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Abstract, This work deals with the unsupervised Bayesian segmentation of images. We describe
a recent general procedure of estimation of components in a mixture of distributions and show some
possibilities of its application to the problem of the unsupervised segmentation. As far as modelling by
Markov random fields is concerned the procedure presented can generate several particular algorithms

of unsupervised segmentation of images.

1. Introduction

Our work deals with the problem of the unsupervised segmentation of images whose
importance has been pointed out by several authors ([8], [9], [21]). When considering
the statistical approach, with Bayesian segmentation, the modelling by Markov random
fields is the generally adopted one. When distributions of corresponding Markov fields
are sufficiently known there exist some efficient algorithms (simulated annealing, MPM,
ICM) of Bayesian segmentation. When they are not sufficiently known the problem
becomes more difficult: one has to estimate the useful parameters, either in a previous
step or simultaneously. The statistical problem is that of “lost data”: parameters are
estimated from random variables whose distribution is a mixture of distributions.

The aim of this paper is to show how a recent procedure of estimation in the case of
lost data, whose generality goes beyond the problems of image processing, can generate
numerous algorithms of unsupervised Bayesian segmentation. The development of this
paper is as follows:

In the following section we recall the modelling by Markov random fields and three
Bayesian methods of segmentation.

The third section is devoted to a recent iterative method of estimation, called iterative
conditional estimation (ICE). We introduce it in the case of a finite mixtures, sufficient to
deal with the problem of segmentation, but a more general framework can be considered.

In the fourth section we show how the ICE procedure can generate numerous algori-
thms of unsupervised Bayesian segmentation and give an example.
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The final section comprises the conclusion.

2. Modelling and Bayesian Segmentation

When considering the statistical segmentation of images authors generally suppose
the existence of two random fields: the field of “classes” ¢ = (¢, )ses, and the field of “me-
asurements” X = (X;)ses. Each (, takes its values in a finite set Q = {w;,wa,...,wn}
of classes and X, in Y, with d € N. So the problem of segmentation in the problem of
the estimation of an “ignored” realization of ¢ from an “observed” realization of X. We
will suppose that realizations of X depend on realizations of ¢ and a noise containing
as well the “natural variability” or “texture” as the disturbances due to the “transmis-
sion”. The distribution of (¢, X) is defined by P, distribution of ¢, and the family P
of distributions of X' conditional to { = ¢. The field ¢ will be supposed Markovian with
all realizations possible; so its distribution is Gibbs distribution:

Pl =¢] = Pile] = ke™Ve(© (1)

where k is unknown, o a parameter and the form of U, simple enough to make possible
the calculation of the spatially conditional distributions. The distribution of X can be
defined by m distributions P!, P2, ..., P™ of X conditional to m uniform realizations
((s = wy for each s, {, = wq for each s,...,({, = w,, for each s respectively) and
the hypothesis according to which the random variables X; (with X; restriction of X to
Qi = {s € S/¢; = w;}) are independent. In order to allow simulations of P!, P2, ... P™
we will suppose that they are Gibbs distributions.

In the most general case Bayesian segmentation consists in estimating the realization
of (4 from Xp, for A, B C S. More precisly (4 is estimated by ¢4 which maximises
the “posterior” (conditional to Xp = zp) distribution of (4. Diflerent choices of A4, B
generate different approaches: our work concerns the “global methods” which correspond
to B =5 (pixels are classified using the whole information simultaneously), “local me-
thods” corresponding to B of “small size” with A C B (each pixel is classified from
information contained in its neighbourhood). The best known global approaches are:

¢ MAP corresponds to A = 5, B = S. The problem is resolved by Geman and
Geman’s ([11]) iterative algorithm (simulated annealing).

e MPM corresponds to A = {s}, B = S. In this case the problem can be treated
by Marroquin et alP’s algorithim ([16]).

o ICM. This derministic algorithm of J. Besag ([2]) is rather a local one but we will
range it with global methods because it necessites the same modelling (using Gibbs
distributions) that MAP or MPM.
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Thus, we can apply one of the above-mentioned methods if we know the corresponding
parameters. Let us denote o parameters concerning the distribution of ¢ and f para-
meters corresponding to the conditional distributions of X. As we said above, « is a
parameter, generally appearing in the function “energy” U of the Gibbs distribution (1),
knowning which makes it possible to compute the distribution of each {, conditional to
(Ct)izs- The use of global methods does not allow the taking of the noise correlation
into account: the random variables (X,) are assumed to be independent conditionally to
each realization of ¢. So, if we have m classes, it is sufficient to define m distributions
of each X, (conditional to ¢, = wy,...,Wm respectively). Thus g will have m compo-
nents Ay, ..., Bm. For instance, if the field X is (Gaussian conditionally to ¢ and each X
real, we have f3; = (4, 0#), where p; is the mean and o} the variance of the Gaussian
distribution of each X, conditional to ¢, = w;.
In practice we just often have an observation .X = z.

