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Reduced-Dimension Filtering in Triplet
Markov Models

Frederic Lehmann and Wojciech Pieczynski

Abstract—This article presents an optimal reduced-
dimension Kalman filter for a family of triplet Markov mod-
els (TMMs). The problem is to estimate the state vector in
the case when the auxiliary process in the TMM can be
eliminated. Sufficient conditions for this elimination to be
feasible are established and we give a selection of illustra-
tive real-life TMM examples, where these conditions are sat-
isfied. We subsequently show that the original TMM boils
down to a pairwise Markov model (PMM) of second order.
Then, we derive a new optimal Kalman filter applicable to
any linear PMM of second order. Our numerical results con-
firm that the proposed estimator can provide substantial
complexity reduction with either no or minor accuracy loss,
depending on the use of model approximation.

Index Terms—Kalman filter (KF), optimal filtering, pair-
wise Markov models (PMMs), reduced-dimension filtering
(RDF), triplet Markov models (TMMs).

I. INTRODUCTION

D ISCRETE-TIME linear state-space models are ubiquitous
in signal processing and control theory. They are used

extensively in many application fields such as speech enhance-
ment [1], image processing [2], tracking [3] econometrics [4],
communications [5], bioinformatics [6], machine learning [7],
and control [8].

State-space models are available in several forms. The hidden
Markov model (HMM), modeling the unobserved process via a
Markov chain, has received considerable attention due to the
first apparition of an optimal filter in the minimum mean square
error (MMSE) sense, namely the Kalman filter (HMM-KF) [9].
Pairwise Markov models (PMMs) nicely generalize HMMs, by
assuming that the couple formed by the hidden and observed
processes is Markovian [10], thus offering the possibility of im-
proved modeling capability. Also, in many applications, adding
an auxiliary (or latent) process is mandatory to capture the com-
plete dynamics of the system. Such an auxiliary process is useful
in well-known situations where a state-space model is subject
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to potential nonstationarity, parameter uncertainty [11], or error
sources [13]. These situations can be taken into account using
triplet Markov models (TMMs), which further extend PMMs
by assuming that the triplet formed by the hidden, auxiliary,
and observed processes is Markovian [12]. Note that the class
of TMMs considered in the present article was shown to be
efficient [13] for various applications such as tracking [14,
Ch. 5], [15], speech processing with colored noise [16], and
time series analysis using conditionally Gaussian models [4,
Sec. 3.7.1]. What makes linear Gaussian PMMs and TMMs
appealing is that optimal filtering (in the MMSE sense) is still
feasible, and the corresponding filters shall be referred to as the
PMM Kalman filter (PMM-KF) [10], [17]–[19] and the TMM
Kalman filter (TMM-KF) [12], [13], respectively. Therefore,
PMMs and TMMs gradually generalize the standard HMM
while retaining the essential feature of fast recursive MMSE-
optimal state estimation, processing each new observation one at
a time.

We consider the problem of developing a reduced-dimension
filter (RDF) to estimate only a subset of the hidden variables.
This issue is relevant in situations where only a part of the hidden
variables; (1) are considered as useful information, whereas the
other state partition contains disturbances that contribute to exact
modeling, but merely act as nuisance parameters; (2) are needed,
whose choice is dictated by its subsequent use (in a control
law definition for instance), so that a full-dimension filter is
unattractive in terms of computational complexity. Several RDFs
have been proposed in the HMM literature, by postulating an
HMM-KF estimator structure for the retained part of the state
while rederiving the Kalman gains to take into account coupling
with the remaining part of the state. This design philosophy
leads to a number of suboptimal filters. In [21], a weighted
quadratic error criterion integrated over a time interval of interest
is minimized, which involves the solution of a complicated
two-point boundary value problem. In [22]–[24], the trace of the
error covariance is minimized at each time instant (irrespective
of all minimizations performed at earlier time instants), yielding
modified HMM-KFs. Another line of thought assumes that the
state can be projected on a low-dimensional subspace, so that
the original state can be written as a linear combination of the
corresponding basis vectors and the coefficients become the new
reduced-dimension state variable [25]–[27]. However, selecting
the subspace’s dimension may be tricky [25] and the dynamics
of the system may not be properly captured, since the selected
subspace is usually invariant over a time window [28].
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In this article, we consider the problem of RDF for a family
of linear TMMs, which has not been addressed previously to the
best of our knowledge. Note that in the considered TMM frame-
work, the aforementioned unobserved and auxiliary variables
have a natural interpretation as the desired part and the uninter-
esting part of the state, respectively. We show that such a TMM
simplifies to a PMM of second order, if the auxiliary variable can
be eliminated by writing it as a function of the unobserved and
observed variables over the current and previous time instant.
We provide sufficient conditions for this elimination to hold true
and we show that many well-known applications, which can be
recast in the TMM framework, actually satisfy these conditions.
Then, we derive an MMSE-optimal state estimator having the
dimension of the unobserved state, which compares favorably in
terms of complexity with the TMM-KF, whose dimension is the
sum of the dimensions of the unobserved and auxiliary variable.
The main contributions of this article are as follows.

1) The transformation of a linear TMM to a PMM of second
order, under conditions that hold true over a wide range of
applications for which TMMs have been found relevant.

2) The design of a new MMSE-optimal state estimator appli-
cable to any PMM of second order, which can thus be used
as a reduced-dimension estimator in TMMs (i.e., having
the dimension of the desired state), allowing complexity
savings without loss of optimality.

3) A theoretical error analysis of the proposed estimator.
Note that the related work in [29] mainly focuses on reduced-

order modeling (i.e., approximating a TMM by a first-order
PMM), whereas estimation consists of the suboptimal appli-
cation of the standard PMM-KF. In contrast, the present article
falls under the umbrella of RDFs, since the original TMM is
first transformed (under condition) to a second-order PMM, for
which an optimal filter is then designed. Also, from a practical
point of view, paper [29] is restricted to time-homogeneous
TMMs and the corresponding state estimator usually needs
batch processing. These restrictions are lifted in the present
approach.

Throughout the article, bold letters indicate vectors and ma-
trices, whereas 0m×n (resp., Im) is the m× n all-zero (resp.,
the m×m identity) matrix and diag(a) is the (block) diagonal
matrix, whose diagonal entries are stored in a and whose off-
diagonal entries are zero. The Frobenius norm of matrix M is
denoted by ||M||F . N (m,C) denotes a Gaussian distribution
with mean m and covariance matrix C. A sequence of observa-
tions from time m up to time n is denoted by ym:n.

This article is organized as follows. First, Section II defines
the linear TMM system model. Then, its transformation to a
PMM of second order is introduced in Section III. The rationale
behind this approach is that the conditions under which this
transformation is valid can be met in various applications as
shown in Section IV. Based on this transformation, Section V
investigates the design of an RDF for state estimation. Then,
Section VI tackles the problem of performance analysis, by
providing a closed-form expression of the error covariance.
Numerical simulations for realistic applications show the sim-
plicity and effectiveness of the proposed reduced-dimension
state estimator in Section VII. Finally, Section VIII concludes
this article.

