = 1y1x-1)

X N G X PR DN (vE7 b (), R)

Regarding the products of Gaussians appearing in the previrmula, we easily recognize the correction step of the

classical extended Kalman filter [31]. Therefore,
N (xk : xé’j,Pé’j) N (yLJ : hi"j(xk)7R)
~N (v h () By PR+ R)

x N (x;C : xél"g),PéZ‘f)) ,
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where, N
i — 9h7 (%)
b an xk:x;;‘j

K, =PyHy" (H/PH 4+ R) -
b b b b b b

xw) = x4 K (y;‘;j _pbi (xé’j))

(4,5) _ piJ LIy pd
P, =Py —K,"H,'Py

Using the same reasoning, we have
N (s xp s PR N (yi’j h (%), R)

'\Na./\/‘ (y;’c,j . hi,j(xm,n )7HZ’L,7LP7YL,7L HZL,nT +R)

klk—1 klk—1
x N (xk : x;ﬁ’”)ﬂud)’ Pé’&v”)ﬂ(i,j)) 7
where, y
klk—1

—1

m,n __ m,n m,nT m,npm,n m,nT

K" =P Hy (Hk Py Hy ™+ R)
(m,n)—(%,5) _ _.m,n m,n 4J _ pid (mem

Xilk =X T K (v = R (0 0)

(m,n)—(4,7) _ pm,n m,nypym,npm,n
Pk\k - Pk\kﬂ - Kk Hk Pk\kﬂ

It follows that the numerator of the Bayesian correctiopgt&l) for the kinematic state in bifi, j) can be written as the

Gaussian mixture
i—1,5—1 i,5—1

p(yy, » Yk 7y1;
PP Pegly = 0lyin-1)
P(ey’ = 1ly1x-1)
XN (v 1V x7), By PYHT 4 R)

271’j7yliyj|e’lig’j = 1:Xk)p(xk|€2j = 17y1:k71) ~

. (6:) plind)
XN(Xk : xb\kJ 7Pb\kj ) (36)
. P(i, jlm,n,y1-1)(1 — P7"™ )Pt = 1|y10-1)
I
(m,n)EN (i,5) P(e}? = 1ly1:x-1)
x N (yi’j PR () HE P H T 4 R)

\
Moreover, according to (26), the denominator of (31) is ol#d by marginalizing ouky, in (36)

i—1,j—1 d4,j—1 i—1,3 4,5 %J __ ~
p(yk y Yk y Yk s Yk |€k = 1:}’1:k71) ~

Py? P(ep? | = Olyin—1)
P(e? = 1ly1x-1)
P, jlm,n, yre—1) (1 = By"")P(e] = 1ly1s-1) (37)

Pey? =1lyix-1)

X N (Xk . X;:]:n)g‘(i’j),PS{;’”)H(’L"J‘)) .

N (vi? h () Hy P HT + R)

+
(m,n)EN((4,5)

XN (v W () B P HE T 4 R
We also remind that (37) is sufficient to calculate the cdiecstep of the target existence probability in jinj) (see (25)
and (27)).
Finally, to propagate the target kinematic state pdf at #ad time instant, we need the Gaussian approximation (3Bpkd

also at instank, otherwise the number of Gaussian components would grotv tmite. In other words, the Gaussian mixture

approximation that we obtained for (31) must be collapsed single Gaussian of the form
p(xiler? = 1,y1.4) = N(xx fok, P;ka) (38)
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using a moment-preserving merge [32]. This makes engimgexense, since it is desirable to keep the same computationa
complexity per bin at each time instant.

Remark 5.1:Note thatxl(j;f) (resp.PéT}j)) represent the kinematic state estimate (resp. covariaratex) corresponding
to a target birth in bin(4, j) at instantk, given the present noisy observations. Similaﬁ%’")ﬁ(i’j) (resp.P,(c’I’}c’”)H(i’j))
represent the kinematic state estimate (resp. covariamtexjncorresponding to a target present in lgin,n) € N(i,7) at
instantk — 1 and in bin(s, ) at instantk, given the past and present noisy observations. It appkatdtte computation of
these quantities in each bin, originates from a bank of 6lighextended Kalman filters, one corresponding to a targeh,b
one corresponding to a target continuation in the same kiManarget migrations from adjacent bins. It is well knownt ttnee
complexity of one recursion of the extended Kalman filte©igV?) [21], where N, is the dimension of the target kinematic

state. Therefore, the computational complexity of the Gamsmixture implementation of the Bayesian multitargeedgon

and tracking algorithm of Sec. IV can be evaluated¥$7.JN?) per iteration.

