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Performance analysis of a new calibration method

for fiber nonlinearity compensation
Frederic Lehmann and Yann Frignac

Abstract—Digital signal processing for fiber nonlinearity com-
pensation is a key enabler for the ever-increasing demand for
higher data rates in coherent optical transmissions. A major
challenge of existing techniques is that the fiber nonlinear
coefficient needs to be scaled properly during compensation in
order to reach the achievable signal quality increase. We solve this
problem using a low-complexity algorithm adaptively optimizing
a metric based on the soft-decision bitwise demodulator used
for modern FEC decoders. An analytical model shows that the
proposed scheme converges to the optimal scaling factor with a
predictable precision, that is validated by numerical results.

Index Terms—Coherent optical communications, soft demod-
ulation, nonlinearity compensation.

I. INTRODUCTION

Commercially available advanced fiber-optic communica-

tion systems achieve high spectral efficiency thanks to the

application of modern digital signal processing (DSP) at the

receiver to compensate linear channel impairments, such as

chromatic dispersion (CD) and polarization mode dispersion

(PMD) [1]. Higher data rates can be reached by increasing

the fiber launch power, thus giving rise to nonlinear distorsions

induced by the Kerr nonlinearity coefficient of the propagation

medium, γ [2]. Thus, nonlinear fiber distorsions remain the

dominant impediment to the ever growing demand for data

traffic [2]. During the last decade, DSP methods have been

developped to tackle this problem at the receiver side, includ-

ing the inverse Volterra series transfer function (IVSTF) based

nonlinear equalizer [3] and digital back-propagation (DBP), a

method inverting the propagation equations using the split-

step Fourier method (SSFM) [4] (see also its simplified per-

turbation [5] and lowpass-filtered [6] variations). A common

feature of the aforementioned state-of-the art methods is the

necessity to estimate a correction factor that linearly scales γ,

in order to optimize the averaged signal quality (Q2-factor),

that relates to the bit-error rate (BER) (see Sec. V-A). The

reason is that in the IVSTF method, the signal power must

be locked to the receiver sensitivity [3], while in DBP and its

variants the number of SSFM steps is finite. Several methods

to adjust the scaling factor are available in the literature.

An offline grid search, monitoring the Q2-factor is presented

in [4], but it requires prior knowledge of the transmitted

data. In [6], an analytical formula is introduced, but accurate

knowledge of the physical parameters of the transmission link
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is necessary. While the aforementioned methods are suitable

for laboratory experiments, in real applications, the nonlinear

coefficient of the fiber may vary in each span, or even be

unknown. This motivates the search for online estimation

methods. The principle of an adaptive semi-blind approach

based on monitoring the signal quality was introduced in [7]. A

practical example of semi-blind Q2-factor estimator, based on

the decision regions of the signal constellation, was suggested

in [8]. However, this method is prone to large overestimation

caused by hard decision errors in the presence of background

noise and phase noise.

In this letter, we first introduce a new metric to monitor the

signal quality with a low hardware complexity increase, while

staying immune to hard decision errors irrespective of the

modulation format. Then, we aim to optimize the nonlinearity

scaling factor by minimization of the proposed metric using

a stochastic gradient-descent. Finally, we characterize the

convergence and the residual estimation error of the proposed

scheme. Numerical results confirm the predicted performance.

We use E[.] to denote the expectation operator.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the optical transmission system depicted in

Fig. 1. At the transmitter side, we assume that a modern soft-

decision forward error correction (FEC) encoder is used [9].

The i-th binary codeword ci = (c1i , . . . , c
N
i ) at the output of

the FEC encoder is mapped to elements of a size-M complex

constellation, before pulse shaping and optical modulation.

At the receiver side, after the analog front-end, a digital

coherent receiver performs polarization demultiplexing using

an adaptive filter, followed by carrier recovery, soft demod-

ulation and soft-decision bit-wise FEC decoding [1]. Unlike

conventional receivers [1], where chromatic dispersion (CD)

is compensated through linear equalization, joint CD and

nonlinearity (NL) compensation (CD/NL-C) is applied [3]-

[4]. Note that in order to obtain the maximum signal quality,

CD/NL-C requires to apply a correction factor κ to the fiber

nonlinearity parameter [7]. Since the optimal value of κ,

denoted by κopt, is in general not known a priori, in practice

CD/NL-C uses an estimate κ̂i instead, that is fixed over the

duration of the i-th codeword.

III. PROPOSED CORRECTION FACTOR ADJUSTMENT

We seek a metric related to the signal quality, that is immune

to hard decision errors unlike the Q2-factor estimator in [8].

Let pki (κ) be the a posteriori probability that the k-th bit

within the i-th codeword is a binary zero (see Eq. (5) in [10]),

when the CD/NL-C correction factor is fixed to κ.
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Fig. 1. Block diagram of the optical fiber transceiver. CD/NL-C: chromatic dispersion and nonlinearity compensator. Ns: number of fiber spans.

