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Parameter estimation in switching Markov
systems and unsupervised smoothing

Fei Zheng, Stéphane Derrode, and Wojciech Pieczynski

Abstract—Stationary Jump Markov Linear Systems (JMLSs) model
linear systems whose parameters evolve with time according to a hidden
finite state Markov chain. We propose an algorithm for parameter
estimation of a recent class of JMLSs called Conditionally Gaussian
Pairwise Markov Switching Models (CGPMSMs). Our algorithm, named
Double-EM (DEM), is based on the Expectation-Maximization (EM)
principle applied twice sequentially. The first EM is applied to the
couple (switches, observations) temporarily assumed to be a Pairwise
Markov Chain (PMC). The second one is used to estimate the remaining
conditional transitions and conditional noise matrices of the CGPMSM.
The efficiency of the proposed algorithm is studied via unsupervised
smoothing on simulated data. In particular, smoothing results, produced
with CGPMSM in an unsupervised manner using DEM, can be more
efficient than the ones obtained with the nearest classic “Conditionally
Gaussian Linear State-Space Model” (CGLSSM) based on true param-
eters and true switches.

Index Terms—Markov switching linear systems, Expectation-
Maximization, CGPMSM, Unsupervised smoothing.

I. INTRODUCTION

LET us consider three random sequences XN
1 = {X1, . . . ,XN},

RN
1 = {R1, . . . , RN}, and YN

1 = {Y1, . . . ,YN}, with each
Xn, Rn, Yn take their values in Rm, Ω = {1, . . . ,K}, and Rq

respectively. YN
1 are observed while RN

1 and XN
1 are not. The task

that we are handling is to estimate the hidden states XN
1 from only the

observed YN
1 . We will use the Bayesian smoothing method, which

consists of estimating xN
1 = (x1, · · · ,xN ) by x̂N

1 = (x̂1, · · · , x̂N ),
where each x̂n is given by the conditional expectation: x̂n =
E
[
Xn

∣∣yN
1

]
. Such fixed-interval smoothing of switching Markov

models is of interest in different situations. For instance interference
suppression of spread spectrum CDMA systems [1], detection of
Bernoulli–Gaussian processes with applications to seismic signals
processing [2], target tracking and trajectory reconstruction [3], or
still stochastic volatility estimation [4].

To model the probabilistic dependences among XN
1 , RN

1 and YN
1 ,

we adopt the “Conditionally Gaussian Pairwise Markov Switching
Models” (CGPMSMs [5]). The aim of this paper is to propose a
parameter estimation method for CGPMSMs from only observations
YN

1 and to study unsupervised smoothing under the model with
the estimated parameters. As the widely used classic “Conditionally
Gaussian Linear State-Space Models” (CGLSSMs [2], [6]–[10]) are
actually particular CGPMSMs, the proposed method can be applied
to the CGLSSMs based unsupervised smoothing as well.

Parameter estimation problem is crucial in real applications. Early
work [8] developed a pseudo-EM for estimating the parameters of
dynamic linear models with switches, in which the process RN

1

is not a Markov chain but a non-stationary independent process
defined only by time varying probabilities. In [11] author proposed
a parameter identification method through matching the empirical
statistics computed from data with corresponding statistics predicted
by the model. In [12] author worked only on the EM estimation of
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SudParis, Université Paris-Saclay, SAMOVAR, CNRS UMR 5157, France.
e-mail: wojciech.pieczynski@telecom-sudparis.eu

transition probabilities of RN
1 for CGLSSMs. And later [13], when

it comes to non-linear case, EM has been combined with particle
filter to perform parameter estimation. In this paper, particle filtering
methods are not used, which removes the inherent problems like
particle degeneracy or large deal of particles needed when the state
space dimension is high [14]. Our contribution is twofold:

1) we propose a stationary CGPMSM parameters estimation
method, called “Double-EM” (DEM) from only the observations
YN

1 = yN
1 , of which an initial work has been presented in [15];

2) parameters estimated with DEM are used to perform unsu-
pervised smoothing by two fast approaches: one new defined
directly from the DEM-CGPMSM, and another one based on
“Conditionally Gaussian Observed Markov Switching Model”
(CGOMSM [4], [5], [16]–[18]) associated with the estimated
CGPMSM.

Compared to our initial work in [15], this paper improves the un-
supervised method and provides richer experiments. More precisely:

1) Smoothing algorithms are improved using p
(
rn
∣∣yN

1

)
obtained

from first EM instead of the estimated r̂?;
2) Experiments study the impact of noise levels as well as the

influence of Fyx values of CGPMSM, and provide comparison
with unsupervised DEM-CGLSSM, which are of interest as
CGLSSM is a widely used model.