VI. BENCHMARK ALGORITHMS FOR MULTITARGET DETECTION/ TRACKING
A. Batch processing TBD for multitarget detection and tiagk

An interesting benchmark algorithm for our method is thechgtrocessor proposed in [17]. Indeed, this TBD algorithm
detects automatically the number of targets present in tive#a@ment and also jointly tracks their trajectories. Shethod
relies on discretizing the state-space with a fixed grid.Unpassive radar application, the state-space is the ddtaguency
shift plane and the fixed grid is defined by (9). The total nundfeliscrete states is therefofé+ 1) x (J + 1). Joint tracking
and detection of multiple targets is achieved using a géimedhlikelihood ratio testing strategy (GLRT) [17], whichduces
to a Viterbi tracking algorithm (VTA) [14], whose cost metiis the raw matched filter output associated with each discre
state. Due to the limitations in the target dynamics, we mssthat each discrete state j) can experience a state transition
only towards one of the nine states centered(gn), from scank to scank + 1. Coherent integration is performed over
consecutive scans indexed by=1,..., M, whereM is a parameter of choice equal to the depth of the VTA.

Assume that the maximum number of targets is fixedikig,.. In order to maintain a reasonable complexity without
sacrificing the performancedy,,.. prospective targets are found using a suboptimum stratagywn as the single-pass
successive-target-cancellation VTA (SP-STC-VTA) (weerethe reader to [17] for details). Basically, the method ditide
K4 best admissible paths terminating at depthusing backtracking, with the constraint that two targetsnca be located at
the same position at the same scan. In order to perform faipaoisons, we enforce the same constraint as in the claggific
algorithm of Table II: if there exists a scan< k < M, for which the current best tentative path is in stéate n), while
one of the previous best validated paths is in a statg), such thati — m| < 2R, and|j — n| < 2Ry, then the current best

tentative path is discarded, otherwise it is validated.
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The number of targets in the environment is estimated udieggeneralized Neyman-Pearson method proposed in [17].
The method depends on a Lagrange multiplier, whose valukdsen so as to achieve a fixed probability of false alarm. The
selected tracks correspond to the best paths amongthe. validated paths at the output of the SP-STC-VTA.

Once a batch of\/ consecutive scans has been processed, the next batch esgedcin exactly the same way. Fig. 4
illustrates the operations performed by the TBD batch msce

Ignoring the contribution of backtracking and estimatidrihee number of targets, the computational complexity oftihtch
processor can be evaluated@§1.J) per scan.

Figure 4. About here.
B. JPDAF multitarget tracking

The JPDAF [11] is an interesting benchmark algorithm for 88D method for several reasons. Firstly, the JPDAF is a well
established classical method that uses thresholded nafittiee outputs as observations. This will enable us to chibelbenefit
of TBD on the passive radar application of interest in thipgraSecondly, JPDAF performs multitarget tracking, asegrthat
the correct number of targets is known. This will enable teathwhether the proposed TBD algorithm, which has no prior
knowledge on the time-varying number of targets, can detetimatically the birth and death of targets in the envirentn
Thirdly, the JPDAF is an assumed-density algorithm, veryilgir in spirit to the Gaussian mixture implementation oé th
proposed TBD algorithm. Based on all measurements thatikaly to be assigned to a given target, the JPDAF computes
the posterior distribution of the kinematic state as a Gaassixture, which is collapsed to a single Gaussian usingerd-
matching to ensure a constant complexity per iteration¢ctikan the same way as in Sec. V.

Fig. 5 illustrates the complete detection and JPDAF mugiéatracking processing chain. After matched filtering &
apodization, at instant, the set of raw measurements are thresholded to form theDlistontaining the(s, j) such that
|y,i’j| > A, where the threshold corresponds to the desired probability of false alafp,. It is well-known that each target is
detected with probability?;, which depends oy, and on the SNR. Since the derivation of the JPDAF enforcesdhstraint
that each thresholded measurement can be assigned to abneotrget [11], it is necessary to ensure that this comstigi
verified for the application of interest. As mentioned poasly in Sec. IV-D, this assumption is likely to be valid féretlow
SNR targets, but may be violated for high SNR targets, eaflgavhen the delay and Doppler oversampling fact&sand
R are greater than one. A simple workaround is to apply thesifleation algorithm of Table Il to the lisDy, in order to
avoid unwanted multiple measurements per target. Thenngralb detected bins having the same class, the valid maasumte
is chosen as the one located in i§in;), which maximizes the instantaneous ene|f;d§/|2. A set of thresholded measurements