Thus we have to choose a segmentation method and propose an estimator for
the corresponding parameter (o, 8). The distribution of X' is:

Po=) Pe]P (2)

which is said to be a “finite mixture of distributions”. The problem of estimating
(o, ) (in a certain sense “components of the mixture”) is a very general statistical
problem which often arises when dealing with Bayesian classification. We describe in
the next section a recent general procedure of estimation and describe, in section 4, how
this procedure can generate several agorithms of unsupervised segmentation.

3. Iterative Conditional Estimation (ICE)

Let us consider, in a general manner, a couple of random variables (¢, X), ¢ taking its
value in a finite set and X in R?. Let us suppose that the distribution of (¢, X) is
defined by P, distribution of ¢, and the family P§ (¢ being a possible realization of ()
of distributions of X conditional to ¢ = €. The distribution P; depends on a parameter
o and the family P§ on a parameter (the correspondence between the distributions of
(¢, X) and (o, B) is not necessarily bijective). X is the only observable and the problem
is to estimate the parameter (¢, ).

Let us suppose that we have at our disposal two estimators & = &(¢) and B = ﬁ((, X)),
& being defined from ¢ and f from (¢, X). The direct use of & and 3 is impossible because
realizations of ¢ are ignored, so, we have to approach & and [i by some function of X,
the only one observable. The best approximation, as far as the square error is concerned,
is the conditional expectation. To be more precise, if, for two random variables Y, Z, we
denote the conditional expectation by E[Y/Z] we can state:
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El(Y - B[Y/2)") = min  E[(Y - ¢(2))"]

; 3)

Thus we are led to condition & and B by X: in doing this we lose the quality as
“estimators”. In fact, & is independent from the parameter (a, 8) but E[a/X], which,
for each .X = & is the expectation of & according to the distribution of ¢ conditioned
by X = u (so called “posterior” distribution) depends on (a,B). The same is true for
E[3/X]. Uence, if we want to compute Efa/X = 2] and E[3/X = z] we have to take
a parameter (ap, f,) previously defined by some way. This defines an iterative proce-
dure wich will be called Iterative Conditional Estimation (ICE, [20]). By denoting E,
the conditional expectation using (an, Bn the procedure is:

* one takes an initial value (o, Bo)

® (nt1,Pny1) is computed from (on,fBn) and X=x by:

Ont1 = EN[C?\/X = 2] (4)
Bn+1 EaB/X = z] (5)

In order to simplify matters let us denote by P the distribution of ¢ conditioned by
X' =z (posterior distribution) computed from (an, Ba). (4) and (5) can be written:

]

Onyy = Z&(f)P,ﬂE] (6)
,BrH-l = Zﬁ(a,x)P,f[e] (7)

(4) and (5) or (6) and (7) are not necessarily workables in practice. As we will see in
next section, P7 is not entirely known when the problem of image segmentation is tacled
from modelling by Markov random fields, but it is possible to simulate realizations of ¢
according to P?. In situations like this we ¢an use an “approximative” ICE: (6) and (7)
can be approached, in accordance with the law of large numbers, by:

1N
Gapr = =) dle) (8)
i=1
1.
ﬂn+l = NZﬁ(ei:QJ) (9)
Coa=l
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where €1,¢2,...,€n are realizations of { according to PF.
Finally, we can use the ICE procedure as soon as we get:

o An estimator & = &(¢) of a and another one B = ﬁ(C,X) of ﬂ

e An initial value (cg, fo) not “too far” from the real parameter (o, B).

o A way of computing E,[a/X] and E,[3/X] or a way of simulating realizations of
¢ according to the posterior distribution Py .

4. Unsupervised Segmentation of Images

The ICE procedure can generate a great number of non supervised segmentation al-
gorithms (NSSA). « is a parameter, generally appearing in the energy of the Gibbs
distribution of ¢, knowing which allows the computing of the conditional distributions.
B is a parameter defining the distributions, conditional to ¢ = ¢, of X. The use of
ICE is possible as soon as we can simulate realizations of  according to the poste-
rior distribution, the latter being computed with the current parameter (ay, fx). Thus,
the possibility of simulations requires the markovianity of the posterior distribution which
is ensured by the conditional independence of the random variables (X, ). Let us suppose
X real and conditionally Gaussian. So the parameter 8 is § = (f,...,0m), wich m
the number of classes, and 8; = (pi, 0?), jti, 67 being respectively the mean and variance
of the distribution of each X, conditional to {, = w; (for 1 <i < m).

