
Building context-awareness models for mobile applications

Chantal Taconet1 — Zakia Kazi-Aoul2

1 Institut Télécom; Télécom SudParis; CNRS UMR SAMOVAR
9 Rue Charles Fourier, 91011, Évry Cedex, FRANCE
Chantal.Taconet@it-sudparis.eu

2 ISEP; 28 Rue Notre Dame des Champs, 75006 Paris Cedex, FRANCE
zakia.kazi@isep.fr

ABSTRACT. The design process followed to produce traditional applications needs to be enhanced to cope with new context-

aware ubiquitous application requirements. With the popularity of ubiquitous computing, context-aware applications become

clearly necessary. This new kind of applications allows mobile users to universally access services in respect to any context

including his computing environment. Challenges for the design of such applications are to easily define context collection

requirements, context analysis and adaptations of the applications due to changes in its environment. To face these issues, we

propose, in this article, a generic and extensible way to model context-awareness of any application using the model-driven

engineering (MDE) approach. For this purpose, we add a context-awareness aspect to application model views. We illustrate

our solution by modeling a context-aware e-commerce application. The addition of a context-awareness aspect, should ease

the definition of mobile applications. Furthermore, context-awareness models open the way to automate context-awareness

code production.

KEYWORDS: context-awareness, model driven engineering, ubiquitous computing

1. Introduction

With ubiquitous computing, users access their applications in a wide variety of environments. To
cope with various and dynamic execution environments, context-aware applications emerge. One of
the first use of the term "context-aware applications" appeared in 1994 (Schilit et al., 1994). Accord-
ing to Dey’s definition (Dey, 2000), a system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task. More gener-
ally, the goal of this kind of applications is to ensure universal access to applications in any context
and with an application behavior which best suits the user’s computing environment. Considering a
mobile application, examples of unit of context are the user’s terminal battery level and his terminal
network connectivity bandwidth.

In the past years, many services have been designed to manage the context, among them Context-
Toolkit (Dey, 2000), CONON (Wang et al., 2004), and COSMOS (Conan et al., 2007). The main
goals of those services are context collection (i.e. how context values are dynamically collected from
raw sensors or by derivation process) and context analysis (i.e. how to detect context modifications
relevant for context-aware applications). One issue for context-aware applications is to easily make
use of these various services at a low development cost and with easy reconfiguration enablers.

For context-aware application designers, the main difficulties come from the multiple kinds of con-
text collectors and the asynchronism between the context management task and the application task
(i.e. the detection of adaptation situations should not be included in the application logic). Further-
more, each context-aware application has its own behavior to react to context modifications. Finally,
it would be interesting if this behavior could evolve easily during the life of the context-aware ap-
plication (e.g. addition of an adaptation not foreseen at the creation of the application). For all these
reasons, we argue that a promising solution for designing context-aware applications is to define
their context-awareness following a Model Driven Engineering (MDE) approach.

MDE provides tools and grammars allowing the construction of context models which may be used
to model context-aware systems. Context-awareness implementation can be generated automatically
by transforming models to particular target platforms. This eases context-awareness evolution: any
change in the context-awareness can be easily made at the model level and propagated automatically
to the implementation. Furthermore, the time and effort of context-aware development can be re-
duced. Finally, it enhances portability and flexibility: the context awareness implementation may
easily make use of new context management services.

We propose, in this article, a generic and extensible process to design context-awareness in an appli-
cation. Application context-awareness designers may select which elements have to be observed in
the environment. For each of them, they may define an observation contract. Finally, they may also
define variations in the application. All these definitions are made at a model level. MDE technolo-
gies help then to automate code generation concerning: (1) interactions with context management
services and (2) runtime variations in the applications.

The outline of the paper is as follows. In Section 2, we explain our motivations through an il-
lustrative e-commerce scenario, then, we present the whole design process overview and we give
a general view of our proposed meta-models. Section 3 introduces the context specification and
design phase conducted by context designers, whereas Section 4 details the context-awareness de-
sign phase conducted by the application context-awareness designers. In Section 5, we present our
model production tools.Then, we compare our contribution with regard to related work on context-
awareness modelling in Section 6. Finally, we conclude and present some perspectives of our work
in Section 7.

2. Motivations and illustrating scenario

We begin this section by presenting an illustrative scenario with a mobile context-aware e-commerce
application (Section 2.1). Then, we introduce the terminology used in the sequel of the paper and we
bring out our objectives in Section 2.3. We give a short overview of the context-aware application
design process in Section 2.4, Finally, we draw a general picture of all the proposed meta-models in
Section 2.5.