Dy, is formed by associating each retained biny) to the noisy delay/Doppler measuremén)tJriﬁ, fo +jﬁ). Using a
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state-space representation similar to the one proposeddnl&-A, the new kinematic state vect&f, = [, v, (x| follows
the linear model

{ X =FXp_1 + g (39)

Vi = Hxj, + fig, with 3, € Dy,
where the process and measurement naigeandn, are modeled as zero-mean independent, white Gaussianspesceith
covariance matrice€) and

R = diag{[(t; — t:i—1)?/12, (f; — fi—1)?/12]},

respectively. Moreover, the transition and measuremeiticea are given by

1 -+ 0
F=|0 1 T (40)
0 0 1
and
100
H_{O . o]' (41)

Figure 5: About here.

By performing gating, the correct measurement for a givegeta if detected, lies within the gate with probability $éoto
one. This procedure makes the JPDAF efficient, since uglikahdidate measurements for associatiojnare disregarded.
Finally, the JPDAF [11] calculates the marginal posteriensity of the kinematic state for each target as a Gaussigturaj
where each Gaussian component accounts for the fact thar @ine of the gated measurementslp is correct or none of
the gated measurements is correct. The mixture weightesmond to the association probabilities. Next, the Ganssiature
is merged to a single Gaussian.

VIl. SIMULATION RESULTS
A. Parameters

The position of the receive antenna in a 3D cartesian coatelisystem is given by, = [0,0,0]” and the position of
the emitter is given bk, = [—50 x 103, —50 x 10, —3]7, where all quantities are expressed in meters. The illutoinaf
opportunity sends a DAB signal using transmission mode .l [5]

It follows that the duration of the useful part (resp. the guaterval) of an OFDM symbol is 1 ms (resp. 248). So
the duration of an OFDM symbol is 1246. The number of transmitted subcarriers is 1536, therdaf@maotal bandwidth is
B =1.536 MHz. Each subcarrier uses quadrature phase shift keyingkQ®odulation. The carrier frequency is set to 230
MHz. We use a constant amplitude model (Swerlkgwhich is reasonable considering that in the VHF frequdrenyd, the

target radar cross section (RCS) changes slowly with rédpebe aspect angle [33].
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Matched filtering is performed with an integration tiriie corresponding to 32 consecutive OFDM symbols, which arteoun
to an integration gain oft7.87 dB. The matched filtering oversampling factor for the delhiftqresp. frequency shift) is
chosen ask; = 1 (resp. Ry = 2). This results in a delay bin of siz€, = 1/R:B ~ 0.65us and a frequency bin of size
1/RsT =~ 12.54 Hz. This validates the point target model adopted in thisepagince the bistatic range resolutiorejB ~ 195
m. The first delay shift, = 257/R,B corresponds approximately to the propagation delay of thecipath between the
emitter and the receiver and the extent of the surveillammtermwe is determined by the number of other delay shift sasmple
I = 1150. Due to the limitations imposed on target velocities, thegfrency shifts of interest are in the interyal00, 400]

Hz, so we setf, = —400 and J = 64.

For the proposed TBD method of Sec. 1V, in the absence of jpmimrmation, we choose a uniform probability of target
birth (P = 10~5) and a uniform probability of target deatt”{’ = 10~°) over all bins. Regarding the parameters of the
intra-cell dynamics, the kinematic birth pdf is such that= 100, which corresponds approximately tat@dB SNR difference
between the target with lowest and highest possible SNRgans set to 5 Hz/s, so as to track targets with acceleration fump
up to several’s, whereg denotes the acceleration of gravity. Similarly, in (14) @hhcorresponds to the process equation of

a continuing target, the autocorrelation matrix of the psgcnoise is set to
Q = diag{[0,0,0,0,0.01% 0.01%, 5¢]}.

The parameters of the inter-cell dynamics were set by exggariation toa., = 100 x (R;B)? and«, = 1. Also, for the bin
boundary margins of Sec. IV-G,,4.q = 0 and f,,.qr4 is equal to 5 percent of the size of a frequency bin.

The batch TBD method of Sec. VI-A uses the same matched fittdrSV/A apodization as the proposed TBD algorithm,
followed by a SP-STC-VTA with deptd/ = 5 consecutive scans and backtracking ok&y,,.. = 8 prospective targets. The
generalized Neyman-Pearson method for estimating the auafltargets in the environment uses a Lagrange multipliease
value is chosen so as to achieve a fixed probability of falaerakequal tol0—*.