So ICE will define a NSSA as soon as we take &,/ estimators of «, 8 respectively
(from (¢, X)) and choose between MAP, MPM, ICM. Let us mention four possibilities
for a:

&1: pseudo-maximum likelihood ([2]). The idea is to substitute the likelihood(1), where
k is unknown, by the product of conditional distribution. « is then estimated by
o* which, for a given realization of ¢, maximises the function thus obtained.

Go: least square error method. The description of this method, proposed by Derin and
Elliot, can be seen in [9].

@3: maximum likelihood. L. Younes proposes ([26]) an iterative procedure defining a se-
quence converging to the maximum of the likelihood defined by (1). His algorithm,

based on the stochastic gradient, allows a rigorous mathematical justification.

gt algorithm of Metropolis. Its description can be seen in[13].
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The more natural choice of the estimator 8 = B((, - (), in the hypothesis when con-
ditional distributions of X are Gaussian, are the empirical mean and variance (y1;,07)
which are defined from s € S such that {; = w;. This can be written: "

X1y, =w,

i = Zzs:es 1{( ] (10)
s€8 Hea=wi)
- .\ 2

fr? - ZsES(A-"—'/“) 1[C.=w.] (11)

ZJES 1[(a=“’u]

, Formulae (4) and (5) are not workable and have to use (6) and (7) the sequence

€1,€2,...,En being simulated by the Gibbs sampler ([10]). Then we can regulate
the importance of the :“stochastic” aspect of ICE by choosing N: when N increases
the stochastic side of the algorithm decreases. The intentional choice of N “small”
can increase its efficiency: the authors of the SEM algorithm([4]), wich can be seen as
a particular case of ICE with N=1 and the choice of (8) instead of (4), show its supe-
riority over the EM algorithm in a simple case of a mixture of Gaussian densities. It is
also possible to make N depend on the number k of iteration and introduce a kind of

“cooling”.
When combining these different possibilities we arrive twelve global unsupervised

methods of segmentation. For instance, taking oz, 3 and MAP the proceeding is:

¢ one takes ©g = (g, fo)

o Opy1 = (ak+1, Bu41) is computed from Oy = (g, fi) and X=x in the following
way:

— using the Gibbs sampler N realizations ¢y, €9, ...,e5 of ¢ are simulated accor-
ding to the posterior distribution computed from (o, Bx) and =,

— for each ¢; the parameter o is estimated by the iterative algorithm of L.
Younes (wich requires m new simulations by the Gibbs sampler) - let us
denote a(e;) the result obtained,

— for each ¢; the parameter 3 is estimated by formulae (10) and (11), which
gives G(gj ),

~ 041, Br41 are obtained from (a(e; ), A(e;)), 1< j < N by (8) and (9),

o.if the sequence (ag, fi) becomes steady, the estimation step is finished and one
proceeds to the segmentation using the simulated annealing([10]).

A comparative study between this algorithin and the simulated annealing based on
parameters estimated by an another algorithm of L. Younes ([27]) can be seen in [1].

Machine GRAPHICS and VISION vol. |, nos. 1/2, 1992, pp. 261-268
(Proceedings of 2nd GKPO'92 Conference, Nalgczéw, May 18-23 , 1992)



‘Wojcrech Preceynske ’ 267

5. Conclusion

We presented some applications of the ICE procedure to unsupervised image segmenta-
tion. We have limited our investigations to global methods but the same ICE general
method can also generate some local ones ([3],{14],[15],[20]). It is therefore possible to
define numerous NSSA: probably none of them is better than any other in the general
case. From theoretical point of view the study of their asymptotical behaviour us without
doubt, rather tedious: until now we have only had some partial results([5],{13],[19],[26]).
Numerous publications concerning the EM algorithm, in the case of independent data,
lead us to imagine the extent of the difficulty.

~ From the point of view of applications there is a wide study of tests to do: possibilities
of applications are extremly various and the problem is that of knowing what family of
NSSA is well suited to given kind of images. We have begun some studies ([3],[14])
based on simulations of different kinds of noises but the collaboration of experts in
the processing of real images would be, undoubtedly, of the utmost importance.
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