Since the computation of pki (κ) solely depends on the

likelihood function of a received symbol, no hard decision

error is incurred. Let us define the a posteriori average

entropy [11] over the i-th codeword as

Ei(κ) =
1

N

N
∑

k=1

H2(p
k
i (κ)), (1)

where H2(x) = −x log2 x − (1 − x) log2(1 − x) is the

binary entropy function. The metric (1) gives a measure of

the reliability of the decisions at the soft demodulator output,

applicable for any modulation format. A suitable objective

function that reaches its minimum at κ = κopt is J(κ) =
E[Ei(κ)], where the expectation is taken with respect to the

data, background noise, local oscillator (LO) and nonlinear

phase noise [1]. A tractable adaptive estimation algorithm is

obtained using a stochastic gradient-descent with step-size µ

κ̂i = κ̂i−1 − µ
∂Ei(κ)

∂κ

∣

∣

∣

κ=κ̂i−1

. (2)

A practical algorithm is obtained by replacing the partial

derivative with a finite difference,

Di =
Ei(κ̂i−1 + h)− Ei(κ̂i−1 − h)

2h
, (3)

where h > 0 is a design parameter.

IV. THEORETICAL PERFORMANCE ANALYSIS

The finite difference term can be decomposed as

Di =
J(κ̂i−1 + h)− J(κ̂i−1 − h)

2h
+Ni, (4)

where the first term is the expected value. Ni represents the

zero-mean perturbation term originating from the joint effect

of the data, background noise, LO and nonlinear phase noise

trajectory during the i-th codeword. Therefore, the perturbation

terms for successive codewords can reasonably be assumed to

be independently distributed. Linearizing (4) around κ = κopt

using a second-order Taylor expansion, we obtain

Di ≈ A(κ̂i−1 − κopt) +Ni, (5)

where

A =
∂2J(κ)

∂κ2

∣

∣

∣

κ=κopt

. (6)

Also, due to the independence assumption

E[NiNj] = σ2
Nδi,j , (7)

where σ2
N is the variance of the perturbation at κ = κopt and

δi,j is the Kronecker delta function.

Let us examine the dynamical behavior in the absence of

perturbation. Injecting (5) into (2), we obtain

κ̂i = κopt + (1− µA)i(κ̂0 − κopt). (8)

It follows that for any initial value κ̂0 in the vicinity of κopt,

the proposed algorithm has a geometric convergence to the

optimal value of the scaling factor provided that the following

stability condition is satisfied

0 < µ < µmax =
2

A
. (9)

Conversely, assume that the transient has died out, the

contribution of the perturbation to the estimation error ei =
κ̂i−κopt is the response of Ni to the filter whose z-transform

is

HN (z) =
−µz

z − 1 + µA

and whose one-sided bandwidth BL is defined by

2BLT = T

∫ +1/2T

−1/2T

|HN (ej2πfT )|2df =
µ

A(2− µA)
. (10)

It follows that the estimation error variance is obtained as

E[e2i ] = T

∫ +1/2T

−1/2T

σ2
N |HN (ej2πfT )|2df =

σ2
Nµ

A(2 − µA)
,

(11)

since the power spectral density of the perturbation is flat

according to (7).

Notice the importance of striking a balance between the rate

of decay of the transient (8) and the variance of the estimation

error (11), when setting the value of the step-size µ.
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V. NUMERICAL RESULTS

A. System setup

We consider a single-channel transmitter using a length-

N = 16000 regular low-density parity-check (LDPC) [9]

FEC encoder, with coding rate 0.8. The encoded data are

demultiplexed to two polarization components at the symbol

rate 1/T = 32 GBaud and presented to quadrature amplitude

modulators (4-QAM) before root raised-cosine pulse shaping

with 10% roll-off.

The dispersion unmanaged [4] transmission line is a succes-

sion of Ns = 20 spans of 100 km long standard single-mode

fiber (SMF). An optical amplifier yields the same launched

average signal power, Pin, at the beginning of each span.

The SMF propagation, modeled using the split-step Fourier

method [4], is characterized by the following parameters

at wavelength λ = 1550 nm: an attenuation coefficient

α=0.2 dB/km, a group velocity dispersion (GVD) D = 20
ps.nm−1.km−1, a nonlinear index n2 = 2.6.10−20 m2/W ,

and an effective area Aeff = 80 µm2, so that the fiber nonlin-

earity coefficient is γ = 2πn2/λAeff = 1.3174 km−1.W−1.

At the receiver side, the coherent demodulator uses a LO

with laser linewidth of 100 kHz, followed by an order-5 Bessel

low-pass filter of bandwidth set to B = 0.7/T and an ADC

with oversampling factor 64. The noise due to amplified spon-

taneous emission (ASE) in optical amplifiers is then taken into

account by applying an equivalent noise loading for a targeted

SNR in the electrical domain. Unless otherwise specified, DSP

consists of a T/64-spaced CD/NL-C, followed by a 21×4-tap

T/2-spaced constant modulus algorithm (CMA) equalizer for

residual CD compensation and polarization demultiplexing and

a decision-directed phase-locked loop for carrier recovery [1].