II. SYSTEM MODEL

We assume that the dynamics of a (possibly non-time-
homogeneous) discrete-time linear state-space model can be
captured by a particular TMM with two distinct noise sources
of the form⎡

⎢⎣xn

rn

yn

⎤
⎥⎦

︸ ︷︷ ︸
tn

=

⎡
⎢⎣A

(11)
n A

(12)
n A

(13)
n

A
(21)
n A

(22)
n A

(23)
n

A
(31)
n A

(32)
n A

(33)
n

⎤
⎥⎦
⎡
⎢⎣xn−1

rn−1

yn−1

⎤
⎥⎦

︸ ︷︷ ︸
tn−1

+

⎡
⎢⎣B

(11)
n B

(12)
n

B
(21)
n B

(22)
n

B
(31)
n B

(32)
n

⎤
⎥⎦
[
wn

vn

]
(1)

where xn ∈ RK , rn ∈ RL, and yn ∈ RM denote the state, the
auxiliary, and the observation vector at instant n, respectively.
Concrete applications are described in Section IV so that (1) is a
generalization thereof. The initial triplet t0 is independent from
the zero-mean white uncorrelated noise processes wn ∈ RK ,
vn ∈ RM , for all n ≥ 1. Let us set m(t)

0 = E{t0} and P
(tt)
0 =

E{(t0 −m
(t)
0 )(t0 −m

(t)
0 )T }. The noise covariance is defined

by

E

⎧⎨
⎩
[
wn

vn

][
wn

vn

]T⎫⎬
⎭ =

[
Qn 0K×M

0M×K Rn

]
. (2)

The definition of the TMM given by (1) is not only simple,
since it merely assumes the first-order Markovianity of the
process {tn}n≥0, but it also gives rise to potentially very rich
models thanks to the introduction of the auxiliary variable, able
to account for nonstationarity, parameter uncertainty, or error
sources. Note that (1) is a nice generalization of the standard
HMM for {[xT

n ,y
T
n ]

T }n≥0, which is recovered as the special
case whenA(12)

n ,A(13)
n ,A(32)

n , andA(33)
n are set to all-zero ma-

trices. Similarly, (1) boils down to a first-order PMM [10], [19],
by selecting A

(12)
n and A

(32)
n as all-zero matrices. Therefore,

the two aforementioned particular cases will be excluded from
further consideration in the sequel.

In our setting, xn (resp., rn) in (1) will be assimilated to the
variables of special interest (resp., without interest) for the sake
of further processing. This may need a straightforward linear
change of variable in the original state-space formulation as
in [20, p. 302] for the sake of variable reordering/combining.

III. MODEL DIMENSION REDUCTION

Model transformation will be instrumental in creating an RDF,
whose order is the dimension of the desired state xn in (1). A
natural idea is to seek a reformulation of the TMM in the form
of a PMM for the random process {[xT

n ,y
T
n ]

T }, by eliminating
the nonsignificant auxiliary variable rn in (1). In Section III-A,
we show that such a model dimension reduction is possible in
equivalent form. Namely, we introduce sufficient conditions to
transform the original TMM to a PMM of second order. Those
conditions are further simplified under specific assumptions on
the original TMM in Section III-B.
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A. Sufficient Conditions for Existence of a
Second-Order PMM

The original TMM can be collapsed to an equivalent substruc-
ture that can create the intended workable model where {xn} is
the only hidden random process. Let us extract [xT

n ,y
T
n ]

T from
(1) as[

xn

yn

]
=

[
A

(11)
n A

(13)
n

A
(31)
n A

(33)
n

][
xn−1

yn−1

]
+

[
A

(12)
n

A
(32)
n

]
rn−1

+

[
B

(11)
n B

(12)
n

B
(31)
n B

(32)
n

][
wn

vn

]
(3)

where

rn−1 = A
(22)
n−1rn−2 +

[
A

(21)
n−1 A

(23)
n−1

] [xn−2

yn−2

]

+
[
B

(21)
n−1 B

(22)
n−1

] [wn−1

vn−1

]
. (4)

Proposition 3.1: The random process {[xT
n ,y

T
n ]

T }n≥2 is a
PMM of second order driven by the noise process {[wT

n ,v
T
n ]

T }
[see (6)], if one of the following conditions is satisfied for all
n ≥ 2:

(i)

⎧⎨
⎩B

(21)
n−1 = 0L×K ,B

(22)
n−1 = 0L×M

A
(22)
n−1 = 0L×L

(ii)

⎧⎪⎪⎨
⎪⎪⎩
[
B

(11)
n−1 B

(12)
n−1

B
(31)
n−1 B

(32)
n−1

]
is invertible

A
(22)
n−1 −Cn−1A

(12)
n−1 −Dn−1A

(32)
n−1 = 0L×L

where Cn−1 ∈ RL×K and Dn−1 ∈ RL×M are defined by

[
Cn−1 Dn−1

]
=
[
B

(21)
n−1 B

(22)
n−1

] [B(11)
n−1 B

(12)
n−1

B
(31)
n−1 B

(32)
n−1

]−1

. (5)

The proof is postponed to Appendix A. Note that Condition
(i) is the trivial way of transforming the original TMM to a
PMM of second order, by letting rn be a noise-free combination
of xn−1 and yn−1, a situation encountered when (1) is a state-
augmented model for instance [4]. On the contrary, Condition
(ii) corresponds to situations where the auxiliary variable is
noise driven, which can account for nonstationarity, parameter
uncertainty, or error sources, as mentioned previously. Realistic
applications for which Condition (ii) is met are determined in
Section IV.

Corollary 3.2: If Condition (ii) is satisfied, (3) can be rewrit-
ten in the second-order PMM form for all n ≥ 2 as[
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yn

]
=
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(4)
n

][
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]
+
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Ã
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]
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[
B
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B
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n
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]
(6)

where
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n +A(12)
n Cn−1,A
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n

(
A

(21)
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(11)
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(31)
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)
Ã(2)
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n

(
A

(23)
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(13)
n−1 −Dn−1A
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n−1

)
Ã(3)

n = A(32)
n

(
A

(21)
n−1 −Cn−1A

(11)
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(31)
n−1

)
Ã(4)

n = A(32)
n

(
A

(23)
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(13)
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(33)
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)
B(1)

n = B(11)
n , B(2)

n = B(12)
n , B(3)

n = B(31)
n , B(4)

n = B(32)
n .

(7)

The reader is referred to Appendix A for the proof.
We consider the usual case where all submatrices in (7)

can be precomputed offline, thus resulting only in incremental
complexity increase if state inference is repeated over and over
again for multiple observed datasets, as it is often the case in
practice.

B. Existence of a Second-Order PMM Under
Simplifying Assumptions

Now, we gradually introduce assumptions on the blocks of
the partitioned matrix [

B
(11)
n−1 B

(12)
n−1

B
(31)
n−1 B

(32)
n−1

]

that may be verified in applications given in Section IV, so that
Condition (ii) in Proposition 3.1 and the matrices in (5) admit
more workable forms without inverses of block matrices.

Corollary 3.3: Assuming that B(32)
n−1 is nonsingular for all

n ≥ 2, Condition (ii) is equivalent to⎧⎨
⎩Sn−1 = B

(11)
n−1 −B

(12)
n−1B

(32)
n−1

−1B
(31)
n−1 is invertible

A
(22)
n−1 −Cn−1A

(12)
n−1 −Dn−1A

(32)
n−1 = 0L×L

where Sn−1 is the Schur complement of B
(32)
n−1 and where

according to (5)

Cn−1 =
[
B

(21)
n−1 −B

(22)
n−1B

(32)
n−1

−1B
(31)
n−1

]
S−1
n−1

Dn−1 =
[
B

(22)
n−1 −

(
B

(21)
n−1 −B

(22)
n−1B

(32)
n−1

−1B
(31)
n−1

)
S−1
n−1B

(12)
n−1

]
×B

(32)
n−1

−1. (8)

The demonstration proceeds from a straightforward applica-
tion of the result [30, Eq. (2.3)]. We also obtain the following
result as a special case.

Corollary 3.4: Assuming that B
(32)
n−1 is nonsingular and

B
(12)
n−1 = 0K×M for all n ≥ 2, Condition (ii) is equivalent to⎧⎨

⎩B
(11)
n−1 is invertible

A
(22)
n−1 −Cn−1A

(12)
n−1 −Dn−1A

(32)
n−1 = 0L×L
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where according to (5)

Cn−1 =
[
B

(21)
n−1 −B

(22)
n−1B

(32)
n−1

−1B
(31)
n−1

]
B

(11)
n−1

−1

Dn−1 = B
(22)
n−1B

(32)
n−1

−1. (9)

IV. PARTICULAR TMMS AMENABLE TO A SECOND-ORDER

PMM FORM

In this section, we discuss the conditions, introduced in Sec-
tion III, under which a TMM can be rewritten as a PMM of
second order. First, Section IV-A shows that Condition (ii)
is readily satisfied in many applications for which a TMM
formulation has been proposed in the literature, which serves
as an a posteriori justification of the model dimension reduction
proposed in Section III. Also, standard RDFs along with their
complexity orders are recalled, to serve as benchmarks against
which we will measure the performance of our approach. Then,
in Section IV-B, we briefly discuss how to handle TMMs that do
not originally satisfy the conditions in Section III (the interested
reader is referred to Section VII for illustrative examples).