The JPDAF method of Sec. VI-B also uses the same matcheddit@ISVA apodization as the proposed TBD algorithm,
followed by a thresholding step such that the false alarm isfixed to Pr, = 107°. In order to test both methods in the

same conditions, the autocorrelation matrix of the processe in (39) is set to

Q = diag{[0.01%,0.01%, 0]}
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TABLE IlI
TARGET PARAMETERS FOR THE CONSTANT VELOCITY SCENARIO
SNR (dB) | Initial position (km) Velocity (m/s) Birth Death
Target || per sample x(t =0) v(t) instant (s)| instant (s)
Target 1 —34 [70,70,10]T [200, 150, 0] 0.4 1.6
Target 2 —14 [-70,-70,10]T [100, 100, 55]T 0.4 1.6
Target 3 —14 (10,60, 5]T [~100, —200, 20]T 0.4 1.4
Target 4 —34 [50, —50, 0] [~100, —40, 50]T 0.4 1.6
Target 5 —34 [-50, —50,2]T [70, 200, 60]T 0.4 1.6
Target 6 —34 (30, 40, 20]T (180, —180, —50]T 0.4 1.4
TABLE IV
TARGET PARAMETERS FOR THE MANEUVERING SCENARIO
SNR (dB) | Initial position (km) | Initial Velocity (m/s) Peak
Target || per sample x(t = 0) v(t=0) acceleration
Target 1 —34 [70,70,10]T [200, 150, 0] 49
Target 2 —34 [~70,—70,10]T (100, 100, 55]7 49
Target 3 —34 [10, —60, 5]T [~100, —200, 20]T 49

B. Constant velocity scenario with a time-varying humbetanfets

We first consider a scenario with a time-varying number ofiéts with constant velocity in the surveillance region. The
parameters of the targets are given in Table Il

The proposed TBD method with Gaussian mixture implememasind the batch TBD method have no prior knowledge
on the birth/death instants and kinematic state of the targen the contrary, the JPDAF method has perfect knowledge o
the birth/death instants for each target. At the birth ofhregrget, the JPDAF starts a new track with perfect kinemsttite
initialization. At the death of each target, the JPDAF drtipes corresponding track. Targets with SNR per sample of 84 d
(resp. -14 dB ) are detected with probabilfy ~ 0.8 (resp.P; ~ 1) corresponding td, = 10~°. Thus, the prior information
available to the JPDAF is equivalent to ideal target detectso that the JPDAF merely performs multitarget trackipor.
that reason, JPDAF serves as a benchmark to assess thermaréerof the TBD method, whose task is to perform multitarget
detection and tracking jointly.

Fig. 6 (resp. Fig. 7) shows the true and estimated normalizgtdtic delay (resp. Doppler shift) using the proposed TBD
method for the scenario of Table Ill. We observe that the psep algorithm detects all targets and that the birth anthdea
instants are recovered satisfactorily. In general, therkiatic state is estimated with with good precision, exceptaf few
time instants for the targets with lowest SNR. Indeed, wesribat target 4 has one missed detection arauad).86 s and
for target 6, the Doppler shift exhibits a small outlier andd = 0.82 s. A simple data association post-processing, similar to
the association algorithms implemented in classical ra@aking (for example in the JPDAF), would easily solve thissad

detection and outlier problem, though.
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Fig. 8 (resp. Fig. 9) shows the true and estimated normabisdtic delay (resp. Doppler shift) using the batch TBD moelt
for the scenario of Table Ill. Thanks to the coherent integreover M/ consecutive scans, the batch TBD algorithm has good
detection performances, since the number of targets aldthghe birth and death instants are recovered satisfactbiowever,
the state estimates are either jagged around the corrgatttey (see for instance target 1 and 6 on Fig. 9) or expeeien
bias (see for instance target 2 and 3 on Fig. 9) . This phenometisible on the Doppler estimates, is due to the fact that t
SP-STC-VTA is forced to choose its sequence of state essraanong discrete values. Although not included due to l&ck o
space, a zoom on the bistatic delay estimates would showlgxhe same phenomenon.

Fig. 10 (resp. Fig. 11) shows the true and estimated norewhlizstatic delay (resp. Doppler shift) using the JPDAF roéth
for the scenario of Table Ill. The JPDAF has an inherent ciép&e correct the missed detections and the outliers intaaddi
to false alarm filtering, by performing data associationwdeer, it is assumed that the time-varying number of tarigets
perfectly known. Another drawback of the JPDAF method cofma® the discretization of the thresholded measuremeis in
delay and frequency bins, which can introduce a relativédy ibias and/or variance in the estimation of the kinemates
This phenomenon is particularly apparent on the Dopplémests of target 2 in Fig. 11.

