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Abstract—Common well-known properties of time series of
financial asset values include volatility clustering and asymmetric
volatility phenomenon. Hidden Markov models (HMMs) have
been proposed for modeling these characteristics, however, due
to their simplicity, HMMs may lack two important features.
We identify these features and propose modeling financial time
series by recent Pairwise Markov models (PMMs) with a finite
discrete state space. PMMs are extended versions of HMMs and
allow a more flexible modeling. A real-world application example
demonstrates substantial gains of PMMs compared to the HMMs.

Index Terms—Hidden Markov models, Forecasting, Financial
time series, Pairwise Markov models, Technical analysis.

I. INTRODUCTION
Stock market prediction remains a significant challenge of

modern risk management theory and practice. Universally ac-
knowledged features of financial time series include volatility
clustering, autocorrelation in returns and asymmetric volatility
phenomenon (AVP). A well-established methodology consists
in using a mathematical model to describe available data and to
project it into the future. The autoregressive integrated moving
average (ARIMA) and generalized autoregressive conditional
heteroscedasticity (GARCH) models are popular among prac-
titioners. These models are reviewed in [1]. The GARCH
model describes the volatility clustering in the data and some
of its variants describe the AVP as well, while the ARIMA
model describes autocorrelation in returns. Alternative tech-
niques include artificial neural networks [2], fuzzy logic [3],
support vector machines classifiers [4] and their combinations.

In recent years, there was an increasing interest in the
regime-switching models, reviewed e.g. in [5]. In financial
markets, these models allow identifying bull and bear al-
ternating regimes. A bull state is characterized by positive
expectation of log-returns and low volatility, while a bear state
is driven by negative expected log-returns and high volatility.
The hidden Markov models (HMMs) provide a suitable frame-
work for modeling regime-switching. An important example
of such framework is available in e.g. [6]. These models use
a hidden sequence of the same length as the sequence of
observed log-returns. The HMMs are known to be robust and
straightforward to implement. However, the HMMs do not
take the following potential features of stock dynamics into
account:
• (F1): log-returns may be correlated conditional on the

state variables;

• (F2): the future state and current log-return may not be
independent conditional on the current state.

The Pairwise Markov models (PMMs) are introduced and
studied in [7] as a general statistical concept. Particularly, they
are able to include both features (F1) and (F2) in the HMMs
for the same cost of processing.

The purpose of the paper is to introduce a modeling of finan-
cial time series with the PMMs. Specifically, we investigate if
the PMMs can allow improving forecasting performance and
if both features (F1) and (F2) should be taken into account.
Throughout this paper, we assume that the state space is finite
discrete in both HMMs and PMMs.

The paper is organized as follows. In Section II we recall the
Hidden and Pairwise Markov models. Section III is devoted
to modeling stock dynamics with the PMMs and to related
estimation methods. Section IV contains experiments on real-
world data and Section V is a discussion of the results.
Section VI concludes the paper and presents perspectives for
further researches.

II. MODELS

Let N > 0, (Y1,Y2, ...,YN ) = Y1..N be a time series
and Ω be a finite discrete set. The idea is to describe the
probability distribution of Y1..N by using a hidden time series
R1..N , where for each n in {1, .., N}, Rn ∈ Ω. Specifically,
one defines the probability distribution p (r1..N , y1..N ) of the
pair (R1..N ,Y1..N ). In this case, we have

p (y1..N ) =
∑

r1..N∈ΩN

p (r1..N , y1..N ) .

Both HMMs and PMMs are used to define p (r1..N , y1..N ).
In this section we recall the definition and statistical properties
of these models.

A. Hidden Markov Models

Definition 1. A probability distribution p (r1..N , y1..N ) is a
Hidden Markov model of Y1..N if it verifies

p (r1..N , y1..N ) = p (r1)

N−1∏
n=1

p (rn+1 |rn )

N∏
n=1

p (yn |rn ) .

Any HMM has the following properties:
• (P1): R1..N is a Markov chain;
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• (P2): (Y1,Y2, ...,YN ) are independent conditional on
R1..N ;

• (P3): For each n in {1, .., N}, p (yn |r1..N ) = p (yn |rn ).
In practice, one specifies the family of distributions to which

p (yn |rn ) belongs to.

