Context Adaptation of Web Service Orchestrations

Frederick Seyler

Chantal Taconet

Guy Bernard
GET / INT, CNRS Samovar 9 rue Charles Fourier, 91011 Evry, France
Tel: +331-60-764515
Fax.:+331-60-764780
{ Frederick.Seyler,Chantal . Taconet,Guy.Bernard} @int-evry.fr

Abstract

With orchestrations, one service may be realized through
the cooperation of several services. This cooperation has
to be formally described. In this paper, we propose to
describe service orchestrations according to UML2 meta-
model through three UML2 diagrams. Component dia-
grams describe each service external interfaces. Collabo-
ration diagrams describe the structural composition of ser-
vices. And activity diagrams describe the orchestration of
services.

The main contribution of this article is to mix the orches-
tration and composition meta-model with a context meta-
model. Thus, we propose to include the descriptions of
context awareness into the orchestration and composition
meta-model. This approach allows application designers
to describe flexible orchestration of services. Furthermore,
describing compositions and their context-awareness with
amodel (conform to a meta-model) allows middleware with
model-transformation capabilities to produce ad-hoc com-
positions in term of adaptation to current context execution
and in term of target execution platforms.

We present in this article two kinds of adaptation of con-
text aware orchestrations: deployment time and run time
adaptations.

1. Introduction

The meta-model presented in this article is part of a gen-
eral framework, called CAComp (Context Aware Composi-
tions). This MDE (Model Driven Engineering) framework
aims at exploiting context information to perform context
adaptation on composition and orchestration models. As
several MDE frameworks, such as Ugatze [2, 14], it ex-
ploits separation of concerns and non functional proper-
ties to perform model transformations. CAComp applies

this approach to context properties to obtain compositions
adapted to context situations.

Following MDA (Model Driven Architecture) initiative
[9, 7], CAComp meta-model is made up by two main ab-
straction levels, platform independent level for building
Platform Independent Model of context-aware composition,
and platform specific level. This architecture allows CA-
Comp to produce orchestrations for several platforms (e.g.
BPEL [10], XLANG [16] or WSFL [8]).

In CAComp, the composition meta-model is a subset of
UML2 [13]. Additionally the context-aware composition
meta-model contains context and context awareness defini-
tions. Context adaptations are taken in consideration dur-
ing the model transformation process. Therefore, CAComp
supports a model driven process for context aware web ser-
vice based applications development.

This article is structured as follows. In Section 2, we
present an illustrating context aware orchestration example:
The rugby match management process. Then, in Section
3, we firstly define main concepts of Context meta-model,
then we present the composition context aware entities we
have identified and finally we describe the kinds of adap-
tations which are likely to be applied to context aware or-
chestrations of Web Services. The meta-model allows the
CAComp framework to host several transformations. We
present two of them : transformations for context aware-
ness during the deployment process of the orchestration in
Section 4 and transformations for context awareness dur-
ing the runtime of the orchestrations in Section 5. Finally,
Section 6 concludes the article, compares our proposition
to related works and draws perspectives concerning context
adaptation of service compositions.

2. Context Aware Composition Example

In CAComp, a context aware composition is a composi-
tion which is able to present different configurations accord-
ing to context situations. The variations may be for example

in term of number of services, in term of service interfaces
and in term of sequence of activities performed in the or-
chestration. In this section, we introduce a concrete exam-
ple, Sport Match Report Form Process which will illustrate
the variations of a Context Aware Composition.

Nowadays, the need to develop information systems to
report form management is becoming more apparent at am-
ateur level of collective sports (rugby, football or basket
ball). Currently, referee, delegate and club representatives
all fill a hard copy of the Match Roster. Each club repre-
sentative copies on a paper form each player information
(information found on his hard license). The referee checks
each license before the match, and fills the match report
form after the match. The League Delegate includes match
movements in the report form, and the referee mails it to the
local league. Consequently, official match result and tables
are published one week after the match.

We can imagine that each participant in the report
process (referee, league delegate, club representative) is
equipped with different and heterogeneous computers (from
workstation to mobile terminals). Thus, it becomes possi-
ble to automate the production of match report forms, and
so result of matches may be published instantaneously in
the Internet through an orchestration of services furnished
by the regional league, the clubs, the referee and the dele-
gate.

Additionally, the context situations on the play grounds
where the matches take place are variables from one match
to another: Namely the network bandwidth, final user ter-
minals, topography, sensors availability. These variations
may lead as we will see to various orchestrations.