2.1. E-commerce illustrating scenario

Figure 1. The illustrative scenario

The illustrative scenario is represented in Figure 1. Suzanne is a client of a famous e-commerce
merchant where she often makes purchases of all kinds. Suzanne’s client profile is used to offer

2

Suzanne a customized service. Suzanne decides to go by train to visit her friend who lives near the
beach. Once inside the train, she turns on her cell phone and uses its Internet connexion (e.g. 3G) to
connect to the e-commerce server. When connected, Suzanne receives "offers" on: (i) hiking shoes
because Suzanne’s hobby is hiking, (ii) DVDs because today is Suzanne’s best friend birthday, Betty,
and Betty’s hobby is cinema, and (iii) pullovers because the outside temperature measured by the
weather station near the current mobile cell is 5 degrees Celsius.

Just when Suzanne decided to look in detail at the products using the application product description,
the battery level reaches its low level. In order to save some battery power for her incoming calls,
Suzanne has configured her profile to download videos only if the battery is not too low. Thus, the
application switches to a poor mode omitting videos and animations. Images are allowed but must
suit Suzanne’s terminal screen size. Once Suzanne’s terminal battery is plugged, the application
product description returns back to the normal mode.

This scenario shows that the e-commerce ubiquitous application needs to be context-aware in order
to cope with different user profiles and preferences, different terminal capabilities, and different
elements of the environment in a distributed setting.

2.2. Terminology

For ubiquitous applications, such as the e-commerce application presented above, the context-
awareness designer has to select, what to observe in the environment, what situations to detect and
what adaptations to trigger in the application. For this purpose, we have chosen simple concepts that
context-awareness designers should manipulate. We introduce in this section those concepts and the
associated terminology.

Entity En entity is an element representing a physical or logical phenomenon (person, concept, etc.)
which can be treated as an independent unit or a member of a particular category, and to which
“observables” may be associated. For example, Suzanne’s terminal is an entity.

Observable An observable is an abstraction which defines something to watch over (observe). For
example, Suzanne’s terminal battery level is an observable. Each observable may be observed
by one or more software collectors (e.g., depending on the system, the collector to obtain
the battery level will be different, several sensors may be used to obtain a temperature). Some
observables may be computed from other observables, they are called interpreted observables.

Observation An observation represents the state of an observable at a given time. It is obtained
from a context-manager named collector in the sequel of the paper.

Adaptation situation Some observables allow to track down a change of state in the space of the
information of context. This change of state may require a reaction in the system. An ob-
servable which provides adaptation situations is, for example, Suzanne’s terminal battery state
which value could be "LowBattery" or "NormalBattery".

Adaptation A modification in the system such as a structure modification (assembly change, com-
ponent change) or a behavior change (change in a sequence of operations) is called an adap-
tation.

Observation, notification and adaptation contracts An observation of the environment may be
defined by contract. The contract defines for example (i) if the application observes or needs
to be notified, (ii) in case of notification which modifications trigger notifications, (iii) which
adaptations are necessary in the context-aware system.

2.3. Motivations and objectives

Our work is driven following three objectives which the previous scenario induce.

3

The first objective is the possibility to choose between different sources (several software collectors
for a given observable) in order to collect observations for a given observable. Thus, the location and
even the implementation of collectors is unknown during the modelling process. It provides more
flexibility during the execution. As an example, the temperature value could be obtained either by
the weather station near the current mobile or by a centralised weather station.

The second objective concerns distributed monitoring which is necessary when an application needs
to monitor two or more users contexts to make adaptation decisions. For example, the "Offers" plug-
in needs to know Suzanne’s hobbies and Betty’s birthday as well as Betty’s hobbies. We consider in
this case that Suzanne’s (or Betty’s) context includes its hobbies and its friends birthdays.

Finally, our solution must deal with the evolution of the context-awareness model during runtime.
Indeed, the application may require adaptation reconfiguration actions to face context changes or the
availability of new context collectors.

2.4. Context-aware application design process

Figure 2 depicts the CA3M context-awareness design process with, from left to right, the stakehold-
ers, the activities, and the resulting artefacts.

The figure illustrates two main activities: context specification and design and application design.
The context specification and design comprises the design of collectors and the specification of
contexts. It produces two kinds of artefacts: implementations and models. This modelling task is
presented in Sections 3.1 and 3.2.

models

Collector
models and
classes

*

*

A
p

p
li
c
a
ti

o
n

 d
e
s
ig

n

Collector Provider

Context−awareness
designer applied to

select

implemented by

Observable

Context−
awareness
models

Application
models and
classes

 Collector Designer Role

Context−Awareness Designer Role

(CA3M)

Application Designer Role

Context−specifier Role

− defines and implement collectors

− defines catalog of generic observables

− describes observables semantics

− defines observable entities

− for each entity, selects observables

− defines context−awareness contract/observable

− models and implements application

Context specifier

− describes collector semantics

C
o

n
te

x
t

s
p

e
c
if

ic
a
ti

o
n

a
n

d
 d

e
s
ig

n

Application designer

Figure 2. Separation of design tasks for producing context-aware applications

We divide the application design into two large-grain tasks to promote a new stakeholder: the
context-awareness designer. The application designer produces the application model and classes.
The context-awareness designer produces context-awareness models. Those models are built at de-
sign time in order to be manipulated at runtime and have to conform to a specific meta-model pre-
sented in Section 4.2. A context-awareness model of the illustrative scenario is given in the same
section.