The proposed parameter estimation method opens ways to unsuper-
vised processing (smoothing, filtering, prediction. . . ) in a very gen-
eral framework. Indeed, CGPMSM can approximate any stationary
(or even asymptotically stationary) Markov non-Gaussian non-linear
systems [4], [16]. The remaining of the paper is organized as follows.
Stationary CGPMSMs are recalled, and the new DEM algorithm
is proposed in Section II. Two related unsupervised smoothing
approaches are described in Section III, and two series of experiment
on DEM based unsupervised smoothing are reported in Section IV
regarding various factors of influence. Finally, the last section V
draws the conclusion and presents some perspectives.

II. STATIONARY CGPMSM

The proposed parameter estimation method is valid under the
stationary CGPMSMs model, defined by:

(i) the triplet TN
1 , with Tn := (Xn, Rn,Yn) for each n =

1, · · · ,N, is Markovian;
(ii) for each n = 1, · · · ,N− 1,

p (rn+1 |xn, rn,yn ) = p (rn+1 |rn ) (1)

(which implies that RN
1 is Markovian);

(iii) p (x1,y1 |r1 ) is Gaussian, and for each n = 1, · · · ,N− 1,[
Xn+1 −Mx(Rn+1)

Yn+1 −My(Rn+1)

]
:=

[
Fxx(Rn+1

n ) Fxy(Rn+1
n )

Fyx(Rn+1
n ) Fyy(Rn+1

n )

]
︸ ︷︷ ︸

F(Rn+1
n )[

Xn −Mx(Rn)

Yn −My(Rn)

]
+

[
Un+1

Vn+1

]
,

(2)
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where F(Rn+1
n ) is the appropriate system transition matrix.

Mx(Rn) and My(Rn) denote the means of Xn and Yn con-
ditionally on Rn, and

[
Uᵀ

n+1,V
ᵀ
n+1

]ᵀ represents the Gaussian
zero-mean noise with variance-covariance matrix independent
from TN

1 that

cov

([
Un+1

Vn+1

])
:=

[
Qxx(Rn+1

n ) Qxy(Rn+1
n )

Qyx(Rn+1
n ) Qyy(Rn+1

n )

]
︸ ︷︷ ︸

Q(Rn+1
n )

. (3)

For simplification, we set

Zn :=

[
Xn

Yn

]
,Mz(Rn) :=

[
Mx(Rn)

My(Rn)

]
,Wn :=

[
Un

Vn

]
,

(4)
so that, (2) can be concisely written as

Zn+1 −Mz(Rn+1) = F(Rn+1
n ) (Zn −Mz(Rn)) + Wn+1;

(5)
(iv) RN

1 is stationary (p
(
rn+1
n

)
does not depend on n), and for each

n = 1, · · · , N − 1 and each rn+1
n in Ω2:

Γz(rn+1) = F(rn+1
n )Γz(rn)Fᵀ(rn+1

n ) +Q(rn+1
n ), (6)

where Γz(rn) := E [(Zn −Mz(rn)) (Zn −Mz(rn))
ᵀ |Rn = rn ]

is the variance-covariance matrix of Zn conditionally on
Rn+1

n = rn+1
n .

In stationary CGPMSM (i)-(iv), the distributions p (tn, tn+1) do not
depend on n, thus, the model distribution is defined by p (t1, t2),
given by p (r1, r2) and p (x1,y1,x2,y2 |r1, r2 ).

Let us recall two particular CGPMSMs (if stationary):
1) The classic “Conditionally Gaussian Linear State-Space Models”

(CGLSSMs) are CGPMSMs with Fxy(r21) = Fyy(r21) = 0 for
each r21 ∈ Ω2;

2) The recent “Conditionally Gaussian Observed Markov Switch-
ing Models” (CGOMSMs), which are CGPMSMs with
Fyx(r21) = 0 for each r21 ∈ Ω2.

Comparing to CGLSSMs, CGOMSMs have the advantage that fast
exact restorations (filtering and smoothing) are feasible in spite of
the existence of unknown switches [5] (CGOMSMs also belongs
to the “Conditionally Markov Switching Hidden Linear Models”
(CMCHLMs) family which allows fast exact restorations in general
context, not necessarily to be Gaussian [19]).

The proposed parameter estimation method for the stationary
CGPMSMs (i)-(iv) is constructed by the following two steps:
(a) Assuming that

(
RN

1 ,Y
N
1

)
is a stationary Pairwise Markov

Chain (PMC [20]), apply an extension of the classic EM [21],
[22] to estimate the parameters θ? of its distribution
p?
(
rN1 ,y

N
1

)
from YN

1 = yN
1 , then use p?