Presentation of the orchestration through a component
diagram presents advantages. (i) The orchestration can be
seen as a UML2.0 Component with provided interfaces as
its external representation (MatchManagementPort is the
entry point of the orchestration). (ii) Additionally the re-
quired interfaces which represent its service dependencies
are declared (e.g. RefereePort, RegionalLeaguePort, Home-
ClubPort invoke or send signals to external Components).
(iii) The component owns an internal behavior (it will be
described through an activity diagram) which allows the de-
signer to describe the orchestration of services; (iv) Further-
more, a UML2.0 collaboration diagram specifies with com-
ponents and connectors the structure of the collaboration.

In UML 2.0, an activity diagram may model a compo-
nent behavior with token flow semantics (Petri Nets like).
An Activity is an oriented graph with ActivityEdge and Ac-
tivityNode. An ActivityEdge governs data or controls flows
between two ActivityNode. Figure 1 represents one of
the behaviors of the MatchManagementProcess component
with an activity diagram.

The activity receives Date, RefereeName as input param-
eters (ActivityParameterNode). The activity is made up of

MatchManagementActivity

(nglondl T
@7&& Date <<CallOperationAction>>
Ew getMatchReportForm

‘ MRF: MatchReportForm ‘

(Homeport:Club) <<CallOperationAction>>
fillHomeClub

‘ MRF: MatchReportForm ‘

(Homeport:club) <<CallOperationAction>>
fillVisitorClub

MRF: MatchReportForm

{ (Referee) <<CallOperationAction>> }

check

[H

tchResult: MatchResult

MatchResult ‘

‘ MRF: MatchReportForm ‘ ‘ MRF: MatchReportForm ‘

<<CallOperationAction>> (RegionalLesguePort Partcipantinformation)
registerMatchResult <<CallOperationAction>>

registerEvents

]
MRF: MatchReportForm
PartialMatchResult

MRF: MatchReportForm

FinalMatchResult

Figure 1. ContextAware Entities in CaComp

several nodes and edges which describe the flow of execu-
tion. Firstly, the getMatchReportForm node gets a Match-
ReportForm from the external RegionalLeague®. Then, the
orchestration waits that the HomeClub and the VisitorClub
both fill the match report form. Afterwards, an AcceptEven-
tAction indicates the referee presence for supervising the
match. Then, the referee checks the team licenses, and the
referee and the delegate annotate the match in parallel. Fi-
nally, the match resulting MatchReportForm may be sent to
the Regional League via a SendSignalAction.

In this section, we have illustrated with a concrete exam-
ple the use of UML 2.0 concepts for describing Web Service
Orchestrations structure and behavior in a component-based
platform independent way. In following section, we supple-
ment this description with context awareness (Section 3),
which shows context-based variability of structural and be-
havioral aspects of the model.

Linvocation of the getMatchReportForm operation defi ned in the
ParticipantInformation interface of the Regional L eaguePort.

3. Context and Context Aware Entities

3.1. Context Definitions

In CAComp, we abstract the main elements of the Dey’s
context definition into meta-classes: “any information that
can be used to characterize the situation of an entity”.
For example, “any information” observed becomes an Ob-
servableContext. An ObservableContext owns a data-type,
which determines the observed value data-type.

Figure 2 illustrates a part of CAComp meta-model
focused on Context-Awareness. A ContextAwareEn-
tity is a software system entity which may react to
changes of its outside context. The set of Rele-
vantContext identifies the set of ObservableContext that
a given ContextAwareEntity is aware of. For exam-
ple, the MatchManagementProcess component is a con-
text aware entity, aware of observable contexts in-
cluding: ScreenSizeContext, NetworkBandwidthContext,
DateOfTheDayContext, LocationDistrictContext and Ref-
eree.UserNameContext.

A ContextSituation is defined by a composition between
ranges of values of several observables contexts. A relevant
Situation of a context aware entity must have been com-
posed from a subset of its relevant contexts. At a given
time, a Context Aware Entity may be in one or more Rel-
evantSituations, a set of ContextSituations, associated to a
ContextAwareEntity.

Several UML 2 model elements such as Components,
Collaboration, Activity, may be context-aware. In CaComp,
the concept of ContextAwareEntity establishes the link be-
tween Context meta-model and Composition meta-model
(ie : Components, Collaboration, Activity, as a subset of
UML2). We consider two kinds of context aware enti-
ties : CompositeContextAwareEntity and LeafContextAwa-
reEntity. CACollaboration, CAComponent and CAActivity
are CompositeContextAwareEntity, CAConnector, CAAc-
tiviyEdge and CAActivityNode are LeafContexAwareEntity.