4

2.5. Overview of the meta-model views

We structure context-awareness data using three meta-models views, as shown in Figure 3. This
enables us (i) to share context and collector models between several context-aware applications and
(ii) to load several context and collector models coming from different sources.

The context view defines the observable and the interpreted observable concepts allowing them to
be independent from applications. Thus, each observable model is then a catalog of pre-defined
observables that context-awareness designers can use at any time. A context-awareness designer
selects observables from one or several observable models which are relevant for an application and
links the observables to entities. Those observables are designed to be reused by several context-
aware applications.

The collector view defines the characteristics of each collector and the required information to utilize
them in a context-aware application. Models of this view are designed to be shared by several
applications. The dependence link with the context view is necessary because collectors are defined
for observables.

The context awareness view defines context-aware systems, it describes the entities to observe, the
observables, the interpreted observables, the adaptation situations, and the different constrained con-
tracts linked to each observable or adaptation situation. This view depends on elements described in
the previous views.

depends on

Collector Meta−model

depends on

 Context Meta−model
defines

Collector

defines

ContextAwarenessContract

defines

Catalog
ObservableType

implements

ContextAwareSystem, Obsevable, Entity,

Context−aware Meta−modelApplication Meta−model

(e.g. UML)

Figure 3. Relationship between meta-models

Context-awareness modelling will be achieved through the definition of models (M1 level in MDE
terminology) which conform to meta-models (M2 level). With these models, the middleware can
instantiate collectors to obtain data from the context environment (M0 -instance- level).

3. Context specification and design

We present, in this section, the context and collector meta-models, illustrated with the models for
the observables extracted for the scenario. These observables will be used to construct the context-
awareness model from the scenario that will be presented in Section 4.2. Context specifiers and
designers define reusable observables and collectors. They define how high level observables (i.e.,
interpreted observables) may be computed from elementary observables.

3.1. Context specification

With the context meta-model (shown in Figure 4), context specifiers define catalogs of observables.
Context models conform to this meta-model may be used by one or more context-aware systems and
a context-aware system may use one or more of these models produced by several specifiers.

ContextRoot is the entry point of any context view model conform to this meta-model. ContextRoot
is an aggregation of observable types.

5

∗0..

∗0..

0..*

name: String
lowerCardinality: Int

upperCardinality: Int

observationJavaType: Class

observationTypeName: String
numerical: Boolean

immutable: Boolean

description: String
name: String

ObservableType

ContextRoot

AdaptationSituationsType

InterpretedObservableType

derivationExpression: String
agregation: Boolean

ObservableRelation

observableType

subCategories

observableTypes

observableTypes

categories

0..*

0..*

1..1

Category

derivedFrom

Figure 4. The context view meta-model

In order to have a hierarchical view, we use the meta-class Category which allows us to better classify
each observable type.

ObservableType attributes are: "name", "description", "immutable" (defines if the observable may
change during runtime), "numerical", "observationJavaType" and "observationTypeName". At exe-
cution time, an observable type will result in the collection of one (for immutable) or several obser-
vations. "observationTypeName" and "observationJavaType" define the type of these observations.

InterpretedObservableType is an observable type which observations are obtained by applying a
function that takes as entry parameters observations of a set of observables. The attribute "deriva-
tionExpression" expresses a derivation operation whereas the attribute "aggregation" is a boolean
indicating if the result of this composite observation is an aggregation of elementary observations.

An AdaptationSituationsType is an interpreted observable type which represents changes in the state
of the context information space. These significant changes require one or more system reactions
called adaptations.

Figure 5 illustrates the context views related to the e-commerce application scenario. Some observ-
able types (i.e. "BatteryLevel", "BatteryPlugged", "BatteryState", "TemperatureValue", "Tempera-
tureState", "VideoPreference") are common to any ubiquitous application and thus are defined in
a generic Ubiquitous context view model. We categorize hierarchically each observable type. For
example, we classify "BatteryPlugged" and "BatteryLevel" in the same category TerminalCategory.
For the observables which can not be found in general catalogs, new models may be defined for an
application purpose. Thus, to illustrate our scenario, we add in Figure 5 the e-commerce Context
View model. Here, we classify under the "UserCategory" the observables "Hobby" and "Birthday".
Indeed, we need these two observables because the plug-in "Offers" uses Susan’s hobbies and Betty’s
birthday and hobbies.