A. Classical TMMs as Exact Second-Order PMMs

1) Colored Process Noise: In dynamical systems, process
noise can be colored. Well-known examples include time-
correlated velocity [3, p. 320] and acceleration [3, p. 321] in
tracking, or the influence of error sources in GPS [31] and inertial
sensors [32], [33].

One possible way to account for noise coloration is to modify
a standard HMM, so that the white process noise is replaced by
a Markovian process noise εn [34, pp. 188–189]

xn = Fnxn−1 +Bnεn

εn = Θnεn−1 +wn

yn = Hnxn + vn (10)

where Bn is invertible, the initial state x0 (with distribu-
tion characterized by x̂0 = E{x0}, P0 = E{(x0 − x̂0)((x0 −
x̂0)

T }) is independent from the zero-mean white noise pro-
cess [wT

n ,v
T
n ]

T , for all n ≥ 1 and ε0 = 0. The noise covari-
ance is defined by Qn = E{wnw

T
n }, Rn = E{vnv

T
n }, and

E{wnv
T
n } = 0. Equation (10) admits a TMM representation

of the form (1) by selecting the auxiliary variable as rn = εn
and⎡
⎢⎣A

(11)
n A

(12)
n A

(13)
n

A
(21)
n A

(22)
n A

(23)
n

A
(31)
n A

(32)
n A

(33)
n

⎤
⎥⎦ =

⎡
⎢⎣ Fn BnΘn 0

0 Θn 0

HnFn HnBnΘn 0

⎤
⎥⎦

⎡
⎢⎣B

(11)
n B

(12)
n

B
(21)
n B

(22)
n

B
(31)
n B

(32)
n

⎤
⎥⎦ =

⎡
⎢⎣ Bn 0

IK 0

HnBn IM

⎤
⎥⎦ . (11)

Using Corollary 3.4, it can be easily checked that Condition
(ii) in Proposition 3.1 is satisfied, so that (10) also admits
a second-order PMM representation of the form (6), where

from (7)[
A

(1)
n A

(2)
n

A
(3)
n A

(4)
n

]
=

[
Fn +BnΘnB

−1
n−1 0

Hn

(
Fn +BnΘnB

−1
n−1

)
0

]
[
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

]
=

[
−BnΘnB

−1
n−1Fn−1 0

−HnBnΘnB
−1
n−1Fn−1 0

]
. (12)

Contrary to the method advocated in the present section, the
colored process noise problem is usually handled without model
dimension reduction [34, pp. 188–189]. An exception is the RDF
in the form of a modified HMM-KF in [20, p. 297], obtained
by recomputing the Kalman gain of the standard HMM-KF to
account for process noise coloration, which in turn increases the
complexity per time instant to O(M3 + 2 K2M + 2KM2 +
3 K3 + 4 K2L+KL2 + 2 L3).

2) Colored Process and Measurement Noise: We now
focus on situations where both the process and measurement
noise are colored, which can arise in tracking [14, p. 75], [36]
and navigation [32].

Let us again modify a standard HMM, so that the white
process and measurement noises become jointly Markovian [14,
p. 75]

xn = Fnxn−1 +Bnεn

εn = Θnεn−1 +Φnηn−1 +wn

ηn = Γnεn−1 +Ψnηn−1 + vn

yn = Hnxn + ηn (13)

where Bn is invertible, the initial state x0 (with distribu-
tion characterized by x̂0 = E{x0}, P0 = E{(x0 − x̂0)((x0 −
x̂0)

T }) is independent from the zero-mean white noise process
[wT

n ,v
T
n ]

T , for all n ≥ 1 and ε0 = 0, η0 = 0. The noise co-
variance is defined byQn = E{wnw

T
n },Rn = E{vnv

T
n }, and

E{wnv
T
n } = 0. Equation (13) admits a TMM representation of

the form (1) by selecting the auxiliary variable as rn = [εTn ,η
T
n ]

T

and ⎡
⎢⎣A

(11)
n A

(12)
n A

(13)
n

A
(21)
n A

(22)
n A

(23)
n

A
(31)
n A

(32)
n A

(33)
n

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fn Bn

[
Θn Φn

]
0

0

[
Θn Φn

Γn Ψn

]
0

HnFn

[
HnBnΘn HnBnΦn

+Γn +Ψn

]
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣B

(11)
n B

(12)
n

B
(21)
n B

(22)
n

B
(31)
n B

(32)
n

⎤
⎥⎦ =

⎡
⎢⎢⎣

Bn 0
IK 0
0 IM

HnBn IM

⎤
⎥⎥⎦ . (14)

Using Corollary 3.4, it can be easily checked that Condition
(ii) in Proposition 3.1 is satisfied, so that (13) also admits a
second-order PMM representation of the form (6), where from
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(7)[
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(1)
n A
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n
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(3)
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(4)
n

]
=

⎡
⎢⎢⎢⎢⎣

Fn BnΦn

+Bn

(
ΘnB

−1
n−1 −ΦnHn−1

)
HnFn HnBnΦn +Ψn

+HnBn

(
ΘnB

−1
n−1 −ΦnHn−1

)
+ΓnB

−1
n−1 −ΨnHn−1

⎤
⎥⎥⎥⎥⎦

[
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

]
=

[
−BnΘnB

−1
n−1Fn−1 0

− (HnBnΘn + Γn)B
−1
n−1Fn−1 0

]
.

(15)

Again contrary to the method advocated in the present section,
the colored process and measurement noise problem is usually
handled without model dimension reduction [36], [37]. An ex-
ception is the RDF in the form of a modified HMM-KF in [20, p.
301], obtained by recomputing the Kalman gain of the standard
HMM-KF to account for process and measurement noise col-
oration, which in turn increases the complexity per time instant
to O(M3 + 3 K2M + 3KM2 + 4 K3 + 2KLM + 5 K2L+
3KL2 + L2M + LM2 + 2 L3). However, for the particular
case with measurement noise coloration only, an optimal
reduced-dimension HMM-KF using time-differenced measure-
ments without complexity increase wrt the standard HMM-KF
is available [35, Sec. IV and Appendix], [34, p. 191–192], [3, p.
329]. In this case, the proposed transformed model boils down
to a first-order PMM (see [19]), so that the standard PMM-KF
is also applicable.

3) Discrete Wiener Process Acceleration (DWPA) Model:
We consider the following one-dimensional (1-D) kinematic
model, where the state vector at instant n contains the position,
velocity, and acceleration, x̄n = [pn, vn, an]

T [3, p. 274]:

x̄n = F̄nx̄n−1 + B̄nwn

yn = H̄nx̄n + vn (16)

with parameters depending on the sampling period T

F̄n =

⎡
⎢⎣1 T T 2

2

0 1 T

0 0 1

⎤
⎥⎦ , B̄n =

⎡
⎢⎣

T 2

2 0

T 1

1 0

⎤
⎥⎦ , H̄n = [1, 0, 0] (17)

and the initial state x̄0 (with distribution characterized by
ˆ̄x0 = E{x̄0}, P̄0 = E{(x̄0 − ˆ̄x0)((x̄0 − ˆ̄x0)

T }) is indepen-
dent from the zero-mean white noise process [wT

n ,v
T
n ]

T , for
all n ≥ 1. The noise covariance is defined by E{wnw

T
n } =

diag([Q, 0]), E{vnv
T
n } = R, and E{wnv

T
n } = 0. Equation

(16) admits a TMM representation of the form (1) by selecting
xn = [pn, vn]

T , the auxiliary variable as rn = an and⎡
⎢⎣A

(11)
n A

(12)
n A

(13)
n

A
(21)
n A

(22)
n A

(23)
n

A
(31)
n A

(32)
n A

(33)
n

⎤
⎥⎦ =

⎡
⎢⎢⎣
1 T T 2

2 0
0 1 T 0
0 0 1 0

1 T T 2

2 0

⎤
⎥⎥⎦

⎡
⎢⎣B

(11)
n B

(12)
n

B
(21)
n B

(22)
n

B
(31)
n B

(32)
n

⎤
⎥⎦ =

⎡
⎢⎢⎣

T 2

2 0 0
T 1 0
1 0 0
T 2

2 0 1

⎤
⎥⎥⎦ . (18)

Using Corollary 3.4, it can be easily checked that Condition
(ii) in Proposition 3.1 is satisfied, so that (16) also admits a
second-order PMM representation of the form (6), where from
(7) [

A
(1)
n A

(2)
n

A
(3)
n A

(4)
n

]
=

⎡
⎣ 2 T 0

2
T 1 0
2 T 0

⎤
⎦

[
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

]
=

⎡
⎣ −1 −T 0
− 2

T −2 0
−1 −T 0

⎤
⎦ . (19)

This result can be extended straightforwardly to 2-D and 3-D
kinematic models in xy and xyz Cartesian coordinate system,
respectively.