B. Pairwise Markov Models

Definition 2. A probability distribution p (r1..N , y1..N ) is a
Pairwise Markov model of Y1..N if (R1..N ,Y1..N ) is a Markov
chain, i.e.

p (r1..N , y1..N ) = p (r1, y1)

N−1∏
n=1

p (rn+1, yn+1 |rn, yn ) .

Figure 1 presents directed dependency graphs of HMM and
PMM. To see that PMMs are more general than HMM, con-
sider the following decomposition of p (rn+1, yn+1 |rn, yn ),
for n in {1, .., N − 1}:

p (rn+1, yn+1 |rn, yn ) = p (rn+1 |rn, yn ) p (yn+1 |rn, rn+1, yn ) .

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

(a) (b) 

Fig. 1: Directed dependency graphs of HMM (a) and PMM
(b).

From the above equation, we see that a PMM is an HMM
if, and only if, for each n in {1, .., N − 1} :

p (yn+1 |rn, rn+1, yn ) = p (yn+1 |rn+1 ) ; (1a)
p (rn+1 |rn, yn ) = p (rn+1 |rn ) . (1b)

We also consider two subclasses of PMMs where only one
of constraints (1a)-(1b) is relaxed.

Definition 3. PMM (R1..N ,Y1..N ) is called PMM-F1 (PMM-
F2) if it verifies, for each n in {1, .., N−1}, eq. (1b) (eq. (1a)),
respectively.

Figure 2 presents directed dependency graphs of PMM-
F1 and PMM-F2. In practice, one should specify the fami-
lies of distributions to which p (yn |rn ), p (rn+1 |rn, yn ) and
p (yn+1 |rn, rn+1, yn ) belong to.

III. METHODS

In this section, we introduce a Pairwise Markov modeling
of asset log-returns. Specifically, we explain how the PMMs
allow modeling features (F1) and (F2) mentioned in Section I.
We also outline various types of PMM data processing, such
as the state estimation, forecasting and parameter inference.

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

(b) 

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 

(a) 

Fig. 2: Directed dependency graphs of PMM-F1 (a) and PMM-
F2 (b).

A. Modeling financial time series

Let Sn be the stock price at time n, n ∈ N. The log-return
Yn at time n > 0 is defined by

Yn = log(Sn)− log(Sn−1). (2)

In the classic Black-Scholes model, the log-returns Y1..N

are assumed to be normally distributed and to have the same
mean µ and standard deviation σ. In other words, we have,
for each n > 0,

Yn = µ+ σUn,

where {Un}n>0 are zero-mean, unit-variance independent
Gaussian random variables, also known as the standard Gaus-
sian white noise. µ and σ are known as the average return (or
drift) and the volatility of the stock.

The HMM allows extending the classic Black-Scholes
model by making µ and σ dependent on hidden variables.
Let R1..N be a Markov chain, then let

Yn = µ(rn) + σ(rn)Un, (3)

with {Un}1≤n≤N standard Gaussian white noise variables.
The parameters of this model include the initial state distri-
bution p (r1 = i) for each i ∈ Ω, Markov chain transition
matrix p (rn+1 = j |rn = i ) for each i, j ∈ Ω and the values of
the drift and volatility per state {µ(i), σ(i)}i∈Ω. For example,
if ω1 is associated with the bear market state and ω2 with
the bull state, one would expect µ(ω1) < 0 < µ(ω2) and
σ(ω1) > σ(ω2). The Hidden Markov modeling of Y1..N is
given by (P1)-(P3) and

∀n, 1 ≤ n ≤ N, p (yn |rn ) = N
(
µ(rn), σ(rn)2

)
, (4)

where N(., .) denotes the normal probability distribution with
specified mean and variance.

The PMMs provide a more flexible framework than that of
HMMs. In order to fulfill the requirement (F1) presented in
Section I, we define a first-order autoregressive model of Y1..N

conditional on R1..N . This model is expected to improve the
forecasting performance with respect to the HMM. We set

Un+1 = ρ(Rn,Rn+1)Un +
√

1− ρ(Rn,Rn+1)2Vn+1, (5)

where n > 0, U1, {Vn}n>0 are standard Gaussian white noise
variables and for each i, j ∈ Ω, |ρ(i, j)| < 1.