Some observable types may lead to adaptations, some of them are AdaptationSituationsType.
"VideoQualitySituations" is an interpreted observable type derived from three source observable
types: "BatteryPlugged", "BatteryLevel" and "VideoPreference". "VideoQualitySituations" defines
two adaptation situations: "WithVideo" and "WithoutVideo". "WithVideo" state refers to the case
where the user prefers to download videos whatever the battery state is (VideoPreference=Whatever
∨ BatteryPlugged ∨ BatteryLevel> 10%). "WithoutVideo" corresponds to the case where the user
prefers to omit videos if the battery reaches its low level (VideoPreference=VideoIfNormalBattery &

¬BatteryPlugged & BatteryLevel< 10%). Many other observable types such as "ScreenSize" or "Pic-
turePreference" exist in the model but are not represented here for clarity reasons. Computed to-
gether, these observable types lead to the adaptation situation "PicturePreference" with two possible
values: "WithPicture" and "WithoutPicture".

6

UserCategory WeatherCategoryTerminalCategory

UbiquitousContext

Hobby Birthday

UserCategory

ECommerceContext

TemperatureStatesType

TemperatureValueType

VideoPreferenceTypeBatteryPluggedType

BatteryLevelType

VideoQualitySituations

<< Category >> << Category >><< Category >>

 TemperatureValue > 10°C

e.g. TemperatureValue < 10°C

<< contextRoot >>

<< ObservableType >>

<< Category >>

<< contextRoot >>

<<InterpretedObservableType>>

<<ObservableRelation>>

<< ObservableType >>
<< ObservableType >><< ObservableType >>

<< ObservableType >>

<<ObservableRelation>>

<<AdaptationSituationsType>>

Ubiquitous
Context View Model

E−Commerce
Context View Model

VideoPreference=VideoWhatever || BatteryPlugged

|| BatteryLevel>10%

WithVideo

WithoutVideo

VideoQualities Enumeration:

! BatteryPlugged & BatteryLevel<10%

& (VideoPreference=VideoIfNormalBattery)

Figure 5. Context view models for the e-commerce scenario

3.2. Collector design

The collector design phase consists in providing concrete software for monitoring the environment.
Software may be available for different context management frameworks such as (Baldauf et al.,
2007; Coutaz et al., 2005; Dey, 2000; Paspallis et al., 2008; Conan et al., 2007). Information is
necessary at the collector level in order that the context-aware system may (i) choose a collector
among several collectors designed for a given observable type; (ii) produce the adhoc monitoring
code to interface the context-aware system with a given software collector or alternatively use an
adequate bridge for that collector;

We present the main classes of the collector meta-model in Figure 6 that we describe below. It
defines meta-information necessary to use collectors.

CollectorRoot represents the entry point of any collector model conform to this meta-model.

Collector is the main class of this meta-model, it defines meta-information necessary to use the
collector. The signification of his main attributes are as follows. The collectorFamily attribute (e.g.
COSMOS (Conan et al., 2007) collector) is necessary because each family may have its own rules
to connect to collectors. There are two connection mode attributes: notificationModeAvailable and
observationModeAvailable. If the notification mode is available, the collector is able to notify the
context-aware system when there are significant modifications. With the observation mode, the
context-aware system drives the observations. Both modes may be available for the same collector.
An attribute (unitOfMeasure) defines the unit of measure of the collector (e.g. the number of minutes
left or a percentage for a battery level observable type). Each collector is associated to one observable
type. A collector may be attached to quality of context data (e.g. validity period, accuracy).

The CollectorFactory association is necessary for the system to concretely connect to a collector
during the execution. A connection to the collector may be achieved through instantiation or dis-

7

CollectorDiscoveryFactory

discoveryIdentifier: String

∗0..

CollectorRoot

name: String

CollectorQoCParameter

1..2

unitOfMeasure: String
notificationModeAvailable: Boolean
observationModeAvailable: Boolean
collectorFamily: CollectorFamilyValues
name: String

QoCParameters

collectors

CollectorInstantiationFactory

instantiationArtifact: String

CollectorFactory

Collector

0..*

Describes how the

application may be

connected to a collector

by discovery and/or

A collector references
an observable type

e.g. cosmos

by instantiation

Figure 6. The collector meta-model

covery. In the instantiation mode, an instance of instantiationArtifact is created in the context-aware
system. In the discovery mode, a connection to an existing collector is established.

4. Context-awareness system design

We believe that context-awareness is one preoccupation that should be taken into account during an
application modelling process. We made the statement that usual modeling languages, such as UML,
can not, as far as we know, express applications’ context-awareness. Our goal is to overcome this
limitation by offering designers the possibility to define application context-awareness models. In
this section, we show how a context-awareness specific model is weaved with the application models
and context models to configure application context-awareness.