Contrary to the method advocated in the present section,
the DWPA problem is usually handled without model dimen-
sion reduction [3, p. 274]. An exception is the RDF in the
form of a modified HMM-KF in [23], obtained by recom-
puting the Kalman gain of the standard HMM-KF to ac-
count for the elimination of the auxiliary variable from the
state space, which in turn increases the complexity per time
instant to O(M3 + 6 K2M + 4KM2 + 32 K3 + 7KLM +
48 K2L+ 24KL2 + 2 L2M + 2LM2 + 4 L3).

B. Approximating TMMs With PMMs of Second Order

We now consider TMMs for which Condition (i) or (ii) is
not readily satisfied. The question then arises as to whether
it is possible to depart from the original model to arrive at
an approximate reduced-dimension PMM of second order. The
resulting model must then be validated by simulation to check
its ability to produce reasonable state estimates.

1) Model Identification: A first line of thought consists in
finding the system parameters for an approximate model of
the form (6) by maximizing the log-likelihood, given a set of
observations following the truth-model in (1). This maximiza-
tion would require an extension to second-order PMMs of the
expectation maximization (EM) [17] or the gradient-based [18]
approach available for first-order PMMs.

Another type of approximation consists in replacing the orig-
inal TMM by a surrogate TMM that replaces B

(11)
n−1 by ÙB(11)

n−1

and B
(21)
n−1 by ÙB(21)

n−1 so that Condition (ii) is approximately
satisfied while keeping mismodeling errors in (6) wrt to the
truth-model at an acceptable level. This technique is borrowed
from process noise covariance tuning, which was introduced
in the early 1970s [38, pp. 305–307] to compensate for HMM
modeling uncertainties. There are several possibilities for such
model perturbation. For simplicity, we restrict ourselves to the
case where B

(32)
n−1 is nonsingular and B

(12)
n−1 = 0K×M for all

n ≥ 2, which is often verified in practice.
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2) Closed-Form Model Perturbation: Without modifying
B

(21)
n−1, if we can replace B(11)

n−1 by ÙB(11)
n−1 for all n ≥ 2 defined as

ÙB
(11)
n−1 = [A

(12)
n−1][A

(22)
n−1 −B

(22)
n−1B

(32)
n−1

−1A
(32)
n−1]

−1

× [B
(21)
n−1 −B

(22)
n−1B

(32)
n−1

−1B
(31)
n−1] (20)

where all matrices inside the brackets must be square (i.e.,
K = L) and invertible, then Condition (ii) is met according
to Corollary 3.4.

3) Numerical Optimization-Based Model Perturbation:
Another possibility is to minimize the cost function ||A(22)

n−1 −
Cn−1A

(12)
n−1 −Dn−1A

(32)
n−1||F , replacing B

(11)
n−1 by ÙB(11)

n−1 and

B
(21)
n−1 by ÙB(21)

n−1 in the expression of Cn−1. Reparameterizing
this expression using

Xn−1 = ÙB
(21)
n−1 −B

(22)
n−1B

(32)
n−1

−1B
(31)
n−1

Yn−1 = ÙB
(11)
n−1

−1

Λn−1 = A
(22)
n−1 −B

(22)
n−1B

(32)
n−1

−1A
(32)
n−1 (21)

leads to the minimization of ||Λn−1 −Xn−1Yn−1A
(12)
n−1||F .

Note that there is a one-to-one correspondence between the new
matrix variables Xn−1, Yn−1 and the desired matrices ÙB(11)

n−1

ÙB
(21)
n−1, whereas Λn−1 is a constant matrix. This task can then

be performed via numerical optimization, for instance using
a gradient descent since the partial derivatives wrt Xn−1 and
Yn−1 are computable at each time step n ≥ 2. Note that the
cost function will be able to approach zero up to the numerical
precision of the computer only when there are sufficient degrees
of freedom during optimization, which in turn sets an upper limit
to the dimension of the auxiliary variable, i.e., L < K.

V. OPTIMAL LINEAR RDF

Optimal filtering in the MMSE sense is feasible in the orig-
inal model (1) by applying the TMM-KF [12], [13], though
with a possibly prohibitive complexity order O(M3 + 3(K +
L)2M + 2(K + L)M2 + 2(K + L)3) per time instant. There-
fore we derive the best linear MMSE RDF adapted to the
transformed model (6). Let us recall that the proposed state
estimator is applicable to any PMM of second order, irrespective
of whether it is obtained from an original TMM by model
dimension reduction as in Section III or not. We develop the
state estimate as a linear combination of the measurements that
minimizes the mean square error (MSE), using the classical
prediction (see Section V-A) and update (see Section V-B) steps.
Then, in the particular case of Gaussian second-order PMMs,
we provide an interpretation as the minimum variance Bayes’
estimate (see Section V-C). In the sequel, we consider a second-
order PMM of the form (6) and the notation x̂i|j refers to an esti-
mate of a random vectorx at time instant iobtained as a weighted
sum of all measurements up to time j. The corresponding error
covariance is denoted by Pi|j = E{(xi − x̂i|j)(xi − x̂i|j)T }.

A. State Estimate Prediction

Assume that the updated state estimates x̂n−2|n−1, x̂n−1|n−1

at instant n− 1 are available, we set the predicted estimates
x̂n|n−1, ŷn|n−1 at instant n to[

x̂n|n−1

ŷn|n−1

]
=

[
A

(1)
n A

(2)
n

A
(3)
n A

(4)
n

][
x̂n−1|n−1

yn−1

]

+

[
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

][
x̂n−2|n−1

yn−2

]
(22)

so that the prediction error covariance has the form

E

⎧⎨
⎩
[
xn − x̂n|n−1

yn − ŷn|n−1

][
xn − x̂n|n−1

yn − ŷn|n−1

]T⎫⎬
⎭

=

[
Pn|n−1 Σn|n−1

ΣT
n|n−1 Ln|n−1

]
. (23)

Moreover, we also introduce the cross-covariance matrix
Πn|n−1 = E{(xn−1 − x̂n−1|n−1)(yn − ŷn|n−1)

T }. All afore-
mentioned (cross-)covariance matrices are obtained recursively
as

Pn|n−1 = A(1)
n Pn−1|n−1A

(1)
n

T
+B(1)

n QnB
(1)
n

T

+B(2)
n RnB

(2)
n

T
+A(1)

n Pn−1,n−2|n−1Ã
(1)
n

T

+ Ã(1)
n PT

n−1,n−2|n−1A
(1)
n

T + Ã(1)
n Pn−2|n−1Ã

(1)
n

T

Σn|n−1 = A(1)
n Pn−1|n−1A

(3)
n

T
+B(1)

n QnB
(3)
n

T

+B(2)
n RnB

(4)
n

T
+A(1)

n Pn−1,n−2|n−1Ã
(3)
n

T

+ Ã(1)
n PT

n−1,n−2|n−1A
(3)
n

T + Ã(1)
n Pn−2|n−1Ã

(3)
n

T

Ln|n−1 = A(3)
n Pn−1|n−1A

(3)
n

T
+B(3)

n QnB
(3)
n

T

+B(4)
n RnB

(4)
n

T
+A(3)

n Pn−1,n−2|n−1Ã
(3)
n

T

+ Ã(3)
n PT

n−1,n−2|n−1A
(3)
n

T + Ã(3)
n Pn−2|n−1Ã

(3)
n

T

Πn|n−1 = Pn−1|n−1A
(3)
n

T
+Pn−1,n−2|n−1Ã

(3)
n

T (24)

where we define

Pn−1,n−2|n−1 = E{(xn−1 − x̂n−1|n−1)(xn−2 − x̂n−2|n−1)
T }.

