Superposition Coding for Costa Channels

Giuseppe Caire, Institut Eurecom
Shlomo Shamai, Technion

Joint work with:
Amir Bennatan, Tel Aviv University
David Burshtein, Tel Aviv University
Outline

- Costa (Dirty Paper) Channels.
- Superposition Coding.
- Random-Coding Analysis.
- Simulation Results.
Costa Channels: Gaussian Dirty Paper

Channel Model:

\[Y = X + S + Z \]

- \(P_X \), power constraint.
- \(Z \sim \mathcal{N}(0, P_Z) \), unknown noise.
- \(S \), interference known at encoder only.
Capacity:

Costa, 1983: Although S known only at encoder,

\[C = \frac{1}{2} \log \left(1 + \frac{P_X}{P_Z} \right). \]

A special case of Gel’fand-Pinsker ’80

\[C = I(U; Y) - I(U; S) \]

\[U = X + aS \]

\[a = \frac{P_X}{P_X + P_Z}. \]
Applications:

- Digital Watermarking.
- Broadcast Channel (MIMO).
- Interference Cancellation
 (also: broadcast with known interference).
- ISI Channels.
Question:

How to construct effective codes that approach capacity?

Answer 1: Nested lattices (Zamir, Shamai, Erez)

Answer 2: Superposition coding
Superposition Coding

Two Codes:

- C_0 quantization code.
- C_1 auxiliary code.

Superposition Code:

$$C = C_0 + C_1$$

$$= \{ c_0 + c_1 : c_0 \in C_0, c_1 \in C_1 \}$$
C_1
\[C_0 + C_1 = \{ c_0 + c_1 : c_0 \in C_0, \ c_1 \in C_1 \} \]
Concepts of Encoding/Decoding:

Note:

- Discussion now is not rigorous!

Rigorous development:

Encoding:

Begins by selecting $c_1 \in C_1$
The bin associated with c_1 is

$$c_1 + C_0 = \{c_1 + c_0 : c_0 \in C_0\}$$
Interference:
s + x + z
\[s + x + z = y \]
The Decoder:

\[y = c_0 + c_1 + z \]
The Encoder:

- Size of C_1 determines number of messages.
- Larger C_1 \implies higher transmission rate.
The bins:

\[\text{bin} = c_1 + C_0 = \{c_1 + c_0 : c_0 \in C_0\} \]

- Too small \(\implies x \) violates power constraint.
Rigorous Development:

- Modulo-A arithmetic reduces signals to a cube $[-A/2, A/2]^N$.
- A *dither* \mathbf{d}, uniformly distributed in $[-A/2, A/2]^N$.
- α-scaling (MMSE) is applied.
Random Coding Analysis

- $C_0 \sim \text{Unif} \left(-A/2, A/2\right)$, rate R_0.
- $C_1 \sim \mathcal{N}(0, Q)$, rate R_1.
Theorem 1.

Decoding possible if \((R_0, R_1)\) in MAC capacity region.

Power constraint obeyed if \(R_0\) above dashed line.
Achievable Region

\[R_1 = \frac{1}{2} \log \left(1 + \frac{P_X}{P_Z} \right) \] achieved!
\[R_1 = \frac{1}{2} \log \left(1 + \frac{P_X}{P_Z} \right) \]

\[Q \geq \frac{P_X^2}{P_X + P_Z} \implies \text{Capacity achieved.} \]
\[R_1 = \frac{1}{2} \log \left(1 + \frac{P_X}{P_Z} \right) \]

Achievable Region

\[Q = \frac{P_X^2}{P_X + P_Z} \implies \text{Capacity achieved at vertex point.} \]
Comparison

- Superposition coding:

 Prefers:

 \[Q = \frac{P_X^2}{P_X + P_Z} < P_X \]

- Nested lattices:

 Similar to

 \[Q = P_X \]
Simulation Results

Codes:

- C_0 Ungerboeck trellis code.
- C_1 LDPC code.

MAC joint iterative decoder

- C_0 by BCJR.
- C_1 by belief propagation.
Simulation results:

Rate = 0.25 bits/channel use

Gap to Shannon limit = 1.3 dB

Discussion:

Why 0.25? : Dirty tape (Shannon’s 58 causal case): 3.2 dB.

Comparison, Nested lattices (Erez, ten Brink): 1.3 dB.

Recent work: Optimized Source (TCQ) & Channel (IRA) Coding & improved joint detection (Sun-Liveris-Stankovic-Xiong, CISS 2005): 1. dB.
Comparison, Nested Lattices

Different geometry of codes:

\[Q = \frac{P_X^2}{P_X + P_Z} < P_X. \]

Simplicity of superposition coding:

- Conceptual and structural simplicity.
- Encoder (no finding coset leader).
- MAC Decoder.
Prospects

- Generalization to arbitrary side-information (Gel'fand Pinsker) problem.
- Improving on code selection (C_0-quantization code).
- Vector Channels:

\[y = Hx + s + n. \]

- Direct extension of superposition coding to vector channel:
 (S.-C. Lin and H.-J. Su, CISS 2005)

\[x = (c_0 + c_1 - Ws - U) \mod A \]

W-scaling MMSE matrix.
- Our SVD approach $H = \psi \Lambda \phi \Rightarrow$ equivalent parallel scaled scalar channels with modified but known interference:

\[y_i = \lambda_i x'_i + s'_i + n_i, \quad i = 1, 2 \ldots \text{rank } (H). \]
Backup Slides
Choice of C_0:

- bin = Translation of C_0.
- Finding closest word to s requires: C_0 be good quantization code.
- Quantization with LDPC: open problem.
C_1 uniformly in Voronoi of C_0.

Equivalent to $Q = P_X$.
Superposition Coding

\[Q = \frac{P_X^2}{P_X + P_Z} < P_X. \]

\[\text{Prefers} \]