Firstly, we present in Section 4.1 an application meta-model and a simple example of the e-commerce
application model. Secondly, in Section 4.2, we detail the context-awareness meta-model and the
illustrative scenario context-awareness model.

4.1. An illustrative application meta-model and model

The context-awareness design process presented in this article is not targeted to a specific application
modeling language. Several modeling languages such as a SCA modeling language (Service Com-
ponent Architecture (Chappell, 2007)), UML (Object Managment Group, 2009) may be weaved with
the context-awareness model. To illustrate a specific adaptation contract, we present in this section
an example application meta-model. It is a simplified meta-model which may be used to define a
UML component assembly.

An application model must be specified prior to the design of the application context-awareness
model. The reason is, to define adaptations, the context-awareness designer needs to reference el-
ements of the application model. Furthermore, adaptation contracts are targeted to a specific ap-
plication meta-model. As adaptation contracts refer to application models, we foresee that it is
necessary to define specialised adaptation contracts for each application meta-model. In Section 4.2,
we illustrate an adaptation contract constructed for the simple meta-model presented in this section.

8

The example application meta-model is shown in Figure 7. The application model defined for the
scenario and shown in Figure 8 is conform to this application meta-model.

name: String

Port

myComponents

realisations

0..**

2

* *

*

*

1..*

*

ComponentType

Application

name: String

name: String name: String

Realisation

name: String

Component

Interface

name: String

name: String

Connector

required

provided
requiredprovided

connectors

ports

Figure 7. A simple application meta-model

We consider in this meta-model that an application is a set of components. Components may be
connected together through their ports thanks to connectors. A component has a name and is of
a given component type. A component type has provided and required interfaces. A component
type may have several realisations (or implementations). For example, we consider to have several
realisations, each one targeted for a given situation. We give in Figure 8 a part of the e-commerce
application model conform to the above meta-model.

WithVideo

This component has

several realizations :

Catalog

Offers

ProductDescription
UserInterface

WithoutVideo

required interface

provided interface

component port

component

Figure 8. The application model

4.2. ContextAwareness meta-modelling and modelling

For the context awareness preoccupation, we introduce a context-awareness meta-model to enable
application designers to model their system context sensitivity. The designer is helped in his task
with a specialized editor. In this sub-section, we firstly present the concepts included in this meta-
model and shown in Figure 9. Then, we illustrate those concepts with the e-commerce scenario
context-aware model depicted in Figure 10.

The context-awareness meta-model references both context view and collector view meta-classes. It
may also reference application meta-classes.

ContextAwareSystem is the entry point of this meta-model. The left part of the meta-model defines
the entities, the observables, the links between entities, the interpreted observables and the adaptation
situations.

9

name: String
lowerCardinality: Integer
upperCardinality: Integer

AdaptationSituation

Contract

name: String
requiredQoC: QoC
collector: Collector

The associated

AdaptationSituation

The observable takes

a finite number of values

named situations

observable is an

Each situtation

of the associated AdaptationSituation

is a possible value

Contracts between

the CASystem and the

observation system

ComponentContract

Observable

entities

observables observable ContextAwareness

contracts

RealisationChoice

name: String

name: String

Entity

ContextAwareSystem

EntityRelation

InterpretedObservable

ObservationContract NotificationContract

0..*

0..*

0..*

0..*

0..*1..1
1..*

0..*

Abstract NotificationContract

componentName: String

Each realization is an

realization of componentName

Linked to

a specific application

meta−model

Abstract

1..*

derivedFrom

entityRelations

linkedEntities

situation: String
realisationName:String

realisationChoices

componentName: String

triggerCond: TriggerCond

ComponentContract

Figure 9. The context-awareness meta-model

Entity represents a logical or physical element to be observed. For the scenario, we consider the user,
the user’s friend, the terminal and the cell’s weather station entities. The Entity meta-class allows
a context-aware system to differentiate several distributed observables. For example, we can obtain
temperature observations from the cell "WeatherStation" entity, or from the server "WeatherStation"
entity. As these two entities may be distant from thousand of kilometers, the observations may be
quite different. The entity concept allows the designer to express both of them. An entity may
be linked to another entity through the EntityRelation meta-class. For example, we link the entity
"User" to the entity "Terminal". These associations may be meaningful to identify observables in
the context-aware system.

An Observable meta-class references the ObservableType meta-class of the context meta-model.
For each entity, the designer chooses the type of their observables in the catalog of observable types
defined in pre-loaded context models.

When the designer defines an InterpretedObservable, after choosing its type in the observable type
catalogs, the designer is asked to choose the source observables (defined by the derivedFrom associ-
ation of Figure 4). With the context model, the context-awareness editor may verify the type of the
source observables. The context-awareness designer is asked for the entities to which are linked the
source observables. For example, when defining the "VideoQualities" observable of Figure 10, the
designer is asked to to choose a "VideoPreferenceType" observable as well as a "BatteryLevelType"
and a "BatteryPlugged" observables.