Moreover, note that the SVA apodization step is very effegtotherwise the sidelobes of the two high SNR targets would

have created false double tracks and also would have makkedeaker targets for all methods.
C. Maneuvering scenario

We also consider a maneuvering scenario with three targbjed to an acceleration jump. The characteristics of dhgets
are given in Table IV.

Fig. 12 (resp. Fig. 13) shows the true and estimated norethligstatic delay (resp. Doppler shift) using the proposB® T
method for the maneuvering scenario of Table IV. The missgdation observed for target 1 aroutie- 0.6 S is not due to
a loss of target track, as one may expect. This rather exéephln occasional behavior of the TBD algorithm, which can
be explained as follows. When a target crosses the boundaayfrequency bin, occasionally the posterior target eriste
probability (25) temporarily drops below the5 threshold imposed by the detection rule of Table I. A few iggfly one ore
two) time steps later, the posterior target existence poiibawill rise again above the threshold, thanks to theommfation
gathered from future observations. A possible remedy f@r dlecasional behavior could be to lower the detection tiolkeks
artificially for targets about to cross a frequency bin, oplg@a simple data association post-processing to supphnessissed
detections, as already advocated in Sec. VII-B. Neversisele zoom on target 1 provided in Fig. 14 and Fig. 15, confinas t
the detection of targets crossing several delay or frequbits is in general not a problem, thanks to an appropriatéceh

of inter-bin dynamics in Sec. IlI-C. Also, the proposed TBtimod is quite robust to severe acceleration jumps, detipte
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fact that a simple near constant acceleration model wasteddp model the target dynamics.

Fig. 16 to 19 show the results for the maneuvering scenaridabfe 1V using the batch TBD method. In particular, the
zoom on target 1, provided in Fig. 18 and Fig. 19 shows thatltberepency between the actual and estimated kinematée sta
can be quite large due to the discretization of the stateespdo delay and frequency bins. Comparing Fig. 18 and 1B wit
Fig. 14 and 15, we notice that the batch TBD algorithm prosidely a rough discretized estimate of the target trajegsori
while the proposed TBD method provides significantly betiteacking accuracy.

Fig. 20 to 23 show the results for the maneuvering scenari@ble 1V using the JPDAF method. Again the data association
performed by the JPDAF corrects the missed detections andutliers and filters out the false alams. In particular,zbem
on target 1, provided in Fig. 22 and Fig. 23, reveals the efféthe discretization of the thresholded measurementsdetay
and frequency bins. The in-built Kalman filtering of the JHD& able to smooth out effectively the discretization effen
the delay shift estimates, as can be seen from Fig. 22. Howesmparing Fig. 15 and Fig. 23, the proposed TBD method
outperforms the JPDAF in terms of precision of the Doppleéinesges. In particular, note that the proposed TBD algatith
recovers quasi instantaneously from the severe accaeratmp aftert = 1.2 s, while the JPDAF will take time to do so.

These findings are confirmed by Monte Carlo simulations byukitmg the maneuvering scenario of Table 190 times
with independent observation noise realizations. Theltinguperformances in terms of RMSE are shown in Fig. 24 toA9.
expected, the RMSE of the bistatic delay for the batch TBDho@toscillates between03 (when the true continuous-valued
state variable is equal to a discrete state) arid(when the true continuous-valued state variable is halflvetyveen two
discrete states) times the size of the bin used to discrétzestate-space. Regarding the JPDAF method, after tharbagi
of the acceleration jump, the RMSE of the normalized delaift €lxperiences a severe overshoot for target 2 and 3, and
then stabilizes to a value between 0.05 and 0.1. For the peap®BD method, after the begin of the acceleration jump, the
RMSE of the normalized delay shift experiences a moderagesbwot only for target 3, and then also stabilizes to a value
between 0.05 and 0.1. However, the Doppler RMSE for the JPBAgenerally more than twice the value of the RMSE of
the proposed method. Moreover, we observe that for targetFig. 29, the Doppler RMSE increases to a value almost equal
to the frequency bin size, after the end of the acceleratiompj This behavior can be attributed to the bias in the JPDAF

method mentioned before.
D. Comparison between the different approaches

The batch TBD processor is a fixed grid method able to detegets accurately over the entire state-space. However, it
provides only a rough estimate of the target's kinematitests a byproduct, with unpredictable error spikes equalald h

the size of the discretization bins, even for high SNR targ€herefore, the batch TBD processor is suitable for apfidios,
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where the detection of dim targets is of primary interestilevtrack accuracy is of secondary interest. Also, as for laigh
algorithm, a processing latency equal ¢ scans must be tolerated before a new (resp. old) track careteetdd (resp.
deleted).