(
rN1 ,y

N
1

)
to estimate

(r̂?)N1 of rN1 with Maximum Posterior Mode (MPM) criterion
(see Subsection II-A);

(b) Estimate the parameters θ of p
(
TN

1

)
using

(
(r̂?)N1 ,yN

1

)
with

the proposed “switching EM” specified in Subsection II-B.
Such a method will be called “Double-EM” (DEM) from the applica-
tion of EM principle twice. Let us insist on the fact that

(
RN

1 ,Y
N
1

)
is not Markov in general CGPMSM and thus the point (a) above is
a temporal approximation. Once (r̂?)N1 is found, this hypothesis is
no longer necessary. To be more precise, we have:
• RN

1 is Markovian in CGPMSMs, CGLSSMs, and CGOMSMs;
•
(
RN

1 ,Y
N
1

)
is Markovian in CGOMSMs, but it is not necessarily

Markovian in CGPMSMs;
•
(
RN

1 ,X
N
1

)
is Markovian in CGLSSMs, but it is not necessarily

Markovian in CGPMSMs.

More generally, let
(
GN

1 ,H
N
1

)
be a stationary time-reversible

Markov pairwise process. Necessary and sufficient conditions for
markovianity of GN

1 (or HN
1 ) can be seen in [23].

Remark 2.1
(
RN

1 ,Y
N
1

)
is not Markovian in general CGPMSM,

assuming it Markovian in the first EM could possibly appear as
a strong approximation. We performed some experiments to assess
how replacing the true rN1 with the estimated one obtained by the
first EM affects the smoothing. Result, not reported here due to the
limited space, shows that this approximation does not deteriorate the
performance significantly, and the method so obtained is even the
best one (except the optimal one) among all the studied methods.

Let us detail steps (a) and (b) above.

A. EM for Pairwise Markov Chain

The parameters θ? to be estimated are, for each j, k ∈ Ω,
pj,k := p? (r1 = j, r2 = k); mean M

y2
1

j,k and variance Γ
y2
1

j,k of
Gaussian density fj,k

(
y2
1

)
:= p?

(
y2
1 |r1 = j, r2 = k

)
. According

to the EM principle, to iteratively get the next parameters (θ?)(i+1)

from the current ones (θ?)(i), we need to compute ψn (j, k) :=
p?
(
rn = j, rn+1 = k

∣∣yN
1

)
by

ψn (j, k)

=
αn (j) p

(
rn+1 = k,yn+1 |rn = j,yn

)
βn+1 (k)∑

(l1,l2)∈Ω2

αn (l1) p
(
rn+1 = l2,yn+1 |rn = l1,yn

)
βn+1 (l2)

(7)

with αn (j) := p (rn = j |yn
1 ), βn (j) :=

p(yN
n+1|rn=j,yn )
p(yN

n+1|yn
1 )

repre-

sent the normalized “forward”, “backward” probabilities [24]. They
are calculated from the following recursions:

α1 (j) = p (r1 = j |y1 ) ;

αn+1 (j) =

∑
l∈Ω

αn (l) p
(
rn+1 = j,yn+1 |rn = l,yn

)
∑

(l1,l2)∈Ω2

αn (l1) p
(
rn+1 = l2,yn+1 |rn = l1,yn

) ,
(8)

βN (j) = 1;

βn (j) =

∑
l∈Ω

βn+1 (l) p
(
rn+1 = l,yn+1 |rn = j,yn

)
∑

(l1,l2)∈Ω2

αn (l1) p
(
rn+1 = l2,yn+1 |rn = l1,yn

) , (9)

Thus, the next parameters (θ?)(i+1) is obtained by

(pj,k)
(i+1) =

1

N − 1

N−1∑
n=1

ψn (j, k) ;

(
M

y2
1

j,k

)(i+1)

=

N−1∑
n=1

ψn (j, k)

[
yn

yn+1

]
N−1∑
n=1

ψn (j, k)

;

(
Γ

y2
1

j,k

)(i+1)

=

N−1∑
n=1

ψn (j, k)

([
yn

yn+1

]
−
(
M

y2
1

j,k

)(i+1)
)([

yn

yn+1

]
−
(
M

y2
1

j,k

)(i+1)
)ᵀ

N−1∑
n=1

ψn (j, k)

.

(10)
To find initial (θ?)(0), we use simply the empirical estimation
based on the classified yN

1 obtained through classic K-means.
EM is stopped after the change of the likelihood between two
iterations is considered small enough. Then, having φn (j) :=
p?
(
rn = j

∣∣yN
1

)
=
∑K

k=1 ψn (j, k) got from the last iteration,
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(r̂?)N1 = (r̂?1 , · · · , r̂?N ) is obtained by r̂?n = argmaxj φn (j)
adopting the MPM criterion.