The right part of the meta-model defines three kinds of contracts: ObservationContract, Notification-
Contract and AdaptationContract. The filled pattern part of the meta-model shows the meta-classes
which are dependant of the application meta-model. A context-awareness contract defines a contract
between an observable and an application. In an ObservationContract is expressed the quality of
context required by the application (e.g., accuracy, unit of measure). With an ObservationContract,
the application designer defines that the application needs these observables and that the application
will make active requests to the collector to obtain observations.

With a NotificationContract, the application designer defines in addition that the application sub-
scribes to events. These events happen for example when a numerical observable value reaches a
fixed threshold or when an enumerated observable value changes from one enumeration to an other,
the condition is defined with the "triggerCondition" attribute. The designer is then asked to choose

10

the application element, such as the concerned application component name. However with notifi-
cation contracts, the adaptation decisions are left to the application part.

Some adaptation decisions (i.e., the choice of an application variant) can be defined within a context-
awareness model. This is possible thanks to the AdaptationContract, in particular the Component-
Contract. With this kind of contract, the context-awareness designer defines for a given component
a set of correspondences between an adaptation situation and the component realisation name.

BatteryLevel

TemperatureValue

BirthdayObsContract

HobbyObsContract

TemperatureStates

WithoutVideo

WithVideo

TemperatureNotifContract

ECommerce
Application

Terminal

BatteryPlugged

VideoPreference

Hobby

Birthday

Hobby

Birthday

WeatherStation

FriendUser

User

NoVideoProduct
Description

NormalProduct
Description

VideoQuality

CompContract

TemperatureObsContract

VideoQualities

WithoutVideo

SummerTemperature (>10)

Enumeration :

WithVideo

Video qualities

We could have many

for a given application.

ComponentContract

<< ContextAware

Entities

System >>

Observables Contracts realisationChoices

From>>

<<derived

<< Entity

Relation >>

<<derived

From>>

<<derived

From>>

<<derivedFrom>>

Observable >>

<< Interpreted

Situations >>

<< Adaptation

WinterTemperature(<10)

Temperature State

Enumeration :

Figure 10. The application context-awareness model

For our scenario, we define two observation contracts and a notification contract. Indeed, the "Of-
fers" application component needs at most three kind of observations inputs to be context-aware:
Suzanne’s "hobby", Betty’s "birthday" and the outside "temperature". Note that these observables
are collected from different entities which may also be distributed. The "Offers" application com-
ponent connects to the context-awareness via the ObservationContract as shown in Figure 10. We
choose to link the "temperature" interpreted observable with another contract (NotificationContract
) in order for the application to be notified if the temperature state enumeration changes.

In the scenario, the adaptation concerns the choice between two realisations of the "Product Descrip-
tion" component: "Video Product Description" and "WithoutVideo Product Description". The pos-
sible values of the adaptation situation "VideoQualities" (computed from its source values) can be
WithVideo (VideoPreference=Whatever ∨ BatteryPlugged ∨ BatteryLevel> 10%) and WithoutVideo

(VideoPreference=VideoIfNormalBattery & ¬BatteryPlugged & BatteryLevel< 10%). According to the
evaluation of these adaptation situations, the AdaptationContract leads to one of these two com-
ponent realisations ("WithVideo Product Description" realisation is the variant chosen in case of
WithVideo "VideoQualities" adaptation situation and "Without Product Description" is the variant
chosen in case of WithoutVideo "VideoQualities" adaptation situation). If no state corresponds to
the current situation, a default system model variant may be instantiated through the AdaptationCon-
tract.

11

5. Implementation choices

With respect to MDE approach, MOF (Meta-Object-Facility) (Object Management Group, 2006),
ECORE from EMF (Eclipse Modeling Framework) (Budinsky et al., 2008) and UML Profile (Object
Managment Group, 2009) are the most popular meta-modeling languages. For our implementation,
we made the choice of EMF technology for the two reasons. The first one is that we have eliminated
UML profile because it does not allow designers to define associations between profile meta-classes.
The second reason is that we choose ECORE instead of MOF for the availability of the EMF tools.
Compared to MOF, ECORE lacks the possibility to define meta-associations. To overcome this
limitation, we define special meta-classes (such as EntityRelation in the context-awareness view) to
be used in place of meta-associations when necessary.

With EMF, we have specialized model editors. One editor for context view model, one editor for col-
lector view model, one editor for application view models and one editor for context-awareness view
models. Editors weave links between the different models and make verifications (e.g., verification of
source observable types when defining an interpreted observable when editing the context-awareness
model).

