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Abstract. In the classical hidden Markov chain (HMC) model we have a hidden chain X , 
which is a Markov one and an observed chain Y . HMC are widely used; however, in some 
situations they have to be replaced by the more general “hidden semi-Markov chains” (HSMC), 
which are particular “triplet Markov chains” (TMC) ),,( YUXT = , where the auxiliary chain 

U  models the semi-Markovianity of X . Otherwise, non stationary classical HMC can also be 
modeled by a triplet Markov stationary chain with, as a consequence, the possibility of 
parameters' estimation. The aim of this paper is to use simultaneously both properties. We 
consider a non stationary HSMC and model it as a TMC ),,,( 21 YUUXT = , where 1U  models 

the semi-Markovianity and 2U  models the non stationarity. The TMC T  being itself stationary, 
all parameters can be estimated by the general “Iterative Conditional Estimation “ (ICE) method, 
which leads to unsupervised segmentation. We present some experiments showing the interest of 
the new model and related processing in image segmentation area. 

Key Words: Non-stationary hidden semi-Markov chain, unsupervised segmentation, iterative 
conditional estimation, triplet Markov chains. 
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Notations: In this article, all the processes and random variables will be defined on the abstract 
probability space (E,ξ,Pr) .  The processes will be written in upper case letters and their 
realizations in lower case letters. The marginals will be indexed by the corresponding indexes.                  

Except ambiguities )( stp will be noted )Pr( sStT == with the corresponding letters. If T  

is continuous, )( stp will be a probability density function (pdf). 

INTRODUCTION 

In the classical hidden Markov chain (HMC) model there is a hidden random chain 
X , which is a Markov one, and an observed random chain Y . HMC are efficient and 
widely used in numerous problems; however, in some situations they have to be 
replaced by the more general “ hidden semi-Markov chains”  (HSMC) [3, 5, 7, 10, 11]. 
Otherwise, it has been recently showed that HSMC are particular “ triplet Markov 
chains”  (TMC [8]) ),,( YUXT = , where an auxiliary chain U  models the fact that X  
is semi-Markov [9]. Furthermore, it has been also showed that a non stationary 
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classical hidden Markov chain can also be seen as a triplet Markov stationary chain 
with, as a consequence, the possibility of parameters estimation [6]. The aim of this 
paper is to use simultaneously both properties. We firstly consider a TMC 

),,( 11 YUXT = , which is equivalent to a hidden semi-Markov chain. Then we 

consider that 1T  is not stationary, which is modeled by a second auxiliary random 
chain 2U . Finally, we consider ),,,( 21 YUUXT =  as a TMC ),,( YUXT =  with the 

auxiliary process ),( 21 UUU = .  Therefore we have a stationary TMC ),,( YUXT =  
which models a non stationary HSMC (NSHSMC). We propose to use such a TMC in 
unsupervised hidden discrete signal segmentation. The parameters estimation is 
performed by an original variant of the general “ Iterative Conditional Estimation”  
(ICE) method [1, 2, 4], and the Bayesian segmentation is performed by the classical 
Maximum Posterior Mode (MPM) method. The interest of the new modeling and 
related processing is validated by some experiments. 

MODELING HIDDEN NON STATIONARY SEMI-MARKOV 
CHAINS WITH TRIPLET MARKOV CHAINS  

Let us consider ),( YXZ = , with )...,,( 1 nXXX =  and )...,,( 1 nYYY =  two random 

chains, where each iX  takes its values in a finite set of classes { }Kωω ...,,1=Ω , and 

each iY  takes its values in R . Classically, ),( YXZ =  is a hidden semi-Markov chain 

when X  is a semi-Markov chain and when the distribution of Y  conditional on X  is 
given by )(...)()( 11 nn xypxypxyp = . Otherwise, a possible way to define semi-

Markov distribution of X  is to say that this is a marginal distribution of a particular 
Markov chain. More precisely, one considers a random chain )...,,( 11

1
1

nUUU = , where 

each 1
iU  takes its values in the set of positive integers { }...,2,1* =N , such that the 

couple ),( UX  is a Markov chain defined by following ),( 1
11 uxp  and transitions 

),,( 11
11 iiii uxuxp ++ . For each 1=i , …, n  and Ω∈ix , one considers a probability 

distribution ).( ixp  on *N , such that for *Nj ∈ ,  )( ixjp  is the probability that 