B. Switching EM

Knowing the switches, a CGPMSM is actually a varying parameter
“Pairwise Gaussian Markov Model” (PGMM [5]). In this Section, we
assume that (r̂?)N1 are the true switches, and extend the constant
parameter PGMM-based EM algorithm proposed in [25] to the
varying parameter case. We call this extension “Switching EM”.

The function that EM updates under the assumption is

θ(l+1) = argmax
θ

[
Eθ(l)

[
lnpθ

(
XN

1 , (r̂
?)

N
1 ,yN

1

) ∣∣∣ (r̂?)N1 ,yN
1

] ]
,

(11)
with the complete data likelihood given by

ln pθ
(
XN

1 , (r̂
?)

N
1 ,yN

1

)
= ln (pθ (r̂

?
1)) + ln (pθ (X1,y1 |r̂

?
1 ))+

N−1∑
n=1

ln (pθ (r̂
?
n+1 |r̂?n )) + ln

(
pθ
(
Xn+1,yn+1 |Xn,yn, r̂

?
n, r̂

?
n+1

))
.

(12)

Thus we have

θ(l+1) = argmax
θ

[
Eθ(l)

[
ln (pθ (X1,y1 |r̂

?
1 ))+

N−1∑
n=1

ln
(
pθ
(
Xn+1,yn+1 |Xn,yn, r̂

?
n, r̂

?
n+1

)) ∣∣∣ (r̂?)N1 ,yN
1

]]
.

(13)

1) E-step: As no confusion will be introduced, we temporally
remove the dependence notation related to (r̂?)N1 . The solution of
(13) is function of p

(
xn

∣∣yN
1

)
= N

(
x̂n|N ,Pn|N

)
. Let us recall how

it is computed from the forward recursion followed by a backward
one.

The forward recursion gives p
(
xn+1

∣∣yn+1
1

)
=

N
(
x̂n+1|n+1,Pn+1|n+1

)
from p (xn |yn

1 ) = N
(
x̂n|n,Pn|n

)
and ends at p

(
xN

∣∣yN
1

)
= N

(
x̂N|N ,PN|N

)
. Then the

backward recursion gives p
(
xn

∣∣yN
1

)
= N

(
x̂n|N ,Pn|N

)
from p

(
xn+1

∣∣yN
1

)
= N

(
x̂n+1|N ,Pn+1|N

)
and ends with

p
(
x1

∣∣yN
1

)
= N

(
x̂1|N ,P1|N

)
. More precisely, they run as follows.

Define Nx
n+1 and Ny

n+1 the items linked to the means that[
Nx

n+1(R
n+1
n )

Ny
n+1(R

n+1
n )

]
=

[
Mx(Rn+1)

My(Rn+1)

]
−F(Rn+1

n )

[
Mx(Rn)

My(Rn)

]
.

Let

Sn|n+1 := Qyy +FyxPn|n (Fyx)
ᵀ
;

Kn|n+1 := Pn|n (Fyx)
ᵀ (
Sn|n+1

)−1
;

ŷn+1|n := Fyxx̂n|n +Fyyyn + Ny
n+1;

ỹn+1|n := yn+1 − ŷn+1|n.

(14)

x̂n|n+1 = x̂n|n +Kn|n+1ỹn+1|n;

Pn|n+1 = Pn|n −Kn|n+1Sn|n+1

(
Kn|n+1

)ᵀ
,

(15)

Then

x̂n+1|n+1 = Ax̂n|n+1 +Bn;

Pn+1|n+1 = Q2 +APn|n+1Aᵀ,
(16)

in which

A := Fxx −Qxy (Qyy)
−1 Fyx;

Bn := Qxy (Qyy)
−1

yn+1 −Qxy (Qyy)
−1

Ny
n+1

+
(
Fxy −Qxy (Qyy)

−1 Fyy
)

yn + Nx
n+1;

Q2 := Qxx −Qxy (Qyy)
−1 Qyx.