As regards the feature (F2), we make Rn+1 dependent on
Yn conditional on Rn by using the concept of the logistic



function. Specifically, in the case where Ω has only two
elements {ω1, ω2}, we set

p (rn+1 = ω1 |rn,un ) =
1

1 + e−a(rn)−b(rn)un
, (6)

where for each i ∈ Ω, a(i) ∈ R, b(i) ∈ R.
Finally, we combine (3), (5) and (6) to define a Pairwise

Markov modeling of Y1..N :

p (y1 |r1 ) = N
(
µ(r1), σ2(r1)

)
; (7a)

p (rn+1 = ω1 |rn, yn ) =
1

1 + e−a(rn)− b(rn)
σ(rn)

(yn−µ(rn))
; (7b)

p (yn+1 |rn, rn+1, yn ) =

N
(
µ(rn+1) +

ρ(rn, rn+1)σ(rn+1)

σ(rn)
(yn − µ(rn)) ,

σ(rn+1)2(1− ρ(rn, rn+1)2)
)
. (7c)

The parameters of this model are

θ = {π(i), µ(i), σ(i), a(i), b(i), ρ(i, j)}i,j∈{ω1,ω2}, (8)

where π(i) = p (rn = i). This model is presented for Ω =
{ω1, ω2}, but one can consider a more general definition by
using the multinomial logistic function, as explained in [8].

B. State estimation and forecasting

Real-time processing of incoming data {Yn}n>0 in a PMM
involves determining p (rn |y1..n ), known as the filtering dis-
tribution. Algorithm 1, derived in [7], allows computing the
filtering distribution with a complexity linear in n.

Algorithm 1. Filtering in PMMs
• Consider, ∀n > 0, rn ∈ Ω, αn(rn) = p (rn, y1..n);
• Initialization: ∀r1 ∈ Ω, α1(r1) = p (y1 |r1 ) p (r1);
• Recursion:

Given {αn(rn)}rn∈Ω and yn+1, compute, ∀rn+1 ∈ Ω,

αn+1(rn+1) =
∑
rn

αn(rn)p (rn+1, yn+1 |rn, yn ) .

The filtering distribution is given by

p (rn |y1..n ) =
αn(rn)∑

rn∈Ω

αn(rn)
.

Forecasting consists in computing p (yn+1..n+p |y1..n ) for
p > 0. An important case of forecasting is the one-step-ahead
forecasting, for which p = 1. In this case, it is also particularly
important to forecast Zn+1, where

Zn+1 =

{
1 if Yn+1 < 0;
2 otherwise. (9)

Zn+1 represents the direction of the stock price change
during the day n + 1. The anticipated price change at n + 1
given the information available at n is defined by

ẑn+1|n =

{
1 if p (yn+1 < 0 |y1..n ) > 0.5;
2 otherwise. (10)

Algorithm 2. One-step-ahead forecasting in PMMs
Let n > 0,

• Compute p (rn |y1..n ) by using Algorithm 1;
• Compute p (rn, rn+1 |y1..n ):

p (rn, rn+1 |y1..n ) = p (rn |y1..n ) p (rn+1 |rn, yn ) ;

• Compute, for each rn, rn+1 in Ω, m̂n+1(rn, rn+1) and
ŝ2
n+1(rn, rn+1) by respectively

µ(rn+1) +
ρ(rn, rn+1)σ(rn+1)

σ(rn)
(yn − µ(rn))

and (1− ρ(rn, rn+1)2)σ2(rn+1);

• The predictive distribution p (yn+1 |y1..n ) is a mixture of
normal densities N

(
m̂n+1(rn, rn+1), ŝ2

n+1(rn, rn+1)
)

with weights p (rn, rn+1 |y1..n ). Compute the one-step-
ahead ŷn+1|n forecast of yn+1 as the mean of this
mixture:

ŷn+1|n =
∑

rn,rn+1∈Ω

p (rn, rn+1 |y1..n ) m̂n+1(rn, rn+1);

(11)
• Let Φ denote the normal cumulative distribution function,

compute p (yn+1 < 0 |y1..n ) by∑
rn,rn+1∈Ω

p (rn, rn+1 |y1..n )× Φ

(
−m̂n+1(rn, rn+1)

ŝn+1(rn, rn+1)

)
;

Contrary to the one-step-ahead forecasting, there is no
apparent closed-form expression for p (yn+1..n+p |y1..n ) in the
case of multistep forecasting in PMMs.