)...,,()...,,( 1 iijii xxXX =++ , and ii xx ≠+1 . This models the fact that the distribution of 

the “ sojourn time”  of the chain X  in a given state can be of any form, while it is 
necessarily of geometrical form in Markov chains. More precisely, a semi-Markov 
distribution of X  is the marginal distribution of a Markov chain ),( 1UX  whose 

distribution is given by ),( 1
11 uxp  and the following transitions 

=++ ),,( 11
11 iiii uxuxp ),,(),( 1

1
1

1
1

1 iiiiiii uxxupuxxp +++  : 

 

)(),( 1
1

1 ++ = ixiii xuxxp
i

δ  if 11 >iu , and  

)( 1 ii xxp +  if 11 =iu  (with 0)( 1 ==+ iii xxxp );  (1) 

)(),,( 11
1

1
1

1 +−++ = iuiiii uuxxup
i

δ  if 11 >iu , and )( 1
1

1 ++ ii xup  if 11 =iu  ;   (2)       
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where xδ  is the Dirac measure on x . Let us notice that the variable 11

ii uU =  

designates the remaining sojourn time in the state ix .   

Returning to the observed Y , the distribution of a hidden semi-Markov chain 
),( YXZ =  is the marginal distribution of a particular triplet Markov chain 

),,( 11 YUXT = . Let us put ),( 1UXV = . As V is a Markov chain, ),(1 YVT =  is a 
hidden Markov chain and we can model its possible non stationarity by introducing an 
auxiliary random chain )...,,( 22

1
2

nUUU = , each 2
iU  taking its values in a finite set 

{ }M...,,12 =Λ . This leads to a TMC ),,( 2 YUVT = , which also is a TMC 

),,( YUXT = , with the auxiliary process ),( 21 UUU = . Its distribution is given by 

),,( 21 uuxp  and )(),,( 21 xypuuxyp = . Otherwise, the distribution ),,( 21 uuxp  of 

),,( 21 UUX  is given by ),,( 2
1

1
11 uuxp  and the transitions ),,,,( 212

1
1

11 iiiiii uuxuuxp +++  

that we can write as ××= ++++++ ),,,(),,(),,,,( 212
11

212
1

212
1

1
11 iiiiiiiiiiiiiii uuxuxpuuxupuuxuuxp   

),,,( 212
11

1
1 iiiiii uuxuxup +++× . The particular transitions in this product, that define the 

new model we propose and that generalize formulas (1)-(2) above, are following: 
 

)(),,( 2
1

212
1 2 ++ = iuiiii uuuxup

i
δ  if 11 >iu , and )( 22

1 ii uup +  if 11 =iu  ;   (3) 

)(),,,( 1
212

11 +++ = ixiiiii xuuxuxp
i

δ  if 11 >iu , and ),( 2
11 iii xuxp ++  if 11 =iu  ;  (4) 

)(),,,( 1
11

212
11

1
1 1 +−+++ = iuiiiiii uuuxuxup

i
δ  if 11 >iu , and ),( 2

11
1

1 +++ iii uxup  if 11 =iu  ; (5)       

 
),,( 21 uuxp  being defined with ),,( 2

1
1
11 uuxp  and (3)-(5), we end the definition of the 

distribution of ),,( YUXT =  by considering )(...)(),,( 11
21

nn xypxypuuxyp = .  

Finally, putting ),,( 21 UUXW = , we can say that ),( YWT =  is a classical hidden 
Markov chain in which  W  is discrete and Y  continuous. However, let us remark that 

the model is a particular one; in fact, we have )(),,( 21
iiiiii xypuuxyp = , which means 

that the noise distribution )( ii xyp  neither depends on remaining sojourn time 1
iu , nor 

stationarity 2
iu . Of course, one can image that this noise distribution does depend on 

1
iu , 2

iu , or even both of them, and the possibility of taking this into account in the 

model provide its possible further extensions. 
Finally, having a classical hidden Markov chain allows us to compute ),,( 21 yuuxp iii  

by the classical use of “ forward”  and “ backward”  probabilities, which gives 

∑=
21 ,

21 ),,()(
ii uu

iiii yuuxpyxp . Used in the Bayesian MPM classification. Concerning the 

parameters estimation method we use the “ Iterative Conditional Estimation”  (ICE) 
described below. 
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PARAMETERS’ ESTIMATION AND BAYESIAN 
SEGMENTATION 