(25)
The demonstration is postponed to Appendix B.

B. State Estimate Update

Given the predicted estimates in (22), updated state estimates,
obtained by linearly combining past measurements with the new
measurement at instant n, have the form

x̂n|n = x̂n|n−1 +Kn(yn − ŷn|n−1)

x̂n−1|n = x̂n−1|n−1 + Jn(yn − ŷn|n−1) (26)

where Kn and Jn are weighting matrices to be optimized.

Authorized licensed use limited to: Telecom SudParis ( Frmly Telecom et management SudParis INT). Downloaded on February 02,2022 at 05:48:39 UTC from IEEE Xplore.  Restrictions apply. 



LEHMANN AND PIECZYNSKI: REDUCED-DIMENSION FILTERING IN TRIPLET MARKOV MODELS 611

Let us now define the estimation errors during the update
stage as εn|n = xn − x̂n|n and εn−1|n = xn−1 − x̂n−1|n; the
corresponding error covariance matrices Pn|n = E{εn|nεTn|n}
and Pn−1|n = E{εn−1|nεTn−1|n} can be written as

Pn|n = Pn|n−1 −KnΣ
T
n|n−1−Σn|n−1K

T
n +KnLn|n−1K

T
n

Pn−1|n = Pn−1|n−1 − JnΠ
T
n|n−1−Πn|n−1J

T
n + JnLn|n−1J

T
n .

(27)

We must also provide the expression of (25). It can be shown
that it admits the recursive form

Pn,n−1|n = (A(1)
n −KnA

(3)
n )Pn−1|n−1

+ (Ã(1)
n −KnÃ

(3)
n )PT

n−1,n−2|n−1

+ (KnLn|n−1 −Σn|n−1)J
T
n . (28)

The interested reader is referred to Appendix C for a demonstra-
tion.

Obtaining the best linear filter in the MMSE sense now
consists in selecting Kn and Jn so as to minimize trace(Pn|n)
and trace(Pn−1|n), respectively [39]. Finally, considering that

∂ trace(Pn|n)
∂Kn

= 2(KnLn|n−1 −Σn|n−1)

∂ trace(Pn−1|n)
∂Jn

= 2(JnLn|n−1 −Πn|n−1) (29)

the solution of the matrix gain optimization is given by

K∗
n = Σn|n−1(Ln|n−1)

−1

J∗
n = Πn|n−1(Ln|n−1)

−1. (30)

C. Gaussian Interpretation for Second-Order PMMs

It is well-known that a second-order Markovian process such
as (6) can be rewritten in the first-order Markovian form using
state-augmentation [4]⎡
⎢⎢⎣

xn

xn−1

yn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
A

(1)
n Ã

(1)
n A

(2)
n

IK 0 0

A
(3)
n Ã

(3)
n A

(4)
n

⎤
⎥⎥⎦
⎡
⎢⎢⎣
xn−1

xn−2

yn−1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
Ã

(2)
n

0

Ã
(4)
n

⎤
⎥⎥⎦yn−2

+

⎡
⎢⎢⎣
B

(11)
n B

(12)
n

0 0

B
(31)
n B

(32)
n

⎤
⎥⎥⎦
[
wn

vn

]
. (31)

In the particular case where the random process defined by
(31) is Gaussian (i.e., [xT

0 ,y
T
0 ,x

T
1 ,y

T
1 ]

T and [wT
n ,v

T
n ]

T , for all
n ≥ 2 are Gaussian distributed), the PMM-KF applied to (31)
in state-augmented form is equivalent to the updated estimates
derived in Section V-B. Interestingly, since the PMM-KF was
derived in a Bayesian setting for any first-order Gaussian PMM,
we conclude that for the particular Gaussian PMM in (31), the

proposed estimates maximize the posterior distribution

p(xn,xn−1|y1:n)

= N
([

x̂n|n
x̂n−1|n

]
,

[
Pn|n Pn,n−1|n

Pn,n−1|nT Pn−1|n

])

so that they coincide with the minimum-variance Bayes’ esti-
mates in this context, as expected.

Note however that for the sake of complexity reduction, our
formulation derived from first principles regarding second-order
PMMs is preferable over the direct use of the PMM-KF applied
to (31), which computes and stores many unnecessary vector
and matrix quantities relative to the previous time instant during
the prediction step. Therefore, our formulation is not only more
compact but is also obtained under less restrictive assumptions,
that is, the noise only needs to be white and zero-mean.

VI. PERFORMANCE ANALYSIS

We analyze the performance of the RDF proposed in Sec-
tion V in terms of MSE, based on a computationally efficient
iterative form of the optimized error covariance matrices (see
Section VI-A). Next, we summarize the proposed optimal RDF
in simple algorithmic form in order to assess the computational
complexity (see Section VI-B).

A. Iterative Computation of Optimal Error
Covariance Matrices

Let us remind the definition of the estimation error at instant
n (resp., instant n− 1) during the update stage, εn|n = xn −
x̂n|n (resp., εn−1|n = xn−1 − x̂n−1|n). We now focus on the
covariance of these estimation errors, Pn|n = E{εn|nεTn|n} and

Pn−1|n = E{εn−1|nεTn−1|n}. The general expressions are given
by (27), and we are interested in the particular case where the
optimal matrix gains in (30) are selected. It follows that the
optimal error covariance matrices can be computed in simple
iterative form as

Pn|n = Pn|n−1 −K∗
nΣ

T
n|n−1

Pn−1|n = Pn−1|n−1 − J∗
nΠ

T
n|n−1. (32)

B. Complexity Evaluation

The most compact description of the iterative procedure for
computing the proposed RDF estimates after matrix gain opti-
mization is given by Algorithm 1, for the sake of complexity
assessment.

Remark 6.1: Note that when Ã
(1)
n , Ã(2)

n , Ã(3)
n , and Ã

(4)
n are

all-zero matrices for all n, the proposed optimal RDF coincides
with the PMM-KF (see [19]), which is expected since (6) boils
down to a first-order PMM.

We are now ready to evaluate the asymptotic computational
complexity to generate a single estimate at a given time instant
n for all the aforementioned state estimators.

1) TMM-KF: O(M3 + 3(K + L)2M + 2(K + L)M2 +
2(K + L)3).
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Algorithm 1: Proposed Optimal RDF.

Require: x̂0|1, P0|1, x̂1|1, P1|1, P1,0|1, yn, Qn, Rn

for n = 2, 3, ... do
x̂n|n−1 = A

(1)
n x̂n−1|n−1 +A

(2)
n yn−1

+Ã
(1)
n x̂n−2|n−1 + Ã

(2)
n yn−2

ŷn|n−1 = A
(3)
n x̂n−1|n−1 +A

(4)
n yn−1

+Ã
(3)
n x̂n−2|n−1 + Ã

(4)
n yn−2

Pn|n−1 = A
(1)
n Pn−1|n−1A

(1)
n

T
+ Ã

(1)
n Pn−2|n−1Ã

(1)
n

T

+B
(1)
n QnB

(1)
n

T
+B

(2)
n RnB

(2)
n

T

+A
(1)
n Pn−1,n−2|n−1Ã

(1)
n

T + Ã
(1)
n PT

n−1,n−2|n−1A
(1)
n

T

Σn|n−1 = A
(1)
n Pn−1|n−1A

(3)
n

T
+ Ã

(1)
n Pn−2|n−1Ã

(3)
n

T

+B
(1)
n QnB

(3)
n

T
+B

(2)
n RnB

(4)
n

T

+A
(1)
n Pn−1,n−2|n−1Ã

(3)
n

T + Ã
(1)
n PT

n−1,n−2|n−1A
(3)
n

T

Ln|n−1 = A
(3)
n Pn−1|n−1A

(3)
n

T
+ Ã

(3)
n Pn−2|n−1Ã

(3)
n

T

+B
(3)
n QnB

(3)
n

T
+B

(4)
n RnB

(4)
n

T

+A
(3)
n Pn−1,n−2|n−1Ã

(3)
n

T + Ã
(3)
n PT

n−1,n−2|n−1A
(3)
n

T

Πn|n−1 = Pn−1|n−1A
(3)
n

T
+Pn−1,n−2|n−1Ã

(3)
n

T

K∗
n = Σn|n−1(Ln|n−1)

−1

J∗
n = Πn|n−1(Ln|n−1)

−1

x̂n|n = x̂n|n−1 +K∗
n(yn − ŷn|n−1)

x̂n−1|n = x̂n−1|n−1 + J∗
n(yn − ŷn|n−1)

Pn|n = Pn|n−1 −K∗
nΣ

T
n|n−1

Pn−1|n = Pn−1|n−1 − J∗
nΠ

T
n|n−1

Pn,n−1|n = (A
(1)
n −K∗

nA
(3)
n )Pn−1|n−1

+(Ã
(1)
n −K∗

nÃ
(3)
n )PT

n−1,n−2|n−1

return x̂n|n, Pn|n
end for

2) Proposed optimal RDF (see Algorithm 1): O(M3 +
12 K2M + 5KM2 + 6 K3).