CD/NL-C is implemented using either the third-order IVSTF

equalizer in [3] or DBP from [4] with 10 steps per fiber span.

The system performance is measured by the bit-error rate

(BER) before FEC decoding, denoted by BERpre. Moreover,

the signal quality at the receiver is measured by the Q2-factor,

defined as Q = 20 log10(
√
2erfc−1(2BERpre)) (dB), where

erfc(.) is the complementary error function [8].

B. Performance analysis verification

In this subsection, without loss of generality, we consider

DBP-based CD/NL-C. The background noise variance is kept

constant, irrespective of Pin and its value corresponds to an

electrical signal-to-noise ratio (SNR) equal to 7.54 dB at

Pin = 4 dBm. Fig. 2 plots the objective function for mini-

mization, parameterized by the launch power Pin. Typically as

Pin increases, J(κ) first decreases thanks to improved SNR,

and then increases again due to the degradation caused by

nonlinearity. We observe that J(κ) is a convex function, so that

a unique minimum at κopt exists. Also, J(κ) becomes more

sensitive to a change in its argument as Pin increases. As a

consequence, the tolerance to a deviation of the scaling factor

around κopt is substantially larger close to the linear regime.

Now, consider the proposed online estimation algorithm (2),

using (3) to approximate the derivative of the objective func-

tion. The discretization step h should be sufficiently small to

get a good approximation of the derivative. However, it was
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Fig. 2. Objective function plotted against the fiber nonlinearity scaling factor
κ, parameterized by the signal launch power Pin.
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Fig. 3. Average dynamical behavior of stochastic gradient-descent at Pin = 4

dBm.

observed by Monte Carlo simulations that the variance of the

perturbation term Ni in (4) grows with decreasing h. We set

h to 0.05, which was found to be a good compromise. Unless

otherwise specified, for the sake of fair comparison (identical

computational complexity), we always fix to 20 the approx-

imate number of codewords processed before convergence

is reached. Consequently, the step-size µ is set to µmax/10
using (9), and the corresponding numerical values are listed

in Table I. The proposed algorithm is initialized to κ̂0 = 0,

TABLE I
STEP-SIZE OF THE PROPOSED ALGORITHM APPLIED TO DBP.

Pin 2 dBm 4 dBm 6 dBm 8 dBm

µ 0.4958 0.1943 0.0838 0.0315

which corresponds to conventional linear CD compensation

only (without NL compensation) [4]. As illustrated in Fig. 3,

the average dynamical behavior of the proposed algorithm

closely matches the theoretical behavior predicted by (8).
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Fig. 5. Q2-factor after the proposed nonlinear parameter correction as a
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C. Comparison with existing methods

We now compare the objective function introduced in (1)

with known metrics in nondataided reception, such as the

mean squared residual phase error [7] and the error vector

magnitude (EVM) [12] after carrier phase recovery. Fig. 4

shows the estimation error variance of the gradient-descent

after convergence, averaged over 50 codewords. We observe

that the proposed criterion outperforms the standard metrics.

Also, note that a conventional grid search [4] over Fig. 2,

were each point is obtained by simulating 50 codewords to

provide sufficient averaging, could reach the same accuracy as

the proposed method at the expense of a complexity increase

of two orders of magnitude, though.

D. Comparison of CD/NL-C algorithms

Let us now compare the performances of linear equal-

ization [1], third-order IVSTF equalization in [3] and DBP

from [4] with 10 steps per fiber span, under identical settings

(i.e. electrical SNR=7.54 dB at Pin = 4 dBm, h = 0.05,

µ = µmax/10 and κ̂0 = 0). Fig. 5 illustrates the Q2-

factor as a function of Pin, after convergence of the proposed

scaling factor adjustment algorithm for the IVSTF and DBP.

Unsurprisingly in the linear regime (i.e. Pin ≤ 2 dBm), the

three algorithms have almost the same Q2-factor. However,

in the nonlinear regime, IVSTF equalization is better than

linear equalization, with a gain of 0.40 dB over standard

linear equalization in terms of maximum Q2-factor. DBP

outperforms the two other methods and achieves a gain of 2.36
dB over standard linear equalization in terms of maximum Q2-

factor.

VI. CONCLUSION

We presented a low-complexity method to calibrate the

correction factor scaling the nonlinearity parameter in DSP-

based nonlinearity compensation of optical fibers. The pro-

posed algorithm can be applied online and works in a blind

context, which is useful when prior information on the fiber

is either uncertain or unavailable. The calibration error has

been analyzed theoretically and validated by simulations for

standard methods such as IVSTF equalization and DBP. The

present work is easily adaptable to higher order modulations

and other variants of nonlinearity compensation. Extensions

of the proposed method to more than one unknown fiber

parameter will be considered in the future.
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