(17)

Regarding the backward recursion, N
(
x̂n|N ,Pn|N

)
is computed

from N
(
x̂n+1|N ,Pn+1|N

)
with

x̂n|N = x̂n|n+1 +Kn|N (x̂n+1|N − x̂n+1|n+1);

Pn|N = Pn|n+1 +Kn|N (Pn+1|N − Pn+1|n+1)
(
Kn|N

)ᵀ
,

(18)

where Kn|N = Pn|n+1Aᵀ
(
Pn+1|n+1

)−1.
For later use, we also calculate the covariance Cn+1,n|N of Xn+1

and Xn conditional on yN
1 , given by:

Cn+1,n|N = Pn+1|N
(
Kn|N

)ᵀ
. (19)

We should notice that this computation is of difference from the ones
in [25], [26], because there is a “shift” of the pair from (Xn,Yn−1)
in the model handled in these two articles to (Xn,Yn) in our model
(2). Moreover, our model considers that the means of (Xn,Yn)
change with the switches.

2) M-step: For maximization, let us set (r̂?)N1 = rN1 for simplifi-
cation. Besides, when dealing with the optimization problem of (11),
one may replace the quantities (Xn,yn) with the centered ones, for
which we set Z′n = Zn −Mz(Rn). Defining:

Cn,n,(l) := Eθ(l)

[
Z′n
(
Z′n
)ᵀ ∣∣∣rN1 ,yN

1

]
=[

x̂n|N −Mx(rn)

yn −My(rn)

][
x̂n|N −Mx(rn)

yn −My(rn)

]ᵀ
+

[
Pn|N 0

0 0

]
,

(20)

Cn+1,n,(l) := Eθ(l)

[
Z′n+1

(
Z′n
)ᵀ ∣∣∣rN1 ,yN

1

]
=

[
x̂n+1|N −Mx(rn+1)

yn+1 −My(rn+1)

][
x̂n|N −Mx(rn)

yn −My(rn)

]ᵀ

+

[
Cn+1,n|N 0

0 0

]
.

(21)

Solutions F (l+1)
j,k = F (l+1)(rn = j, rn+1 = k) and Q(l+1)

j,k =

Q(l+1)(rn = j, rn+1 = k) of (11) for each j, k ∈ Ω verify that

∂

∂Fj,k

N−1∑
n=1

Eθ(l)

[
pθ
(
z′n+1

∣∣z′n ) ∣∣∣rN1 ,yN
1

]
= 0,

∂

∂Qj,k

N−1∑
n=1

Eθ(l)

[
pθ
(
z′n+1

∣∣z′n ) ∣∣∣rN1 ,yN
1

]
= 0,

(22)

with pθ (z
′
n+1 |z′n ) = N

(
F(rn+1

n )z′n,Q(rn+1
n )

)
. Setting

δn (j, k) := 1 (rn = j, rn+1 = k) and Card (j, k) :=∑N−1
n=1 δn (j, k), we get the expressions of F (l+1)

j,k and Q(l+1)
j,k that

F (l+1)
j,k = C̃

z′n+1,z
′
n

j,k

(
C̃

n,n,(l)
j,k

)−1

;

Q(l+1)
j,k =

1

Card (j, k)

(
C̃

n+1,n+1,(l)
j,k −F (l+1)

j,k

(
C̃

n+1,n,(l)
j,k

)ᵀ)
,

(23)

in which

C̃
n,n,(l)
j,k :=

N−1∑
n=1

δn (j, k)Cn,n,(l);

C̃
n+1,n,(l)
j,k :=

N−1∑
n=1

δn (j, k)Cn+1,n,(l);

C̃
n+1,n+1,(l)
j,k :=

N−1∑
n=1

δn (j, k)Cn+1,n+1,(l).

(24)

Remark 2.2 Although CGOMSM seems naturally fit for the as-
sumption that we need to estimate (r̂?)N1 , it is unidentifiable through
EM. So DEM can work for general CGPMSMs except the very
CGOMSM case.
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III. APPROXIMATED UNSUPERVISED SMOOTHING

As fast exact smoothing is not feasible in CGPMSMs, we propose
to study the performance of DEM with two smoothing approaches.

The first one, called DEM-CGOMSM, uses the parameters
estimated through DEM and modified into CGOMSM to have
Fyx(rn+1

n ) = 0 for all rn+1
n ∈ Ω2, so that fast smoothing is

workable under the approached CGOMSM model [5].
The second one, called DEM-CGPMSM, uses the classic

approximation, replacing Gaussian mixtures p (xn |rn,yn
1 ) and

p
(
xn

∣∣rn,yN
1

)
by Gaussian distributions with the same means

and variances in recursive computations. However, the originality
of DEM-CGPMSM is that the distributions p (rn+1 |rn,yn

1 ) and
p
(
rn+1

∣∣rn,yN
1

)
needed are those estimated by EM for PMC in

DEM. In detail, assuming that p (xn |rn,yn
1 ) is Gaussian, mean

and variance of Gaussian p
(
xn+1

∣∣rn+1
n ,yn+1

1

)
can be computed

by (16). Then,

p
(
xn+1

∣∣rn+1,y
n+1
1

)
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
p
(
xn+1

∣∣rn+1
n ,yn+1

1

)
.