Additionally, the context awareness of each Composite-
ContextAwareEntity is defined by Mappings and Choices.

A Mapping allows the designer to define a direct map-
ping between one of the elements of the CompositeCon-
textAwareEntity (targetCAE) and one of its relevant con-
texts (relevantContext). With Mappings, a Context Aware
entity is directly influenced by its relevant contexts.

A Choice allows CAComp Designer to choose between
several CaOptionalElements according to a given relevant
situation (relevantSituation). Each Choice associates a rel-
evant situation and a set of optional elements. We illustrate
these kinds of context awareness in the example scenario.

3.2. Example of Context-Aware Entity

Behavioral ContextAware Entities are component behav-
ior (activity, operation, process). We give below exam-
ples of behavioral context Aware Entities. The Match-
ManagementActivity model illustrates mapping of opera-
tion parameters in an activity diagram.

caMatchManagementActivity

Date: Date

Mapping

RefereeComputer.
dateOfThDayContext

RefereeName: Sting |-~ [mapping
\ Referee.

UserNameContext

(Regional L eaguePort: Participantinformation)
<<CallOperationAction>>
getMatchReportForm

‘ MRF: MatchReportForm ‘

Figure 3. Parameter mapping in a part of Ca-
MatchManagementActivity Model

In Figure 3, caMatchManagementActivity is a
context-aware behavior of the MatchManagementProcess-
Component. According to Figure 2, caMatchManagement-
Activity is a composite context aware entity. It is aware of a
set of relevant contexts, namely Referee.UserNameContext
and RefereeComputer.DateOftheDayContext. Two
ActivityParameterNode (Date and RefereeName) are
considered as mandatory ContextAwareEntity. The first
Mapping associates DateOfTheDay Context to Date ac-
tivity parameter node. The second Mapping associates
Referee.UserNameContext Context to RefereeName activ-
ity parameter node. Thanks to those mappings, Date and
RefereeName are directly given by context values.

caMatchManagementActivity is also aware of the fol-
lowing relevant situations: DelegateAvailable or Delegate-
UnAvailable. A second part of this context-aware Activity
model is illustrated in Figure 6. In this activity, all the con-
text aware entities included in the dashed rectangle are op-
tional elements, associated to a default choice, and to Del-
egateUnAvailable relevant situation. When caMatchMan-
agement is in this situation, the match event registration is
done by Delegate component. The second choice associates
DelegateUnAuvailable to three activity edges and a callOp-
erationAction. In this situation, the registration of Match
events in the Match Report Form is done by the Referee.
This Context Aware Activity contains a variability of differ-
ent behaviors parts according to several context situation.
Therefore several possible behaviors are represented in a
single model.

Context adaptations may be processed at different time
in the service lifetime: service development, service pack-
aging, service deployment on the computers, service instan-

.........

CAEntity

aaaaaaaaa

.............

ggggggggggggggggg

wwwwwwww

CompositeCAE

[Cractivity |~ [(CACollaboration | [CACompanent |

Figure 2. ContextAware Entities in CaComp

caMatchManagementActivity

<<CallOperationAction>> }

(Referee)
[DelegateUnAvailable] check

[MhichResul: MatchResult 5 l

MatchResult ‘ ‘MRF' MatchReportForm

MRF: MatchReportForm

(Dddegae) ;
<<CallOperationAction>> <<CallOperationAction>> :
registerMatchResult H
‘ l
—_— MRF: MatchReportForm

PartialMatchResult

[DelegatUnAvailable]

(Referes)
<<CallOperationAction>>

registerEvents

[DelegateAvailable]

[DelegatUnAvailable]
‘ FinalMatchResult

.

Figure 4. Context Aware Match Management
Activity

tiation, service execution. CAComp provides an enrichment
of the UML2.0 model for modeling Web Service Orchestra-
tion in an abstract way and for adding Context awareness to
each viewpoint of the abstract model.

In the following sections, we present two kinds of con-
text adaptations which could be applied on the obtained
context aware orchestration model: Deployment-time adap-
tation which first collect context values to generate a con-
text independent orchestration model (section 4), and run-
time adaptation which generates a context-aware orchestra-
tion collecting context values at run-time and performing its
choices.

4. Deployment-time adaptation of Orchestra-
tions

Context Adaptation meta-model is essential for the CA-
Comp context-aware code generation tool. It enables the
composition designer to describe all the strategies and poli-
cies used by the generation tool to perform context adapta-
tions according to current relevant situations at deployment
time.