3) PMM-KF: O(M3 + 3 K2M + 2KM2 + 2 K3).
We observe that the TMM-KF and the proposed RDF are

both MMSE-optimal when (1) can be transformed to a PMM of
second order. However, as we will see in the following section,
the proposed RDF can have much smaller complexity. Also, in
the particular case where (6) reduces to a PMM of first order, the
proposed RDF simplifies to a PMM-KF, with further complexity
reduction by roughly a factor of 3, when M is small wrt K.

VII. NUMERICAL RESULTS

This section is devoted to the performance assessment of the
proposed RDF based on simulation results for the following
applications.

1) Two-state tracking with colored process and measure-
ment noise.

2) One-state tracking based on a full-dimension two-state
kinematic model.

3) Finite-difference approximation to the heat equation.

Fig. 1. RMSE for tracking with colored process and measurement
noise as a function of ψ, with T = 1 s, θ = 0.99, Q = 102 (m/s2)2, and
R = 0.12(1− ψ2) m2.

The first (resp., second and third) application is an example of
exact (resp., approximate) conversion of a particular TMM to a
PMM of second order. Moreover, the first and the second (resp.,
the third) applications exemplify the behavior of the proposed
method in low (resp., high) dimensions.

A. Two-State Tracking With Colored Process and
Measurement Noise

We first investigate a concrete case for Section IV-A2, where
the TMM formulation admits a second-order PMM representa-
tion, since Condition (ii) is verified. We consider a 1-D discrete
white noise acceleration model for tracking and navigation [3,
p. 273], where the state vector at instant n contains the position
and velocity,xn = [pn, vn]

T , with position-only measurements.
It follows that (13) is parameterized by

Fn =

[
1 T

0 1

]
,Bn =

[
T 2

2 0

T 1

]
,Qn = diag([Q, 0])

[
Θn Φn

Γn Ψn

]
=

[
θI2 02×1

01×2 ψ

]
,Hn = [1, 0],Rn = R (33)

where T = 1 s, θ = 0.99, and 0 < ψ < 1 stand for the sam-
pling period, the process, and the measurement noise coloration
parameter, respectively. The noise components are zero-mean
white Gaussian distributed with scalar variance parametersQ =
102(m/s2)2 andR = 0.12(1− ψ2)m2. While in simulations the
initial state is set to x0 = [1, 1]T , all filters work under the
assumption that x0 ∼ N (x̂0,P0) is independent from the noise
processes with x̂0 = [1, 1]T and P0 = 1002I2.

In Fig. 1, we choose as a performance measure the
root MSE (RMSE) of the dimensionless state vector x̃n =
[pn, T vn]

T /σm [40], where σ2
m = 0.12 is the steady-state mea-

surement noise variance. Performance results are reported for
two full-dimension estimators, that is, the HMM-KF in state-
augmented form (SA HMM-KF) applied directly to (13) [37],
and the TMM-KF applied to (1) with the parameters in (14).
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Also, two RDFs are considered, that is, the modified HMM-KF
in [20, p. 301] and the proposed RDF in Algorithm 1 applied
to (6), with the parameters in (15). We initialize the proposed
RDF with P1,0|1 = 02×2, also replacing x̂0|1 and P0|1 (resp.,
x̂1|1 and P1|1) with x̂0 and P0 (resp., with the filtered estimates
of the HMM-KF ignoring noise coloration at instant n = 1). As
shown by Fig. 1, this suboptimal initialization incurs an imper-
ceptible performance loss, thus removing an unnecessary surge
in complexity at instant n = 1 due to an optimal initialization
using the TMM-KF.

Note that the proposed RDF not only outperforms the standard
modified HMM-KF over the entire range of ψ, but also has a
complexity that is about 26% lower. Furthermore, due to the
equivalence of the proposed second-order PMM with the truth
model, the proposed RDF is MMSE-optimal with a complexity
reduction by about 40% wrt the competing SA HMM-KF and
TMM-KF (note that for the sake of fair complexity comparison,
we took into account the fact that wn can be made single
dimensional in the SA HMM-KF and TMM-KF). These results
can be extended to tracking in four or six dimensions using xy
or xyz coordinate systems.

As noted in [19, Remark 2.2], the original TMM in (1) could
also be written as a state-augmented HMM (SA-HMM) to which
the modified HMM-KF in [23] can be applied. Unfortunately,
the resulting filter diverges, presumably due to a state unobserv-
ability issue. This fact can be seen as a further justification for
seeking a new RDF in the context of TMMs.

B. One-State Tracking Based on a Full-Dimension
Two-State Kinematic Model

We now consider a two-state kinematic model without noise
coloration for x̄n = [pn, vn]

T

x̄n = F̄nx̄n−1 + B̄nwn

yn = H̄nx̄n + vn (34)

where

F̄n =

[
1 T

0 1

]
, B̄n =

[
T 2

2

T

]
, H̄n = [1, 0] (35)

with T = 1 s and [wT
n ,v

T
n ]

T ∼ N ([0, 0]T , diag([Q,R])) is
white.

In order to study the impact of contrasted dynamics, we let
12 < Q < 102 (m/s2)2, whereas R = 102 m2. Again, while in
simulations the initial state is set to x̄0 = [1, 1]T , all filters work
under the assumption that x̄0 ∼ N (ˆ̄x0, P̄0) is independent from
the noise processes with ˆ̄x0 = [1, 1]T and P̄0 = 1002I2.

Only the position is estimated using an RDF, whereas the
velocity component is ignored (i.e., xn = pn and rn = vn);
hence, (34) can be written as the TMM in (1) parameterized
by ⎡

⎢⎣A
(11)
n A

(12)
n A

(13)
n

A
(21)
n A

(22)
n A

(23)
n

A
(31)
n A

(32)
n A

(33)
n

⎤
⎥⎦ =

⎡
⎢⎣1 T 0

0 1 0

1 T 0

⎤
⎥⎦

Fig. 2. RMSE for reduced-dimension one-state tracking without noise
coloration as a function of

√
Q, with T = 1 s and R = 102 m2.

⎡
⎢⎣B

(11)
n B

(12)
n

B
(21)
n B

(22)
n

B
(31)
n B

(32)
n

⎤
⎥⎦ =

⎡
⎢⎣

T 2

2 0

T 0
T 2

2 1

⎤
⎥⎦ . (36)

In order to apply the proposed RDF, this TMM needs to be
approximated by a second-order PMM, which can easily be done
by replacing B

(11)
n = T 2

2 with ÙB(11)
n = T 2 as prescribed by the

model perturbation (20). The increased value of B(11)
n = T 2

2 by
a factor of two serves as artificial process noise, compensating
for the fact that the truth model in reduced-dimension form is
not originally second-order Markovian.

In Fig. 2, we choose as a performance measure the RMSE of
the dimensionless state x̃n = pn/σm [40], where σ2

m = R is the
measurement noise variance. We compare two RDFs, that is, the
modified HMM-KF in [23] and the proposed RDF. Similarly to
Section VII-A, we initialize the proposed RDF with P1,0|1 = 0,
also replacing x̂0|1 and P0|1 (resp., x̂1|1 and P1|1) with ˆ̄x0[1]
and P̄0[1, 1] (resp., with the filtered estimates at instant n = 1
of an HMM-KF with position-only estimation, assimilating the
velocity to an additional source of white noise). Optimal perfor-
mance results for the full-dimension HMM-KF (FD HMM-KF)
applied directly to (34), and the TMM-KF applied to (1) with
the parameters in (36) are also reported for reference.