We can use ECORE models for transformation purpose to generate application context-awareness
code. We can also load the models at runtime. The EMF generated APIs for each meta-model is used
for navigation between the model elements. With the model loaded at runtime, new collectors and
context-awareness mechanisms may be added during runtime. Thanks to EMF adaptors positioned
in the model, reactions to modifications in the model may be triggered. This part of the work is not
presented in this article.

With specialized editors, context-awareness meta-model helps designers to define the application
context-awareness preoccupation. The context-awareness may be reconfigured by updating the
model. A complete chain from context-awareness model to application runtime context-awareness
may be designed with MDE technologies.

6. Related work

Due to the variety of context to be collected and analyzed, context management needs the support
of abstract context modelling. Main families of context modelling are profiling (e.g. CC/PP (Klyne
et al., 2007)), data-bases (e.g., CML (Henricksen et al., 2006)), ontologies (e.g., CONON (Wang et
al., 2004)) and MDE. Our work aims at using MDE for defining links between context modelling
to express complex context situations, and context-awareness modeling to link context situations to
application variations.

In this section, we present some projects which deal with meta-modelling of context-awareness
using the MDE approach. The projects we study here are ContextUML (Sheng et al., 2005), CAP-
PUCINE (Parra et al., 2009), Scatter (White et al., 2008), and Ayed (Ayed et al., 2007).

ContextUML (Sheng et al., 2005) was one of the first domain specific model for context-awareness.
It defines a meta-model for modelmodellingling context-awareness of web services. Consequently,
web services elements such as Service, Operation and Message are represented in the model as well
as related adaptation mechanisms of type Binding or Triggering. A binding mechanism defines a
relationship between an observable and an element of the application model. Operations parameters
may receive context observations using this binding. The triggering mechanism associates an action
to an adaptation situation. These actions are filtering / processing operations applied to input or
output messages of a web service.

The approach we follow in our solution is similar to ContextUML. However, we differ in the fol-
lowing points. First, we plan several model views. Secondly, we introduce the concept of entities.
Finally, ContextUML meta-model is supposed to be used with a web service meta-model. Our
context-aware meta-model may be used with any ECORE application model. It may be a UML
model available in ECORE as well as a web service model with an available ECORE model. Each

12

kind of model diagram may be extended with context-awareness. For this purpose, middleware or
transformation processes to handle these descriptions have to be defined.

CAPPUCINE (Parra et al., 2009) describes an MDE approach for dynamically producing product
lines according to context information. CAPPUCINE and ContextUML put the stress on adapta-
tion mechanisms rather than context modelling. Our work, enable application designers to express
complex situations computed from distributed context observations. Furthermore, it adds a collector
preoccupation which allows to link several context manager frameworks to the application.

Scatter (White et al., 2008) provides the means to define the variations of a given application ac-
cording to the run-time environment. These variations are defined using FODA (Feature-Oriented
Domain Analysis (Cohen et al., 1998)) diagrams to define application and platform features. Ap-
plication features define their requirements on platform features. A constraint solver computes at
application deployment time a product line derivation. With Scatter, the only observable entity is the
terminal. The application life-cycle concerned by context awareness is the deployment. The com-
puted product line is un-determinist. The advantage is that the resolution is flexible; the disadvantage
is that Scatter can not ensure that a solution will be computed and which one.

Ayed (Ayed et al., 2007) defines a process to integrate context awareness in UML application mod-
elling. The process is defined in six steps which: (i) define observables, (ii) define application
context-awareness, (iii) define collectors, (iv) define abstract platform model, (v) define model trans-
formation for concrete platform, (vi) produce code generation. Steps (i), (ii), (iii) are defined with
UML profiles. The advantage of defining context-awareness modelling through UML profile is to
ease the integration of context-awareness definitions in standard UML tools. With our solution, a
specific tool which integrates context-awareness with context modelling has to be provided. One
disadvantage of their solution is due to UML profile limitation which does not allow profile design-
ers to define associations between profile meta-classes. This limitation, for example, does not allow
the profile designer to link observables to entities.

7. Conclusion and future work

In this article, we have presented meta-models for defining context-aware application models. We
have followed the MDE approach. MDE approach provides a high level of abstraction. The ad-
vantage is that models may be applied for different platforms and technologies especially different
context management technologies. We argue that code which manages context awareness may be
automatically produced from context aware models. This relieves developers from context aware-
ness implementations and also allows designers to easily modify context awareness configuration
during the whole application life-cycle.