The JPDAF assumes prior knowledge of the number of targetspainr knowledge of the kinematic state when a track
is initiated. Therefore, the JPDAF acts as a track maintematgorithm. In practice, detection would have to be pentxt
separately using an additional track initiation and detetnethod [35]. The limitation of this two-step procedureétermined
by the detection threshold. In order to detect the dim targétinterest in the present paper, the detection threshaist m
be set to a low value, which has two consequences. Firstly, résults in many false tracks being initiated from clutter
measurements [35]. Secondly, the average number of scadgdéo change the status (true or false) of a tentative tréltk
increase [35]. Regarding the tracking performances, artlile batch TBD algorithm, the JPDAF is a continuous-valuetes
estimation method, that delivers smoothed estimated tténgjectories thanks to in-built Kalman filters. Howevaroe spikes
occur in the delay and Doppler estimates during abrupt oesmd the target acceleration. Also, the JPDAF is a recursive
method, which delivers new estimates at each scan withaaegsing delay.

Thanks to its mixed discrete-continuous state-space septation, the proposed TBD method retains the best of bottusy
by performing Bayesian detection of a unknown number of iplelttargets over the entire state-space on a per bin badis an
joint tracking of the continuous-valued kinematic statehini each bin. Also, the proposed TBD algorithm is recurstheis
without processing latency. Another benefit of the propdEB® method is its ability to track targets with high accetera
jumps without the error spikes in the delay and Doppler ests that one would expect to see for the simple near constant
acceleration kinematic model advocated in the paper. Thierethe passive radar application under consideraticas dwt
need multiple model approaches [34]. These benefits conteatast of higher computational resources. On a 3.16 GHt Inte
Xeon machine with a Matlalf) implementation (without taking advantage of the high degreparallelism that the methods
offer), the average running time for processing s of OFDM signal was equal to 190 min. for the proposed TBD weth

4.77 min. for the batch TBD method and 3.55 min. for the JPDAdthad.

VIII. CONCLUSIONS

In the context of passive radars using illuminators of opputy sending OFDM signals, the generalized ambiguitycfion
(GAF) of the signal presents a high sidelobe level. For cotigaal radar techniques, based on thresholding the métiker
output, the sidelobes of high SNR targets would typicallyate false double tracks and mask low SNR targets. The pedpos
approach uses SVA apodization at the matched filter outpupleal at a multiple of the Nyquist frequency, both in the gela

and frequency shift domain, in order to cancel the sideloBssa result, the low SNR targets are revealed as well, but the
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detection and tracking of such targets is known to be a diffiask. In this paper, we introduced a novel track-befos&dt
(TBD) method suitable for multitarget detection and trackof an unknown and time-varying number of targets. We thioe

a Bayesian framework based on a mixed discrete-continusiesentation of the state-space in each delay/frequency b
induced by the matched filter sampling. The proposed algorpperforms detection by calculating the posterior prolitsitnf
target existence, and tracking by computing the kinemasite gorobability density function conditional on a targeistence,

on a per bin basis. A suboptimal implementation based on asgkau mixture approximation is then introduced in order
to get a tractable solution. Numerical experiments dematest the validity of the proposed approach for an illunonaif
opportunity sending a DAB signal, in a non-maneuvering andaameuvering multitarget scenario. Future developmenits wi
include the extension to passive multistatic and active ostatic radar systems.

Figure 6 to 29: About here.

APPENDIXA
KINEMATIC STATE TRANSITION PDF FOR A FREQUENCY BIN TRANSITI®!

,71

For the frequency bin tran5|t|o¢aak’3 =1,e; 1), (12) is still valid, but (13) must be modified in the follovgrmanner

af = cos [2m(vi_1 — f;-1)T|bf_; — sin[2m(vk—1 — f;-1)T] b,
af = sin[2m(vg_1 — f;-1)T] b} _; + cos [2m(vp—1 — f;-1)T] b,
bl ~ N (bi,0,02)

by ~N(bL,0,02)

Tk—"'k 1 — Vk— 1fc

Vg = Vg1 + 1T

Ck = Cr—1

where the third and fourth equation take into account thepsiphase transition due to the frequency bin transition in a

@

conservative manner, by applying to the state variableand ka the same amplitude uncertainty as for a target birth, that is

the amplitude dynamical range. We deduce the slight modlificaf f(.) and Q required in (15) to obtaim(xk|xk_1,e§;j =