(25)

Similarly, p
(
xn

∣∣rn+1
n ,yN

1

)
is computed from p

(
xn+1

∣∣rn+1,y
N
1

)
(assumed Gaussian) using the backward recursion (18), and then

p
(
xn

∣∣∣rn,yN
1

)
=
∑
rn+1

p
(
rn+1

∣∣∣rn,yN
1

)
p
(
xn+1

∣∣∣rn+1
n ,yN

1

)
.

(26)
Probabilities p

(
rn
∣∣rn+1,y

n+1
1

)
and p

(
rn+1

∣∣rn,yN
1

)
in these two

equations above are computable because of the assumed Markovian-
ity of

(
RN

1 ,Y
N
1

)
in DEM. Finally, the smoothing result is given by

x̂n =
∑

rn
E
[
xn

∣∣rn,yN
1

]
p
(
rn
∣∣yN

1

)
for each n = 1, · · · , N .

IV. EXPERIMENTS

Two experiments are conducted to test the performance of the
DEM algorithm on simulated data under CGPMSMs, and to study
the two proposed unsupervised smoothing approaches based on
DEM parameter estimation. The first experimental series regards
different noise levels, and the second one considers the impact of
the conditional mean value My(Rn).

A. Experiment of varying noise level

Let us consider a simple case of CGPMSM, where m = q = 1,
Ω = {1, 2}, and with joint probabilities of RN

1 given by p1,1 =
p2,2 = 0.45, p1,2 = p2,1 = 0.05. The means of XN

1 and YN
1 of both

switch classes are set to be zero (the means of XN
1 are assumed to

be known, since it can’t be recovered), while the variance–covariance
matrices of p

(
X2

1,Y
2
1 |r1 = j, r2 = k

)
, j, k ∈ Ω are of the form

(27) (see also the dependence graph in Fig. 1).

Γ
z21
j,k =


1 bj aj,k dj,k

bj 1 ej,k cj,k

aj,k ej,k 1 bk

dj,k cj,k bk 1

 =

 Γz
j Σz1,z2

j,k(
Σz1,z2

j,k

)ᵀ
Γz

k

 .
(27)

Then the equivalent parameters Fj,k and Qj,k are given by:

Fj,k =
(
Σz1,z2

j,k

)ᵀ (
Γz

j

)−1
; Qj,k = Γz

k −Fj,kΣz1,z2
j,k . (28)

And conversely, using Lyapunov equation [27], (28) implies

Γz
j = argvec

[
(I−Fj,j ⊗Fj,j)

−1 vec (Qj,j)
]
;

Σz1,z2
j,k =

(
Fj,kΓz

j

)ᵀ
,

(29)

where argvec (.) denotes the inverse function of the operator vec (.)
that stacks the columns of a matrix, and ⊗ represents the Kronecker

x1 x2aj,k

bj

y1 y2cj,k

bk

dj,k

ej,k

Fig. 1. Dependence graph of (X1,Y1,X2,Y2) conditional on
(rn = j, rn+1 = k).

TABLE I
PARAMETERS OF FIVE DIFFERENT NOISE CASES.

Case b1 b2 ej,1 ej,2 d1,1 d1,2 d2,1 d2,2
1 0.00 0.20 0.40 0.10 0.30 0.30 0.39 0.47
2 0.10 0.30 0.50 0.20 0.35 0.39 0.42 0.54
3 0.20 0.40 0.60 0.30 0.39 0.47 0.45 0.61
4 0.30 0.50 0.70 0.40 0.42 0.54 0.48 0.68
5 0.40 0.60 0.80 0.50 0.45 0.61 0.49 0.73

product. We fix the value of aj,1 = 0.1, aj,2 = 0.5; cj,1 = 0.5,
cj,2 = 0.9, while the other parameters in Γ

z21
j,k are set as given in

TABLE I, regarding five cases with decreasing noise level. Then, six
smoothing methods are considered for comparison, among which,
three are based on true parameters and three on DEM estimated ones.

The three true parameter based methods denoted with “TR” are:
1. TR-CGPMSM: optimal reference smoothing based on

CGPMSM with true parameters and true switches RN
1 = rN1 ;

2. TR-CGOMSM: optimal smoothing based on CGOMSM ob-
tained from CGPMSM by replacing dj,k with d?j,k = cj,kbj , for
all j, k ∈ Ω, which gives Fyx(r21) = 0;

3. TR-CGLSSM: optimal smoothing based on true switches
RN

1 = rN1 and CGLSSM obtained from CGPMSM by re-
placing dj,k, ej,k, cj,k with d?j,k = aj,kbk, e?j,k = aj,kbj ,
c?j,k = bjaj,kbk, for all j, k ∈ Ω which gives Fxy(r21) =
Fyy(r21) = 0.