Note that the proposed RDF not only outperforms the standard
modified HMM-KF over the entire range of Q, but also has a
complexity that is about five times lower. Similar results can be
obtained for tracking in two or three dimensions using xy or
xyz coordinate systems. We interpret these findings as support
for our approach, as the RDFs use different approximations. In-
deed, the standard method assumes the position to be first-order
Markovian, then modifies the HMM-KF by letting the Kalman
gain try to compensate for the fact that the velocity is ignored. In
our approach, a small enough perturbation transforms the truth
model to an approximate second-order PMM, in which exact
filtering is feasible. We note that while our approximation is
better, increasing Q still induces a moderate suboptimality in-
crease wrt MMSE-optimal methods (FD HMM-KF, TMM-KF).
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TABLE I
RMSE FOR THE HEAT CONDUCTION PROBLEM WITH l = 10 (m), α = 10−3

(m2/s), Q = 8× 10−7, AND R = 0.12

This result is expected since increasing Q also increases the
artificial process noise in the proposed method.

Again, as noted in [19, Remark 2.2], the original TMM in (1)
could also be written as an SA-HMM, to which the modified
HMM-KF in [23] can be applied. Unfortunately, the resulting
filter diverges, presumably due to a state unobservability issue.

C. 1-D Heat Propagation

We consider the 1-D heat propagation partial differential
equation defined over the trip x ∈ [0, l] at time t ≥ 0 as [41]

∂u(t, x)

∂t
= α

∂2u(t, x)

∂x2
(37)

where α (m2/s) denotes the thermal diffusivity of the material.
We assume the following initial and boundary conditions:

u(0, x) = f(x)

u(t, 0) = 0, u(t, l) = 0 ∀t ≥ 0 (38)

where f is a given function of x, but unknown to an external
observer.

We set up a grid in the x, t plane with grid spacing Δx =
l/65 (m) and Δt = 1 (s), at xi = iΔx, i = 1, 2, . . . , 64 and
tn = nΔt, n = 1, 2, . . . . Letting uin denote the solution of
(37)–(38) obtained at xi = iΔx and tn = nΔt, we define the
full-dimension state by x̄n = [u1n, u

2
n, . . . , u

64
n ]T . The evolu-

tion in time of x̄n can be modeled using the finite-difference
method [41], by replacing ∂u(t,x)

∂t |tn,xi
(resp., ∂2u(t,x)

∂x2 |tn,xi
) by

a forward difference in time (resp., a central difference in space)

x̄n = F̄nx̄n−1 + w̄n

F̄n =

⎡
⎢⎢⎢⎢⎣
1− 2γ γ 0

γ
. . .

. . .
. . .

. . . γ
0 γ 1− 2γ

⎤
⎥⎥⎥⎥⎦

(39)

where γ = αΔt/(Δx)2 and w̄n is a discretization error affect-
ing all spatial nodes. Furthermore, in a practical situation, the
behavior of heat conduction would be restored by an external
observer based on noisy temperature sensors, so that w̄n is
unknown and modeled as a random noise vector. We assume
that two such sensors directly observe the temperature at the
locations x17 and x46, thus generating a 2-D observation vector
at instant n

yn = H̄nx̄n + vn

H̄n[1, i] =

{
1,when i = 17
0, otherwise

H̄n[2, i] =

{
1,when i = 46
0, otherwise

(40)

where vn ∼ N ([0, 0]T , RI2) is the white measurement noise.
We consider the case where the spatial nodes of interest

are located on irregular grids, over which the finite-difference
method may be neither flexible nor straightforward to ap-
ply [42]. For example, we will consider the situation where
rn = [u2n, u

4
n, . . . , u

30
n , u

34, u36, . . . , u62] is the 30-D vector of
discarded variables, whereas xn is the 34-D vector containing
all other variables in x̄n corresponding to the desired spatial
nodes {x′1 = x1, x

′
2 = x3, . . . , x

′
34 = x64}. We are now miss-

ing a suitable model for the discretization error w̄n. While
estimating the statistics of w̄n from observed data would in
theory be possible, computing them in great detail would not
only be computationally intensive but is also unlikely to pay off.
Thus, we resort to simple heuristics instead. In order to comply
with the dimension requirements in (1), we write the discretiza-
tion error as w̄n = B̄nwn, where wn is a discretization error
affecting only the spatial nodes of interest in {x′1, x′2, . . . , x′34},
assimilated to a zero-mean non-Gaussian white noise parameter-
ized by Qn = E{wnw

T
n }. The matrix B̄n draws a one-to-one

correspondence between the discretization error for any spatial
node to the discretization error affecting the closest retained
spatial node, i.e.,

B̄n[i, j] =

{
1,when j = argmin(xi − x′j)

2

0, otherwise
(41)

for i = 1, 2, 3, . . . , 64, and j = 1, 2, 3, . . . , 34.
We now introduce a change of variable using the nonsingular

matrix T = [ST
x ,S

T
r ]

T , where Sx (resp., Sr) is the selection
matrix defined by xn = Sxx̄n (resp., rn = Srx̄n). It follows
that (39)–(40) can be converted to a TMM of the form (1)
parameterized by⎡

⎢⎣A
(11)
n A

(12)
n A

(13)
n

A
(21)
n A

(22)
n A

(23)
n

A
(31)
n A

(32)
n A

(33)
n

⎤
⎥⎦ =

⎡
⎣ TF̄nT

−1 0

H̄nF̄nT
−1 0

⎤
⎦

⎡
⎢⎣B

(11)
n B

(12)
n

B
(21)
n B

(22)
n

B
(31)
n B

(32)
n

⎤
⎥⎦ =

⎡
⎣ TB̄n 0

H̄nB̄n I2

⎤
⎦ . (42)

In order to apply the proposed RDF, this TMM needs to be
approximated by a second-order PMM, which can easily be
done by replacing B

(11)
n with ÙB(11)

n and B
(21)
n with ÙB(21)

n as
prescribed by the model perturbation in Section IV-B3.

Our simulations, running over a time window t ∈ [0, 2.104]
(s), adopt the setup with l = 10 (m),α = 10−3 (m2/s),R = 0.12,
and f(x) = 100 sin(π x

l ). While in simulations the initial state is
set to x̄0 = [f(x1), f(x2), . . . , f(x64)]

T , all filters work under
the assumption that x̄0 is independent from the noise processes
withE{x̄0} = ˆ̄x0 = 064×1 and Cov{x̄0} = P̄0 = 1102I64. For
simplicity, we also set Qn = QI34, where Q is set to 8× 10−7

to account for the maximum discretization error. While it is
understood that the external observer only has access to the
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inferred heat, the analytical heat conduction solution to (37)–
(38) expressed as u(t, x) = f(x) exp(−αtπ2/l2) via Fourier
analysis [41] is used as ground truth.

In Table I, we choose as a performance measure the RMSE
of the dimensionless state x̃n = xn/σm, where σ2

m = R is the
measurement noise variance. We compare two RDFs, that is, the
modified HMM-KF in [23] and the proposed RDF. Similarly to
Section VII-B, we initialize the proposed RDF with P1,0|1 =
034×34, also replacing x̂0|1 and P0|1 (resp., x̂1|1 and P1|1) with
Sx ˆ̄x0 and SxP̄0S

T
x (resp., with the filtered estimates at instant

n = 1 of an HMM-KF with xn-only estimation, assimilating rn
to an additional source of white noise). Performance results for
the FD HMM-KF applied directly to (39)–(40), and the TMM-
KF applied to (1) with the parameters in (42) are also reported
for reference.

The proposed RDF outperforms the standard modified HMM-
KF, but also has a complexity that is about 14 times lower. We
interpret these findings in the following way for this example:
perturbating the truth model to an approximate second-order
PMM in which filtering is feasible is a better option than trying
to modify the HMM-KF by letting the Kalman gain try to
compensate for the fact that parts of the state variables are
discarded. Also, the proposed RDF serves its purpose effectively
by saving half the complexity comparing to full-dimension filters
(TMM-KF and FD HMM-KF) while retaining a similar level of
accuracy in spite of model approximation.