This adaptation follows these steps : first the architect
builds an orchestration model, next he defines relevant con-
texts and relevant situations. The next step consists in as-
sociating orchestration model and context definitions, with
building a context aware orchestration. Then the context
aware orchestration model can be adapted according to the
relevant context. The adaptation itself is made up of fol-
lowing sub steps : relevant contexts of the orchestration are
collected, interpreted, and its relevant situation are detected.
The orchestration is then adapted according to associated
context values and relevant situations, and deployed to be
directly executed.

In Figure 5, a deployment-time adaptation is performed
on the caMatchManagementActivity context-aware activity
model described in Figure 4 : first context values are col-
lected and stored, thus the Context-aware Activity Model
is transformed following context values with mappings and
relevant situations. After this adaptation, caMatchManage-
mentActivity can be easily deployed, as a classical web ser-
vice Orchestration.

With Deployment-time adaptation, context-based map-
pings and choices are performed during the deployment
stage. One one hand with this kind of deployment, the re-
sulting Orchestration is static and do not need any additional
context information (and consequently no interaction with
any context collector) at runtime. One the other hand con-
text changes cannot influence the execution of this orches-
tration, that is why we also propose Runtime-time Adapta-
tions in Section 5.

caMatchManagementActivity [DelegteUnAvailable]

(see Figure 4)

caMatchManagementActivity

Referee)
<<CallOperationAction>>
check

[DelegateAvailable]

[MECRESIT WatchRes.t

MatchResut rtForm

<<CallOperationAction>>
registerMatchResult

caMatchManagementAciivity

= <<CallOperationAction>>

[

<< allOperationAction>>
registerEvents

Figure 5. Deployment-time Choice Adapta-
tion in MatchManagementActivity Model

5. Context Aware Runtime-time Adaptation of
Orchestrations

Run-time adaptation consists in generating context
aware artifacts able to adapt the orchestration to context
values and relevant situations. The firsts step of this adapta-
tion : Context Definition and Context Aware Orchestration
building remain the same as in section4. The adaptation
process performs the generation and the deployment of a
Context Aware Orchestration, with context specific artifacts
(new decision nodes, new sub activities, new interactions
with a context collector).

For example, the run-time adaptation transforms ca-
MatchManagementActivity with adding new constructs
(new decision node, fusion nodes, activity edges ...). Each
newly generated DecisionNode is associated to a Decision-
Input called EvaluateRelevantSituation. This sub Activity
calls a context collector able to evaluate the associated Rele-
vant Situation. For example, in Figure 6, DelegateAvailable
and DelegateUnAvailable are evaluated with this Decision
Input.

6. Conclusion

The CAComp adaptation meta-model enables composi-
tion designers to define variations in the composition and in
the process modeling. During deployment and execution,
these information will be used by CAComp to choose the
structure and the behavior of the composition and orches-
tration.

caMatchManagementActivity

(e <<CallOperationAction>>
Check

[DelegateAvailable]

[DelegateUnAvailable] ‘

)
<<CallOperationAction>>

MRF: MatchReportForm

MatchResult ‘

MRF: MatchReportForm

<<CallOperationAction>>
RegisterMatchResult

1
PartialMatchResult

[DelegateUnAvailable]

[DelegateAvailable]

(Referee)
<<CallOperationAction>>

FinalMatchResult

Figure 6. Run-time Choice Adaptation in
MatchManagementActivity Model

This paper has introduced a meta-model for context-
aware composition of software services. This meta-model
is made up by three meta-models. Software Service compo-
sition meta-model describes software services as UML 2.0
components, their assembly with collaboration and their be-
havior as UML2.0 activities. The context meta-model is an
implementation of CAMidO meta-model
citeBehlouli2006, and describes context information, col-
lection and interpretation. The third meta-model is de-
fined as a merge of the two previous meta-models, to de-
scribe context-aware Orchestrations of Web Services and
their adaptation to relevant context situations. A real ex-
ample of context-aware orchestration made up by several
context aware services cooperating in different contexts il-
lustrates the use of CAComp meta-model.

The proposition allows composition designers to use
standard UML diagrams to describe orchestration of ser-
vices. Furthermore, they can describe the context awareness
of their compositions.

Implemented with MDE technologies, the CAComp
framework is used at deployment time to produce compo-
sition adapted both to the target platforms and to the cur-
rent context situations. At deployment time it produces
platform-specific models and descriptors after having col-
lected and interpreted relevant context, according to map-
pings and choices. At run time it produces a context aware
platform-specific models and descriptors able to collect
context values at run time and to perform decisions with
additional context artifacts (new decision nodes, new Deci-
sion Input).