The three unsupervised DEM based smoothing methods are:
4. DEM-CGPMSM: smoothing based on parameters from DEM

with details given in Section III;
5. DEM-CGOMSM: smoothing based on parameters from DEM,

and modified to become a CGOMSM (with same modifications
as in TR-CGOMSM);

6. DEM-CGLSSM: smoothing based on parameters from DEM,
and modified to become a CGLSSM (with same modifications
as in TR-CGLSSM).

All experiments are carried out on N = 10000 samples, with 100
iterations for first EM, and 500 iterations for switching EM (assuming
convergence of the algorithms), the initial value F (0)

j,k and Q(0)
j,k are

set as:

F (0)
j,1 =

[
−0.5 1.0

0.2 0.5

]
; F (0)

j,2 =

[
0.5 0.1

0.2 0.5

]
;

Q(0)
j,k =

[
0.5 0.0

0.0 0.5

]
.

The experiments are conducted with python 3.6 programing language
on a 3.7GHz CPU. The entire DEM parameter estimation takes about
29 minutes (3 minutes for first EM for PMC, and 26 minutes for the
following switching EM). It takes 11 seconds for the later smoothing
using DEM-CGPMSM and 20 seconds using DEM-CGOMSM. All
results are averages of 100 independent experiments. The smoothing
results related to different methods are illustrated in Fig. 2. The
estimated parameters Fj,k and Qj,k under case 3 are reported in
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TABLE II
Fj,k , Qj,k AND THEIR DEM ESTIMATES (CASE 3 OF TABLE I).

F1,1 F1,2 F2,1 F2,2

True
[−0.02 0.60

0.30 0.44

] [
0.46 0.21

0.30 0.84

] [−0.17 0.67

0.30 0.38

] [
0.45 0.12

0.30 0.78

]
DEM

[−0.01 0.98

0.17 0.30

] [−0.04 0.56

−0.01 0.74

] [
0.61 0.08

0.33 0.74

] [
0.58 0.06

0.17 0.84

]
Q1,1 Q1,2 Q2,1 Q2,2

True
[
0.64 −0.09
−0.09 0.66

] [
0.71 0.00

0.00 0.10

] [
0.62 −0.06
−0.06 0.67

] [
0.74 0.02

0.02 0.11

]
DEM

[
0.55 0.09

0.09 0.80

] [
0.27 0.19

0.19 0.29

] [
1.15 0.02

0.02 0.17

] [
0.62 0.02

0.02 0.15

]

Fig. 2. Restoration MSE of Series 1 (Fyx(r21) = 0.3).

TABLE II, while the estimated means are My(rn = 1) = 0.002;
My(rn = 2) = 0.001, and the estimated joint probabilities of
switches are p1,1 = 0.40; p1,2 = p2,1 = 0.06; p2,2 = 0.48.

Fig. 3. Restoration MSE of Series 1 (Fyx(r21) = 0.1).

Moreover, a parallel experiment is conducted with Fyx(r21) set
to be 0.1 by changing the setting dj,k in Table I using (29). The
smoothing results are reported in Fig. 3. Then, from this series of
experiments, we can summarize that:

1) comparing TR-CGPMSM, TR-CGOMSM, and TR-CGLSSM
shows how models are “far” from each other when smoothing
is concerned. As expected, TR-CGOMSM can be close to TR-
CGPMSM if Fyx(r21) is small. TR-CGLSSM is to be avoided

Fig. 4. Restoration MSE of Series 2 (Fyx(r21) = 0.3).

as MSE is often about 50% larger than that obtained by TR-
CGPMSM;

2) the main conclusion is that DEM-CGPMSM is of interest when
it comes to unsupervised smoothing. In general, the decrease of
smoothing efficiency with respect to the optimal TR-CGPMSM
is acceptable, and its performance has even the chance to surpass
TR-CGOMSM and TR-CGLSSM.

B. Experiment of varying mean

In this experimental series, we vary the means of observation
conditionally on switches to adjust the difficulty for EM for PMC
to find a suitable (r̂?)N1 instead of the true switches. All the
simulation conditions and model parameters are set the same as the
Case 3 with Fyx(r21) = 0.3 in previous series, except a change
on My(rn) values. More precisely, we range |My| from 0.0 to
2.5, where |My| represents the absolute value of My(rn), and
My(rn = 1) = −My(rn = 2). For example, |My| = 2.5 indicates
that My(rn = 1) = 2.5 and My(rn = 2) = −2.5. Restoration
MSE through the six smoothing methods is illustrated in Fig. 4.