Lep/ 't =1).
Similarly, for the frequency bin transitiofe}” = 1,¢;’ " = 1), (12) is still valid, but (13) must be modified in the follovgn
manner
6NN(ak,0 o2)
ag N./\/'(a,€7 o2)
bl = cos [27r(1/k 1— f)Tal_ | —sin2n(ve_1 — f5)T] a§71
ka = sin [2m(vi—1 — f;)T)al_, + cos 27 (vp—1 — £;)T] akc{1

Tk = Tk—1 — kalflc

v =vg—1+ (1T

Ck = Ck—1
where the first and second equation take into account thep gitzsase transition due to the frequency bin transition in a
conservative manner, by applying to the state variabjeand akQ the same amplitude uncertainty as for a target birth, that is
the amplitude dynamical range. We deduce the slight modificaf f(.) and Q required in (15) to obtaim(xk|xk_1,e§;j =

Ley Tt =1).
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APPENDIX B
BAYESIAN CORRECTION FOR THE TARGET EXISTENCE PROBABILITIES
Using Bayes's rule, we obtain

P(ez’j = 1|ylk)
p(yrley = 17)’1:1%1)]3(62',3'
k

Plyely 1) = Lys)
el e s ykle = Lyi)

P e e e vl k1)

X P(ek] = 1ly1:6-1) (42)
(YT e Y e = Lyvke1, yi)
e YT Y e v)
p(yilex’ = Lyis1)
P (Yily1e—1)

x P(ey’ = 1lyvx-1),
wherey: = yi \ {y, "7~y yi M w7}, This formula holds exactly, but is intractable, since idives long range
dependencies between the matched fllter outputs for a gitegration window. Thanks to the thumbtack ambiguity caagr
imposed by the apodization of Sec. II-C, matched filter otstporresponqu to different bins can be considered aistitatly
independent. Therefore, we can neglect the depende@eb%‘ 1,yk’7 1,yk ’J,y}j ony; (see also the discussion in Rem 2.4
and 2.5). For similar reasons, the following approximatmtds

p(Yk|€L’] =1,y16-1) @ p(yrlytk—1)

(see the discussion in Sec. IlI-A).

Therefore, the desired result (25) follows.

APPENDIXC
PROOF OF THE TARGET KINEMATIC STATE PREDICTION FORMULA
Applying the total probability theorem, we have

(Xk|6§$j = 17)’1 k—1) =
p(xiley’ =1,ep7, = 0,y16-1)Pe)?, =0}’ =1,y1.-1)
+ Z p(xk|ek =16 =1, y1.6-1) (43)

(m,n)EN(4,5)

x Plef"" =1lek? = 1,y1.6-1)-
Note thatp(xy|ey” = 1,ek? | = 0,y1._1) is the kinematic state birth pdf in bifi, j), therefore the dependence gn;,_;

can be dropped.

Let us first calculateP (e}’ | = 0le}’ = 1,y1.5_1) using Bayes’s rule

P(eyly = 0ley” = 1,y1:5-1)
. Pley’ =1ley?, = 0 Y1 k1) Plep” = Olyi—1)
P(ey” = 1ly1:k-1) .

Since P(eZ" 1|e,C 1 = 0,y1.k—1) represents the priori probability of target birth in bin(s, j) at instantk, which is

independent of the past observations, we obtain

PyIP(ey ) = 0ly1k—1)

Pei,’i :Oei.’jzl,y;k, = —
(k= ek 1:4-1) P(e)? = 1ly1r-1)

(44)
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m,n

In the same way, let us apply Bayes's rule to calculdte,’ = 1|e};j =1,y1.5—1) When(m,n) € N(i, j)

P(ei = 1ey’ = 1,y15-1)
B P(ey? = 1eft = 1,y1e-1) P}t = ly1e—1)

= T )

P(ey” = 1ly1k-1)

whereP(e};’j =1le;""l =1,y1.,—1) represents the probability of target existence in @iry) at instantk, given that a target
exists at the previous instant in bim,n) € N (i, j) and given the set of past observations. Using the notatiodsssumptions
introduced in Sec. llI-C, we have

P(ey? =1lef"" = 1,y1k-1) = P(i, jlm, n, y1e—1)(1 — P7™).

Thus
P = ek = Lyis )
_ P(i, jlm,n, y1.6-1)(1 — Py"™")P(ep”"] = 1ly1:k—1) (45)
P(ey’ = 1lyne—1) ‘

Injecting (44) and (45) into (43) completes the proof.