In experiments below we will use the following particular case of the model (3)-(5). 
We will consider that 1

iU  takes its values in a finite set { }P...,,11 =Λ , and that for 

11 =iu  the probability ),( 2
11 iiii xuxxp ++ =  is not necessarily null. This condition means 

that for 11 =iU  the value 1
1

1
1 ++ = ii uU  is not the exact duration of sojourn in 1+ix , but the 

minimal duration. This defines a particular distribution of sojourn time on *N , which 
allows one to perform direct calculations, without resorting on Monte Carlo methods. 
Let us remark that a given distribution of W  does not necessarily define an unique 
distribution of X ; however, this problem does not arise in our experiments and we 
will not deal with any more in this paper. 
From now, we will de by W  the hidden process, which will be either ),( 1UXW = , or 

),,( 21 UUXW = . From the definition of the model seen above, W  is a Markov chain 
and ),( YW  is a classical hidden Markov chain (HMC). We will assume that 

)( jii xyp ω=  does not depend on ni ...,,1=  and is Gaussian with mean jm  and 

variance 2
jσ .  Moreover, ),( 1+ii wwp  does not depend on 1...,,1 −= ni .  

Finally,  knowing that each ),,( 21
iii UUX  takes its values in a finite set 

{ } { } { }PMK ...,,1...,,1...,,1 ××ωω , the whole model is defined for ),,( 21 UUXW = , by 
2)(KMP  real parameters giving the distribution ),( 21 wwp , K  means, and K  

variances. We propose to estimate all these parameters from yY =  by a method 
derived from the general “ Iterative Conditional estimation”  (ICE). 
According to its general principle, one can apply ICE to estimate a vector of 
parameters θ  from Y  once:  

(i) there exists an estimator ),(ˆ YWθ  of θ  from complete data ),( YW ; 

(ii) for every θ , one can sample W  according to ),( θywp . 

The iterative ICE method runs as follows: 
(i)  consider an initial value 0θ ; 

(ii) put ],),(ˆ[1 q
r

q
r yYYWE θθθ ==+  for the components rθ  of θ  for which this 

expectation is computable ; 
(iii) for other components, sample m  values 1,qw , …, mqw ,  of W  according to 

),( qywp θ , and put 
m

ywyw mq
r

q
rq

r

),(ˆ...),(ˆ ,1,
1 θθθ ++=+ . 

Let us consider the case ),( 1UXW = , as the case ),,( 21 UUXW =  can be dealt with 

in a similar way. There are 2)(KM  parameters ),( 21 jwiwppij ===  (therefore 1w  

and 2w  are both in { } { }MK ...,,1...,,1 ×ωω ), K  means 
1

m , …, Km  and K  variances 
2
1σ , …, 2

Kσ . Denoting by I  the indicator function, the classical estimator from 
complete data used is  
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∑
=

− ===
n

m
mmij jwiwI

n
ywp

1
212 ),(

1
),(ˆ     (6) 

 

∑
=

==
n

m
lmll xIy

n
ywm

1

)(
1

),(ˆ ω      (7) 

 

∑
=

=−=
n

m
lmlll xIywmy

n
yw

1

22 )()),(ˆ(
1

),(ˆ ωσ    (8) 

 
Recalling that the expectation of an incator function is the probability of the 

corresponding set and applying the conditional expectation ],),(ˆ[ q
ij yYYWpE θ=  to 

(6) gives  
 

∑
=

−
+ ===

n

m

q
mm

q
ij yjwiwp

m
yp

1
212

1 ),,(
1

)( θ ,   (9) 

 
while its application to (7) and (8) is not computable and we resort on sampling. This 

sampling is workable, as ),( qywp θ  is a Markov chain distribution with calculable 

transitions ),,( 1
q

kk ywwp θ+  (see below). Then we simulate one sample qw  (we take 

1=m  in (iii)) and (7), (8) are applied to ),( ywq  instead of ),( yw . 
Finally, to perform unsupervised segmentation using ICE, we have to calculate the 

following three distributions: ),,( 1
q

kk ywwp θ+ , ),,( 1
q

kk ywwp θ+  needed in ICE, and 

),( q
k ywp θ  needed in Bayesian MPM segmentation method. These distributions are 

classically computed from “ forward”  ),...,()( 1 kkkk yywpw =α  and “ backward”  