With the increase of |My|, (r̂?)N1 got from EM is closer to the true
rN1 (when |My| = 0.0, the error ratio of (r̂?)N1 comparing to rN1 is
around 20%, while when |My| = 2.5, it is nearly 0%, which means
the observations are well classified for switching EM to estimate
the remaining model parameters. The tendency of smoothing MSE
through all methods with unknown rN1 with respect to |My| are not
monotone. This phenomenon is caused by the introduced error from
removing the mean of each individual wrong classification of yN

1 in
the switching EM process. Larger |My| introduces more error if yN

1

is classified in r̂?n 6= rn. However, generally speaking, the 20% error
ratio of (r̂?)N1 to rn does not have too much influence on smoothing
result as illustrated in Fig. 4, which indicates the mildness of the
Markovian assumption on

(
RN

1 ,Y
N
1

)
in the overall DEM-CGPMSM

algorithm.

V. CONCLUSION

Considering the problem of unsupervised smoothing in presence
of unknown switches, we proposed a general parameter estimation
method - called “Double-EM” (DEM) - from observations only
for “Conditionally Gaussian Pairwise Markov Switching Models”
(CGPMSMs [5], [19]). This model extends simultaneously the classic
“Conditionally Gaussian Linear State-Space Models” (CGLSSMs [6],
[8], [9], [28]) and the recent “Conditionally Gaussian Observed
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Markov Switching Models” (CGOMSMs [4], [5], [16]). Experiments
on unsupervised smoothing based on parameters estimated from
DEM show the good behavior of the proposed method. In particular,
considering data which follows CGPMSM, the smoothing method
based on parameters estimated by DEM is competitive, or even better
than smoothing based on real paramaters, real switches, and the
CGLSSM.

Let us mention some perspectives of extensions or applications.
The Markov switching model governing switches of this paper can
be extended to a semi-Markov one, as recently studied in [29]–
[33]. Otherwise, Gaussian noise can probably be extended to any
kind of noise by the use of copulas, as recently proposed in [34].
Finally, any stationary non-Gaussian non-linear Markov system can
be approximated by a CGPMSM, as proposed in [16] and applied
to smoothing in [4]. Thus “Double-EM” (DEM) and subsequent
unsupervised smoothing can be used once we are faced with data
produced by stationary Markov system - with or without switches -
of any form.
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[26] V. Némesin and S. Derrode, “Robust blind pairwise Kalman algorithms
using QR decompositions,” IEEE Trans. Signal Process., vol. 61, no. 1,
pp. 5–9, 2013.

[27] J. Hamilton, Time Series Analysis. Princeton University Press,
1994. [Online]. Available: https://books.google.fr/books?id=B8\
1UBmqVUoC

[28] C. Kim, “Dynamic linear models with Markov-switching,” J. of Econo-
metrics, vol. 60, no. 1, pp. 1–22, 1994.

[29] M. Faraji-Niri and M.-R. Jahed-Motlagh, “Stochastic stability and sta-
bilization of semi-Markov jump linear systems with uncertain transition
rates,” Inform. Techno. And Control, vol. 46, no. 1, pp. 37–52, 2017.

[30] Z. Hou, H. Dong, and P. Shi, “Asymptotic stability in the distribution
of nonlinear stochastic systems with semi-Markovian switching,” The
ANZIAM Journal, vol. 49, no. 2, pp. 231–241, 2007.

[31] J. Huang and Y. Shi, “Stochastic stability and robust stabilization of
semi-Markov jump linear systems,” Int. J. of Robust and Nonlinear
Control, vol. 23, no. 18, pp. 2028–2043, 2013.

[32] L. Zhang, Y. Leng, and P. Colaneri, “Stability and stabilization of
discrete-time semi-Markov jump linear systems via semi-Markov kernel
approach,” IEEE Trans. Autom. Control, vol. 61, no. 2, pp. 503–508,
2016.

[33] L. Zhang, T. Yang, and P. Colaneri, “Stability and stabilization of semi-
Markov jump linear systems with exponentially modulated periodic
distributions of sojourn time,” IEEE Trans. Autom. Control, vol. 62,
no. 6, pp. 2870–2885, 2017.

[34] S. Derrode and W. Pieczynski, “Unsupervised classification using hidden
Markov chain with unknown noise copulas and margins,” Sig. Proces.,
vol. 128, pp. 8–17, 2016.