C. Parameter estimation

Let N > 0, Y1..N be an observed time series of log-returns.
The goal of a PMM parameter estimation is to infer the

parameter vector θ (8) from the observed data Y1..N .
The Expectation-Maximization (EM) and the Iterative Con-

ditional Estimation (ICE) are well-known parameter estimation
algorithms and are similar to the maximum likelihood estima-
tion. These algorithms are well suited for both HMMs and
PMMs, and the details may be found in [9].

Alternatively, θ can be estimated by using the princi-
ple of empirical risk minimization (ERM). Several methods
for proving consistency of such estimators are provided in
e.g. [10]. Let us recall the general idea of the ERM. Assume a
training set (x1..N , y1..N ) in (X×Y)N , a prediction function
h : X → Y and a loss function L : Y ×Y → R+. The
empirical risk associated with the prediction function h is
defined as

R̂(h) =
1

N

N∑
n=1

L(h(xn), yn).

Thus, the idea of the ERM is to find a function h for which
the risk is minimal.

Regarding the context of forecasting, we have xn = y1..n

and h(xn) = ŷθn+1|n(y1..n), where ŷθn+1|n(y1..n) is computed



from θ and y1..n by (11). We consider the following loss
functions:

L1(ŷθn+1|n(y1..n), yn+1) = |ŷθn+1|n(y1..n)− yn+1|,
L2(ŷθn+1|n(y1..n), yn+1) = (ŷθn+1|n(y1..n)− yn+1)2.

The associated risk functions are

R̂1(θ) =
1

N − 1

N−1∑
n=1

|ŷθn+1|n(y1..n)− yn+1|, (13a)

R̂2(θ) =
1

N − 1

N−1∑
n=1

(ŷθn+1|n(y1..n)− yn+1)2. (13b)

Let λ > 0, the following risk function realizes a trade-off
between R̂1(θ) and R̂2(θ):

R̂(θ;λ) = λR̂1(θ) + R̂2(θ). (14)

In our study, we estimate θ by minimizing (14) for various
values of λ. There is no closed expression known for the
corresponding update equations and we solve the optimization
problem by the particle swarm optimization (PSO). PSO
methods [11] are non-convex global optimization algorithms.

IV. EXPERIMENTS

Let us present our methodology to compare the efficiency
of PMM with that of HMM on historical stock quotes. Given
a data set H = {y1, .., yM} with successive daily log-returns
of an asset E, we split H into two juxtaposed sets as follows:
Htraining = {y1, .., yN} and Htest = {yN+1, .., yM}. The first
set is used to estimate the parameter θ by minimizing (14)
for a given λ, while the second set serves only to assess the
efficiency of each model considered. The models are compared
in terms of the outcome produced by the following trading
system. At the beginning of each day n+1, N ≤ n < M , the
system buys asset E only if the one-day-ahead forecast (10)
produced by the model is positive, i.e. if ẑn+1|n = 2, and
sells the asset at the end of the day. In the case of a negative
forecast, the system avoids any trading operations on E. Next,
we compute the absolute return of the system on Htest and
compare it with that of the asset. Let us recall that the absolute
return of E relative to date N is defined as

τ(n;N) =
Sn − SN
SN

, (15)

for n ≥ N . Equivalently, τ(n;N) can be written as a function
of the log-returns:

τ(n;N) = exp

(
n∑

t=N+1

yt

)
− 1.

Thus, the absolute return of the trading system considered can
be written as

τ∗(n;N) = exp

(
n−1∑
t=N

yt+1δ(ẑt+1|t = 2)

)
− 1. (16)

We apply this methodology to Cliffs Natural Resources
Stock prices (NYSE:CLF). Stock quotes are taken from the

Yahoo! database and correspond to the business days from
01/02/1990 to 12/13/1993 for Htraining and from 12/14/1993 to
09/29/1994 for Htest. In this configuration, the size of Htraining
is N = 1000, the size of Htest is 200 and the total size of the
data set H is M = 1200. In every experiment, the state space
is reduced to only two elements. Figures 3 and 4 displays the
values of risks R̂1(θ) and R̂2(θ) cf. (13) for θ minimizing (14),
in function of λ. Absolute returns generated by four models on
the test set are given in Table I for various values of λ. Figure 5
displays the returns produced per each model in function of
time with λ = 0.