VIII. CONCLUSION

This article considered the problem of RDF in a family of
linear TMMs. The proposed solution relies on the conversion of
the original TMM to a lower dimensional second-order PMM,
which may be equivalent or approximate. For the sake of linear
state estimation, we also derived and analyzed a new MMSE-
optimal filter for second-order PMMs.

Numerical results over several realistic applications showed
that the proposed RDF can outperform existing RDFs from the
literature based on HMMs. This fact demonstrates the interest
of changing perspective wrt usual HMM modeling, in the sense
that reformulating a problem in TMM form gives rise to an
RDF that can be both more accurate and less computationally
intensive than existing ones. Moreover, the proposed approach
gives a unified view of RDF in linear systems, whereas existing
methods have been developed in specific contexts.

Future work will consider the extension of RDF to the recent
family of switching systems in which fast optimal filtering is
feasible [43], [44].

APPENDIX A
PROOF OF PROPOSITION 3.1 AND COROLLARY 3.2

The random process {[xT
n ,y

T
n ]

T }n≥2 is a PMM of second or-
der driven by the noise process {[wT

n ,v
T
n ]

T } if the contribution
of the auxiliary variable rn−1 in (3) reduces to a linear combi-
nation of the vectors [xT

n−2,y
T
n−2] and [xT

n−1,y
T
n−1]. Inspecting

the expression of rn−1 in (4), we observe that two subcases need
to be addressed separately.

In the first subcase, the noise contribution [wT
n−1,v

T
n−1] in (4)

can be rewritten as a linear combination of rn−2, [xT
n−2,y

T
n−2]

and [xT
n−1,y

T
n−1], by rewriting (3) as[

wn−1

vn−1

]
=

[
B

(11)
n−1 B

(12)
n−1

B
(31)
n−1 B

(32)
n−1

]−1

×
([

xn−1

yn−1

]
−
[
A

(11)
n−1 A

(13)
n−1

A
(31)
n−1 A

(33)
n−1

][
xn−2

yn−2

]
−
[
A

(12)
n−1

A
(32)
n−1

]
rn−2

)

which requires that[
B

(11)
n−1 B

(12)
n−1

B
(31)
n−1 B

(32)
n−1

]
is invertible.

Injecting this result into the expression of rn−1 in (4),
{[xT

n ,y
T
n ]

T }n≥2 is a PMM of second order when the contri-
bution of rn−2 cancels out, i.e., when Condition (ii) is satisfied.
Then, developing (3) yields (6) and (7) in Corollary 3.2.

The second subcase corresponds to the fact that [wT
n−1,v

T
n−1]

cannot be rewritten as a linear combination of rn−2,
[xT

n−2,y
T
n−2] and [xT

n−1,y
T
n−1], which occurs when[

B
(11)
n−1 B

(12)
n−1

B
(31)
n−1 B

(32)
n−1

]
is not invertible

so that {[xT
n ,y

T
n ]

T }n≥2 is a PMM of second order when Con-
dition (i) is satisfied.

APPENDIX B
PROOF OF THE PREDICTION ERROR COVARIANCE

RECURSION (24)

Combining (6) and (22) leads to the following prediction error
for any second-order PMM:[

xn − x̂n|n−1

yn − ŷn|n−1

]
=

[
A

(1)
n A

(2)
n

A
(3)
n A

(4)
n

][
xn−1 − x̂n−1|n−1

0

]

+

[
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

][
xn−2 − x̂n−2|n−1

0

]

+

[
B

(11)
n B

(12)
n

B
(31)
n B

(32)
n

][
wn

vn

]
(43)

so that the last equation in (24) readily follows from the fact that
[wT

n ,v
T
n ]

T is a zero-mean white noise.
In the same way, injecting (43) into (23), the expression for

the predicted error covariance is given as follows:

E

⎧⎨
⎩
[
xn − x̂n|n−1

yn − ŷn|n−1

][
xn − x̂n|n−1

yn − ŷn|n−1

]T⎫⎬
⎭

=

[
A

(1)
n A

(2)
n

A
(3)
n A

(4)
n

][
Pn−1|n−1 0

0 0

][
A

(1)
n A

(2)
n

A
(3)
n A

(4)
n

]T

+

[
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

][
Pn−2|n−1 0

0 0

][
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

]T
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+

[
A

(1)
n A

(2)
n

A
(3)
n A

(4)
n

][
Pn−1,n−2|n−1 0

0 0

][
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

]T

+

[
Ã

(1)
n Ã

(2)
n

Ã
(3)
n Ã

(4)
n

][
PT

n−1,n−2|n−1 0

0 0

][
A

(1)
n A

(2)
n

A
(3)
n A

(4)
n

]T

+

[
B

(11)
n B

(12)
n

B
(31)
n B

(32)
n

][
Qn 0

0 Rn

][
B

(11)
n B

(12)
n

B
(31)
n B

(32)
n

]T
. (44)

Developing this expression yields the desired recursion for
Pn|n−1, Σn|n−1, and Ln|n−1.

APPENDIX C
PROOF OF THE UPDATE ERROR COVARIANCE RECURSIONS

IN (27) AND (28)

Injecting (22) and the second line of (6) into (26) results in

εn|n = (A(1)
n −KnA

(3)
n )εn−1|n−1

+ (Ã(1)
n −KnÃ

(3)
n )εn−2|n−1

+ (B(1)
n −KnB

(3)
n )wn + (B(2)

n −KnB
(4)
n )vn

εn−1|n = (IK − JnA
(3)
n )εn−1|n−1 − JnÃ

(3)
n εn−2|n−1

− Jn(B
(3)
n wn +B(4)

n vn).

The covariance of these estimation errors can be written as

Pn|n = (A(1)
n −KnA

(3)
n )Pn−1|n−1(A

(1)
n −KnA

(3)
n )T

+ (Ã(1)
n −KnÃ

(3)
n )Pn−2|n−1(Ã

(1)
n −KnÃ

(3)
n )T

+ (A(1)
n −KnA

(3)
n )Pn−1,n−2|n−1(Ã

(1)
n −KnÃ

(3)
n )T

+ (Ã(1)
n −KnÃ

(3)
n )PT

n−1,n−2|n−1(A
(1)
n −KnA

(3)
n )T

+ (B(1)
n −KnB

(3)
n )Qn(B

(1)
n −KnB

(3)
n )T

+ (B(2)
n −KnB

(4)
n )Rn(B

(2)
n −KnB

(4)
n )T

Pn−1|n = (IK − JnA
(3)
n )Pn−1|n−1(IK − JnA

(3)
n )T

+ JnÃ
(3)
n Pn−2|n−1(JnÃ

(3)
n )T

− (IK − JnA
(3)
n )Pn−1,n−2|n−1(JnÃ

(3)
n )T

− JnÃ
(3)
n PT

n−1,n−2|n−1(IK − JnA
(3)
n )T

+ Jn(B
(3)
n QnB

(3)
n

T +B(4)
n RnB

(4)
n

T )JT
n . (45)

Developing (45) and rearranging the terms using (24) completes
the proof of (27).

Now, by definition Pn,n−1|n = E{εn|nεTn−1|n}, so that

Pn,n−1|n = (A(1)
n −KnA

(3)
n )Pn−1|n−1

+ (Ã(1)
n −KnÃ

(3)
n )PT

n−1,n−2|n−1

−
[
(A(1)

n −KnA
(3)
n )(Pn−1|n−1A

(3)
n

T

+Pn−1,n−2|n−1Ã
(3)
n

T ) + (Ã(1)
n −KnÃ

(3)
n )

× (PT
n−1,n−2|n−1A

(3)
n

T +Pn−2|n−1Ã
(3)
n

T )

+ (B(1)
n −KnB

(3)
n )QnB

(3)
n

T

+(B(2)
n −KnB

(4)
n )RnB

(4)
n

T
]
JT
n . (46)

Developing the bracket in (46) and rearranging the terms using
(24) completes the proof of (28).
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