Maximum likelihood estimation in linear models with a Gaussian matrix

Ami Wiesel, Yonina C. Eldar and Amir Beck

ICASSP-2006 Special Session on convex optimization
Outline

- ML estimate in random model
 - Problem formulation
 - Efficient numerical solution

- Comparison to similar problems & models
 - Errors in Variables (EIV) model
 - Total Least Squares (TLS)
 - Regularized TLS

- Conclusions
Linear model

\[y = Gx + w \]

- \(y \) received vector
- \(G \) model matrix
- \(x \) deterministic unknown vector
- \(w \) Gaussian noise vector \(\sim N(0, \sigma_w^2 I) \)

What is the ML estimate of \(x \)?
Background: \(G \) is known

- ML = LS (Least squares)

\[
\hat{x} = \arg \max_x \left\{ f(y; x) \right\} = \arg \min_x \|y - Gx\|^2
\]
Our model: G is random

- What happens when G is unknown?
 - In particular, when it is random.
 - $[G]_{ij}$ are independent and Gaussian

\[
E\{G\} = H \\
VAR\{[G]_{ij}\} = \sigma_h^2
\]
ML estimate in our model

\[\hat{x} = \arg\max_x \{ f(y; x) \} \]

\[= \arg\min_x \left\{ \frac{\|y - Gx\|^2}{\sigma_h^2 \|x\|^2 + \sigma_w^2} + N \log\left(\sigma_h^2 \|x\|^2 + \sigma_w^2\right) \right\} \]

Highly non linear and non convex optimization problem!!!
Efficient numerical solution - I

\[\hat{x} = \arg \min_x \left\{ \frac{\|y - Gx\|^2}{\sigma_h^2 \|x\|^2 + \sigma_w^2} + N \log \left(\sigma_h^2 \|x\|^2 + \sigma_w^2 \right) \right\} \]

We add a slack variable:

\[\hat{x} = \arg \min_t \left\{ \min_{x: \|x\|^2 = t} \frac{\|y - Gx\|^2}{\sigma_h^2 \|x\|^2 + \sigma_w^2} + N \log \left(\sigma_h^2 t + \sigma_w^2 \right) \right\} \]
Efficient numerical solution - II

\[\hat{x} = \arg \min_{t} \left\{ \min_{x:||x||^2=t} \| y - Gx \|^2 + N \log \left(\sigma_h^2 t + \sigma_w^2 \right) \right\} \]

Constrained LS

Solvable via hidden convexity!

Unimodal in \(t \)!

We can find the ML estimate by iteratively solving the constrained LS!
Relation to EIV model

The Errors in Variables (EIV) model

\[y = Gx + w \]
\[H = G + W \]

- Here, \(G \) is deterministic unknown.
- But we have a new observation - \(H \).
 - Similar to our model!!!
 - (in both \(y \) and \(H \) are available)
Relation to ML in EIV (TLS)

- Reminder: \mathbf{G} is known ML = LS.
- \mathbf{G} is unknown ML = TLS (Total Least Squares).

\[
\left\{ \hat{x}_{TLS}, \hat{\mathbf{G}} \right\} = \arg \max_x \left\{ f \left(\mathbf{y}, \mathbf{H}; x, \mathbf{G} \right) \right\} = \arg \min_{x, \mathbf{G}} \left\{ \frac{\| \mathbf{y} - \mathbf{G}x \|^2}{\sigma_w^2} + \frac{\| \mathbf{H} - \mathbf{G} \|^2_F}{\sigma_h^2} \right\}
\]
The interesting relation...

\[\{ \hat{x}_{TLS}, \hat{G} \} = \arg \min_{x,G} \left\{ \frac{\|y - Gx\|^2}{\sigma_w^2} + \frac{\|H - G\|^2_F}{\sigma_h^2} \right\} \]

If we solve for \(G \):

\[\hat{x}_{TLS} = \arg \min_x \left\{ \frac{\|y - Gx\|^2}{\sigma_h^2 \|x\|^2 + \sigma_w^2} \right\} \]

The difference is just a regularization term!

Reminder: our new estimator (in random \(G \)) is

\[\hat{x} = \arg \min_x \left\{ \frac{\|y - Gx\|^2}{\sigma_h^2 \|x\|^2 + \sigma_w^2} + N \log \left(\frac{\sigma_h^2 \|x\|^2 + \sigma_w^2}{\sigma_h^2 \|x\|^2 + \sigma_w^2} \right) \right\} \]
It gets even more interesting..

- In many applications, TLS is not stable and must be regularized - RTLS!!
- The usual trick is

\[
\hat{x}_{\text{RTLS}} = \arg \min_x \left\{ \frac{\|y - Gx\|^2}{\sigma_h^2 \|x\|^2 + \sigma_w^2} + \frac{N \sigma_h^2}{\sigma_w^2} \|x\|^2 \right\}
\]

- Which is exactly our new ML estimator when

\[\sigma_h^2 \ll \sigma_w^2\]
To summarize

- **Known** G: $ML = LS$
- **Unknown** G: $ML = TLS$
- **Random** G: $ML = RTLS$

logarithmically
Generalizations

- Just like in TLS literature:
 - Independent rows with a known COV.
 - Some rows known.
 - Some columns known.
- Unfortunately, no structure 😞

- Asymptotic performance analysis via CRB.
Something to think about

- Two alternative models:
 - Random with known mean
 - EIV model

- When should we choose what model?
 - Which model describes reality better?
 - What problem is easier to solve?
For more details:

Generalization & performance analysis in ICASSP 2006

Thank you!!!
Numerical example
CRB in our model

\[
MSE \geq (\sigma_h^2 \|x\|^2 + \sigma_w^2)(H^T H)^{-1} - \Delta(\sigma_h^2, \sigma_w^2, x, H)
\]

\[
\Delta(\sigma_h^2, \sigma_w^2, x, H) \geq 0
\]

\[
MSE(\sigma_h^2 = 0) \geq \sigma_w^2 (H^T H)^{-1}
\]

- Randomness has negative and positive effect.
- CRB depends on the unknown parameter \(x\).
The CRB is a function of G instead of H.

It is easier to estimate x in our model than in the EIV model – (no Δ term)!