λ = 10−3 λ = 10−2 λ = 1 λ = 102 λ = 103

HMM 17% 13% 10% 10% 10%

PMM-F1 16% 14% 11% 9% 9%

PMM-F2 21% 20% 19% 14% 16%

PMM 21% 20% 19% 14% 16%

TABLE I: Absolute returns (16) of HMM, PMM-F1, PMM-
F2 and PMM-based trading systems on NYSE:CLF historical
prices. The returns are related to the period from 12/14/1993
to 09/29/1994.
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Fig. 3: Values R̂∗1(λ) = R̂1(θ) in function of λ, where θ
minimizes (14).
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Fig. 4: Values R̂∗2(λ) = R̂2(θ) in function of λ, where θ
minimizes (14).

Let us make several brief observations.
Figures 3 and 4 are consistent with the definition of θ as

the minimum of (14). When λ increases, R̂∗1(λ) = R̂1(θ)
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Fig. 5: Absolute returns (16) from 12/14/1993 generated by
PMM-based trading systems on NYSE:CLF historical data.
PMM models are estimated on the data from 01/02/1990 to
12/13/1993 by minimizing (14) with λ = 0. Four charts (from
top to bottom) relate to the four models. The last chart is the
absolute return of the asset (15).

decreases and R̂∗2(λ) = R̂2(θ) increases, and vice versa, and
this holds for the four models.

Progressive inclusion of features (F1) and (F2) in the HMM
improves both risk values computed on Htraining, as expected,
independently of the value of λ.

We can see from Figure 5, that PMM-F1 implies a more
risk-adverse trading strategy than that of HMM, and the related
generated return increases almost monotonically. However,
PMM-F1 may not be well suited for a bull market. PMM-F2
and HMM appear to be better suited for bull dynamics, while
PMM-F2 seems to be less vulnerable than HMM to abrupt
drops of asset value.

V. DISCUSSION

We proposed a meaningful parameterization of PMM for
modeling financial time series. The results show that both
features (F1) and (F2), mentioned in Section I, can be captured
by PMMs, which was expected. One can intuitively understand
why using the feature (F1) should improve forecasting, while
(F2) is more difficult to interpret. Suppose for example that
during the bull state, the return Yn appears to be excessively
negative compared to the average return of the bull market. In
this case, the current state may become fairly uncertain in an
HMM, i.e. p (rn = ω1 |y1..n ) ≈ p (rn = ω2 |y1..n ). The PMM
incorporates (F2) by using the distribution p (rn+1 |rn, yn )
which allows to decide to which extent Yn should affect the
expectation of Rn+1.

Table I indicates that the outcome produced by each model
is sensitive to the value of λ. In general, such a parameter
should be chosen by a cross-validation procedure accordingly
to the application considered.

Our experiments indicate that a more complex structure of
PMMs may allow identifying better suited regimes for specific
application. We believe that the presented way of use of the

flexibility of PMM will allow overcoming principal constraints
of HMMs.

This study has several limitations. Firstly, we assume only
two regimes in our models. Next, the Gaussian mixture density
and non-Gaussian heavy tailed observation distributions could
be considered as well. We consider only closing price per day,
while daily opening, low and high prices are also available
as well. Finally, our study lacks justification on the choice
of the period of stock prices and stock used for experiment.
An upcoming research article will contain more extensive
experiments and deal with the outlined points.

VI. CONCLUSION

The paper introduces a Pairwise Markov model for financial
time series, obtained by incorporating features (F1) and (F2),
mentioned in the Introduction, into the classic Hidden Markov
model. The results show that both of these features contribute
to improving the performance of the model in some applica-
tions. Let us mention the triplet Markov models, which allow,
in particular, dealing with the mixture observation distributions
and semi-Markovian hidden process simultaneously [12]. Such
general models models are also potentially capable of improv-
ing the outcome of the classic HMMs.
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