We propose three steps for obtaining context-awareness configurations. First of all, the context view
step allows context-awareness designers to benefit from the definition of general purpose observ-
ables which may be collected through several collectors. The collector step has to be defined by
any context manager provider which offers a sensor or a context computing unit. The context and
collector abstractions allow applications to be connected to various kinds of collectors. The link
between an observable and a concrete collector may be decided at runtime. The collector may then
be discovered or instantiated depending on the available collectors. Finally, applications may define
their own context awareness. We provide several context-awareness contracts kinds: observation,
notification and adaptation contracts. We have shown how a context-awareness contract may be
linked to an application model, several notification and adaptation contracts may be added to define
new kind of adaptations in the application. Meta-models allow to specify the verifications which
have to be done at different steps and especially when defining a new contract in a model.

We evaluate the meta-models we have presented here on several scenarios and applications. We
are currently developing a context-aware middleware. This middleware loads at runtime a context-
awareness model and instantiates the necessary collectors for this model. It also takes in charge
notification tasks that have been defined in the model.

13

For each kind of application model (e.g. UML class diagram, UML sequence diagram, SCA compo-
nents) new context-awareness contracts have to be defined, modelling editors have to be specialised
for them and new context-awareness middleware tools have to be developed to automate context-
awareness management.

8. References

Ayed D., Delanote D., Berbers Y., Computer Science, vol. 4635/2007 of Lecture Notes in Computer Science,
Springer, Berlin / Heidelberg, chapter MDD Approach for the Development of Context-Aware Applications,
p. 15-28, 2007.

Baldauf M., Dustdar S., Rosenberg F., “ A Survey on Context Aware Systems”, International Journal of Ad
Hoc and Ubiquitous Computing, vol. 2, n˚ 4, p. 263-277, 2007.

Budinsky F., Merks E., Steinberg D., Eclipse Modeling Framework 2.0, Eclipse, Addison Wesley Professional,
March, 2008.

Chappell D., Introducing SCA, white paper, Chappell & Associates, July, 2007.

Cohen S., Northrop L., “ Object-Oriented Technology and Domain Analysis”, In Fifth International Conference
on Software Reuse, Los Alamitos, CA, p. 86-93, June, 1998.

Conan D., Rouvoy R., Seinturier L., “ Scalable Processing of Context Information with COSMOS”, in Springer-
Verlag (ed.), 7th IFIP International Conference on Distributed Applications and Interoperable Systems,,
vol. 4531 of Lecture Notes in Computer Science, Paphos, Cyprus, p. 210-224, june, 2007.

Coutaz J., Crowley J., Dobson S., Garlan D., “ Context is Key”, CACM, vol. 48, n˚ 3, p. 49-53, March, 2005.

Dey A., Providing Architectural Support for Building Context-Aware Applications, PhD thesis, College of
Computing, Georgia Institute of Technology, December, 2000.

Henricksen K., Indulska J., “ Developing context-aware pervasive computing applications: Models and ap-
proach”, Pervasive and Mobile Computing, vol. 2, n˚ 1, p. 37-64, February, 2006.

Klyne G., Reynolds F., Woodrow C., Ohto H., Hjelm J., Butler M. H., Tran L., Composite Capability/Preference
Profile (CC/PP): Structure and vocabularies 2.0, Technical report, W3C recommandation, april, 2007.

Object Management Group, “ Meta Object Facility (MOF) Core Specification Version 2.0”, , OMG document
formal/06-01-01, January, 2006.

Object Managment Group, “ UML 2.2 Superstructure Specification”, , OMG documents formal/2009-02-02,
February, 2009.

Parra C., Blanc X., Duchien L., “ Context Awareness for Dynamic Service-Oriented Product Lines”, 13th
International Software Product Line Conference (SPLC), San Francisco, CA, USA, August, 2009.

Paspallis N., Rouvoy R., Barone P., Papadopoulos G., Eliassen F., Mamelli A., “ A Pluggable and Reconfig-
urable Architecture for a Context-aware Enabling Middleware System”, Proc. 10th, vol. 5331, Monterrey,
Mexico, p. 553-570, November, 2008.

Schilit B., Theimer M., “ Disseminating Active Map Information to Mobile Hosts”, IEEE Network, vol. 8, n˚ 5,
p. 22-32, 1994.

Sheng Q., Benatallah B., “ ContextUML: A UML-Based Modeling Language for Model-Driven Development
of Context-Aware Web Services”, The 4th International Conference on Mobile Business (ICMB’05), IEEE
Computer Society. Sydney, Australia., p. 206-212, July 11-13, 2005.

Wang X. H., Zhang D. Q., Gu T., Pung H. K., “ Ontology Based Context Modeling and Reasoning using OWL”,
2nd IEEE Conference on Pervasive Computing and Communications (PerCom2004), Orlando, FL, USA,
p. 18-22, March, 2004.

White J., Schmidt D., Wuchner E., Nechypurenko A., “ Automatically Composing Reusable Software Com-
ponents for Mobile Devices”, Journal of the Brazilian Computer Society Special Issue on Software Reuse
SciELO Brasil, vol. 14, n˚ 1, p. 25-44, March, 2008.

14