),,...,()( 1 kknkkk ywyypw +=β  probabilities, which are computed by the following 

forward (10) and backward (11) recursions 
 

)()( 111 wpw =α , and ∑ ++++ =
kw

kkkkkkkk ywywpww ),,()()( 1111 αα  for 12 −≤≤ nk ; (10) 

 
1)( =nn wβ , and ∑

+

++++=
1

),,()()( 1111

kw
kkkkkkkk ywywpww ββ  for 11 −≤≤ nk ; (11) 

 
Then we have  
 

)(),,()(),,( 11111 +++++ = kkkkkkkk
q

kk wywywpwywwp βαθ ,  (12) 

 

which gives ),,( 1
q

kk ywwp θ+ , ),,( 1
q

kk ywwp θ+ , and ),( q
k ywp θ . 
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     EXPERIMENTS  

We present below two series of experiments.  
In the first one we simulate a particular hidden semi-Markov non stationary chain, 
where X  takes its values in { }21,ωω=Ω , 1U  takes its values in { }5,...,11 =Λ , and 2U  

takes its values in { }1,02 =Λ , which means that there are two different stationarities. 

The distributions )( ii xyp  are normal a common standard deviation equal to 1, and 

the means equal to 1 for 1ω=ix , and equal 1.5 for 2ω=ix , respectively. We have 

=+ )( 22
1 ii uup 





999.0001.0

001.0999.0
 in (3), ==++ ),0( 2

11 iii xuxp 





99.001.0

01.099.0
 and 

==++ ),1( 2
11 iii xuxp  





7.03.0

3.07.0
  in (4), and 2.0),( 2

11
1

1 =+++ iii uxup  in (5). The observed 

yY =  is then segmented by there unsupervised methods. The first method is based on 
the very classical HMC model, the second one is based on a stationary HSMC, and the 
last one is based on the proposed TMC, equivalent to a NSHSMC. Of course, as the 
data follow the new model, the very Bayesian theory requires that its use give best 
results. However, the experiment is of interest because the three segmentations are 
performed in unsupervised manner, and in a rather strongly noisy context. Then the 
theoretical superiority of NSHSMC based method is no longer true, and the use of a 
simpler model like HSMC, or even HMC, which contains less parameters to be 
estimated, could possibly produce better results than the use of NSHSMC. Let us 
notice that one possible application is image segmentation, where the use of mono-
dimensional chains is possible by associating the mono-dimensional processes with 
the bi-dimensional set of pixels by using the Hilbert-Peano scan [1, 2, 6]. The images 

xX = , 22 uU = , and yY =  so obtained are presented in Figure 1. The results show 
that the theoretic hierarchy is saved in the unsupervised segmentation: NSHSMC work 
better than stationary HSMC, and stationary HSMC work better than stationary HMC. 
Otherwise, in spite of the very high level of the noise (see yY =  in Figure 1), their 
estimation with ICE give quite satisfying results when using NSHSMC (see Table1).  
In the second experiments, we consider a two classes image xX =  and its noisy 
version yY =   (see Figure 2, obtained by the use of Hilbert-Peano scan). As in the 
series above, yY =  is segmented by the same three unsupervised methods. Of course, 
the data follow no one of the three models and thus the objective here is study how the 
three models work in such a case. As we can see in Table 2 and Figure 2, the same 
hierarchy is respected. Therefore we see that the NSHSMC based unsupervised 
method is better than the HSMC method, and the latter method is better than the HMC 
based one.  
In ICE method used the initialization has been performed by the classical c-means 
method. 
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                                      xX =                     uU =                      yY =  

               
FIGURE 1.   Second line, from left to right:  segmentation of yY =  with HMC (error ration : 34%), 

HSMC (error ration : 22%), and NSHSMC (error ration : 17%), estimation of 2U . 

 
TABLE 1.  Parameter’s estimation using ICE 
Classe By HMC By SemiHMC2 By SemiHMC-NS 

 Mean Std deviation Mean Std deviation Mean Std deviation 
0 0.8520 0.8871 1.06 1.02 1.0046 0.9899 
1 1.661 0.9009 1.4602 1.0153 1.5137 0.9963 
Error ratio 34% 22% 17% 

 

                               
                                xX =                         uU =                         yY =  

                     
 
FIGURE 2.   Second line, from left to right:  segmentation of yY =  with HMC (error ration : 35%), 

HSMC (error ration : 23%), and NSHSMC (error ration : 14%), estimation of 2U . 
 