APPENDIXD
BAYESIAN CORRECTION FOR THE TARGET KINEMATIC STATE

Using Bayes’s rule, we obtain

p(yk|€§$j =1,Xk,Y1:6-1)
pyrley’ = 1,y1r-1)
(YT Yyl = Xk, yiko1)
oG T e yiler’ = Lyiaea)
(T e Y ey’ = X yuk-1,vE)
o e o le = Ly yi)
y p (}’Z|62J: 1:Xk7y1:k71)
p (y};|e;f = 17)’1:1@71)

Using the same arguments as in Appendix B, matched filterutsitporresponding to different bins can be considered as

(46)

approximately statistically independent. Therefore, we neglect the dependencedf 7/~ i7" 4 ="7 47 onyz. Also,

v+ depends neither on the presence of a target in(bif) nor on its kinematic state, so
p(yzlez] = 17xk7y1:k71) ~ p(YZ|Y1:k71)
p(yrley’ =1, y1e—1) = p(yrlyre—1).

Therefore the following approximation is valid

p(yrley” = 1, xn, y1-1)
p(yrley’ =1, y1k-1)

i—1l,5—1 oj—1 _i—1,j5 i, %75 _
~ p(yk y Yk s Yk s Yk |ek - 17Xk7}’1:k71)
~ i—1,j—1 i,j—1 _i—=1,7 4,5 %] _ :
p (yk s Yg y Yg s Yg |ek = 17}’1:1@—1)

Finally, considering (21), the matched filter outpyts "7 ~', y1/ =" 4~ 47 conditioned onx;, given thate}’ = 1 are

independent of/1.,_1. Therefore, the desired result (31) follows.
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APPENDIXE
NOISE STATISTICS AT THE MATCHED FILTER OUTPUT

The noise contribution before matched filteringt) is modeled as a zero-mean AWGN with variance Thus
Elw(8)] =0

a7

E[w(01)w(02)*] = 0°6(61 — 62). “n

Consider the noise contribution, (¢, /) at the matched filter output corresponding to a delay shifnd a frequency shift
f, as given by (4). The expectation can be written as

(k+1)T—T/2

Elzi(t, )] = % Ew(8)]sres (6 — ) e 720,

ET—T/2

wheres,..f(t) is considered as a known deterministic signal, since wenasgerfect recovery of the reference signal at the
reference antenna. Therefore, according to (&7} (¢, f)] = 0.

Moreover, we have
Elzi(t, fzu(t — 0, f — )] =

(k+1)T—T/2
E{% / w(01)srep (01 —t) e 72101 4o,
KT—T/2
(k+1)T—T/2
x % W(02) 5res (02 — 1+ 0)e7 =9 dp, )

KT —T/2
(k+1)T—T/2 (k+1)T—T/2

1 * *
:—2E{ / / W01 )w(02)" srep (61 — 1)
kT—T/2 KT —T/2

X Spep (02—t + §)e 20 eﬂ"(f**”)%aldag}

Exchanging the order of the expectation and the double riatieg, we obtain
Elzi(t, f)ze(t — 0, f — )7
(k+1)T=T/2 (k+1)T—T/2
1 *
= [ [ Bwewe
kT —T/2 kT—T/2
X Spef (01 — 1) Spep(Ba — t + 0)e 12 01027 (F=0)02 49, 9,
Now, using (47), the double integral reduces to the follgvémgle integral
Elzi(t, f)ze(t — 0, f — )7
) (k+1)T—T/2
=— / Sref(al —t)*sref(al—t-i-@)
kT—T)/2
w e I2mf01 gi2m(f—p)61 db,
) (k+1)T—T/2
=— / Sr.ef(el — t)*s,,«ef (91 —t+ 9)67j2mp91 d91

ET—T/2
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Applying the change of variable = 8, — ¢t — kT', we obtain
Elzi(t, [zt =0, f —¢)"]
T/2—t
_o / Sves (14 KT + 0)8yes (1 + KT)* e 92m e HHET) gy
—T/2—t

2
U_e—j2mp(t+kT)

T

T/2—t
X % / Spef(t+ KT + 0)spef(u+ ET) e 727" du
—T/2—t

:U_Qefj2ww(t+kT)
T
T/2—t
s(u—+ kT + 0)srep(u+ ET) e 727" du,

M=

—T/2—t

where the last equation holds because, as mentioned in ISBctHe reference signal,.;(¢) is nothing but the transmitted

signal s(¢) with guard interval and pilot carriers modification advehin [9] to remove the side-peaks.
Finally, considering that for OFDM signais< 1" and that the GAF defined by (6) is invariant to a timing advaofcgT’,

we obtain )

E[Zk(t, f)Zk(t — 97 f _ (p)*] — %X(& (p)e*j2ﬂ¢(t+kT).
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Fig. 24. Normalized bistatic delay RMSE for

Doppler RVSE (Hz)
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