 
TABLE 2.  Parameter’s estimation using ICE 
Classe By HMC By SemiHMC2 By SemiHMC-NS 

 Mean Std deviation Mean Std deviation Mean Std deviation 
0 0.84 0.91 1.09 1.04 0.9 0.94 
1 1.65 0.89 1.46 1.02 1.49 0.99 
Error ratio 35% 23% 14% 
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CONCLUSION 

In this paper, we have proposed a new model of a hidden non stationary semi-Markov 
chains. Extending some first suggestions presented in [9], the general idea was to use a 
triplet Markov chain ),,( YUXT =  with ),( 21 UUU = , where 1U  models the semi-

markovianity, and 2U  models the non stationarity. As  ),,( YUXT =  is itself 
stationary, it is possible to estimate its parameters using the general “ Iterative 
Conditional Estimation”  (ICE) method, which leads to unsupervised Bayesian 
segmentation methods. We proposed two series of experiments which show that, on 
the one hand, the hidden semi-Markov chains based unsupervised segmentation 
method work better that the classical hidden Markov chains based unsupervised 
segmentation method and, on the other hand, the new model based unsupervised 
segmentation method work better that the hidden semi-Markov chains based one.  
The classical hidden Markov chains are applied in various areas like Biosciences, 
Climatology, Communications, Ecology, Econometrics and Finance, Image or Signal 
processing. Therefore, the model we propose in this paper is likely to be useful and 
improve different processing in the same applications.  
 

REFERENCES 

1. B. Benmiloud, W. Pieczynski, Estimation des paramètres dans les chaînes de Markov cachées et segmentation 
d'images, Traitement du Signal, Vol. 12, No. 5, pp. 433-454, 1995. 

2. S. Derrode and W. Pieczynski, Signal and Image Segmentation using Pairwise Markov Chains, IEEE Trans. 
on Signal Processing, Vol. 52, No. 9, pp. 2477-2489, 2004.  

3. S. Faisan, L. Thoraval, J.-P. Armspach, M.-N. Metz-Lutz, and F. Heitz, Unsupervised learning and mapping 
of active brain functional MRI signals based on hidden semi-Markov event sequence models, IEEE Trans. on 
Medical Imaging, Vol. 24, No. 2, pp. 263-276, 2005.  

4. N. Giordana and W. Pieczynski, Estimation of Generalized Multisensor Hidden Markov Chains and 
Unsupervised Image, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 19, No. 5, pp. 465-475, 
1997. 

5. Y. Guédon, Estimating Hidden semi-Markov chains from discrete sequences, Journal of Computational and 
Graphical Statistics, Vol. 12, No. 3, pp. 604-639, 2003. 

6. P. Lanchantin and W. Pieczynski, Unsupervised non stationary image segmentation using triplet Markov 
chains, Advanced Concepts for Intelligent Vision Systems (ACVIS 04), Aug. 31-Sept. 3, Brussels, Belgium, 
2004. 

7. M. D. Moore and M. I. Savic, Speech reconstruction using a generalized HSMM (GHSMM), Digital Signal 
Processing, Vol. 14, No. 1, pp. 37-53, 2004. 

8. W. Pieczynski, C. Hulard, and T. Veit, Triplet Markov Chains in hidden signal restoration, SPIE’s 
International Symposium on Remote Sensing, September 22-27, Crete, Greece, 2002. 

9. W. Pieczynski and F. Desbouvries, On triplet Markov chains, International Symposium on Applied Stochastic 
Models and Data Analysis, (ASMDA 2005), Brest, France, May 2005. 

10. S.-Z. Yu and H. Kobayashi, A hidden semi-Markov model with missing data and multiple observation 
sequences for mobility tracking, Signal Processing, Vol. 83, No. 2, pp. 235-250, 2003. 

11. S.-Z. Yu and H. Kobayashi, An efficient Forward-Backward algorithm for an explicit-duration hidden Markov 
model, IEEE Signal Processing Letters, Vol. 10, No. 1, pp. 11-14, 2003. 

 