There are substantial research works on context-aware
compositions, but few of them consider software service
composition with the scope of model transformations. This
section compares some context aware solutions with the
CAComp proposition.

Process Definition Meta-model RFP [12] solicits sub-
missions for process definition meta-model. We took par-
ticular attention to the following ongoing submission [1].
This proposal reuses a subset of the UML 2.0 meta-model
and extends UML 2.0 with a Business Process Definition
Package. In this proposition, a process is seen as a UML
Component representing the external view of a process, de-
noting its contractual interface. Additionally, process flows
are considered as associated behavior specified by an activ-
ity. We add to this proposition the possibility to describe the
collaboration between components (i.e. services). This ex-
tension is necessary in CAComp because we are interested
in the orchestration execution but also in the deployment of
the services used by the collaboration.

Several propositions allow to model context information.
Above them, the ContextUML [15] and the CML (Context
Modeling Language) [6]. The first one is a UML model,
it is similar to CAComp Context Meta-model but does not
include observable entities and context aware entities. The
second one models context, but not adaptations. CAMidO
is a Context Aware Middleware based on an Ontology meta-
model [5] which includes context and adaptations. CA-
Comp context meta-model is a UML mapping of CAMidO
ontology meta-model and an extension of this model for or-
chestrations.

PLASTIC [3] provides tools and methodologies to de-
velop service-based context aware applications. The meta-
model proposed by the authors is based on two levels
of software description: service composition as an ab-
stract layer and component compositions as a concrete layer
where can be found deployed services. Context information
is utilized during service discovery for negotiations between
user and provider (trade-off between offered Qos and pro-
vided Qos).

CADeComp [4] is a context aware deployment tool for
component-based applications. This tool is driven by a ded-
icated abstract meta-model, based on OMG D&C specifi-
cations [11], and follows MDA specifications. CADeComp
describes context aware assemblies of components and pro-
duces target deployment plan. The context adaptation is
driven by a set of adaptation rules executed by CADeComp
tool at deployment time. CADeComp manages structural
context adaptations of assemblies of components, whereas
CAComp addresses adaptation for orchestration of services.
CAComp takes into account behavioral adaptation through
activity diagrams adaptations, and performs BPEL descrip-
tor generation whereas CADeComp configures CCM Ap-
plications.

The meta-model presented in this article will be en-
hanced with a deployment meta-model on which will be
based the model transformations to target platform models.
The deployment level will include a context-aware discov-
ery service to manage context-aware discovery of existing
services.

References

[1] Business Process Definition Metamodel (BPDM), 2006. In
Response to: Business Process Definition Metamodel RFP
(OMG Document bei/2003-01-06).

[2] P. Aniorté and F. Seyler. Ugatze: Model driven egineering
for component reuse. In In Proceedings of 25th Latin Amer-
ican Computing Conference, Cali, Columbia, Oct. 2005.

[3] M. Autili, V. Cortellessa, A. D. Marco, and P. Inverardi. A
conceptual model for adaptable context-aware services. In
A. Bertolino and A. Polini, editors, in Proceedings of Inter-
national Workshop on Web Services Modeling and Testing
(WS-MaTe2006), pages 15-33, Palermo, Sicily, ITALY, June
9th 2006.

[4] D. Ayed, C. Taconet, G. Bernard, and Y. Berbers. An adapta-
tion methodology for the deployment of mobile component-
based applications. In ICPS’06 : IEEE International Con-
ference on Pervasive Services 2006, pages 193-202, Lyon,
France, June 2006.

[5] N. Belhanafi Behlouli, C. Taconet, and G. Bernard. An
architecture for supporting Development and Execution of
Context-Aware Component applications. In ICPS’06 : IEEE
International Conference on Pervasive Services 2006, pages
57-66, Lyon, France, 26-29 June 2006.

[6] K. Henricksen and J. Indulska. Developing context-
aware pervasive computing applications: Models and ap-
proach. Journal of Pervasive and Mobile Computing, vol-
ume 2(1):pages 37-64, Elsevier, 2006.

[7] A. Kleppe, J. Warmer, and W. Bast. MDA Explained.
The Model Driven Architecture: Practice and Promise.
Addison-Wesley, 2003.

[8] F. Leymann. Web services flow language (wsfl 1.0), May
2001. IBM.

[9] J. Miller and J. Mukerji. Model Driven Architecture (MDA).
Technical report, Object Managment Group, July 2001.
http:www.omg.org/docs/ormsc/01-07-01.pdf.

[10] OASIS. Oasis ws-bpel technical commity website.
http://www.o0asis-open.org/committees/wsbpel/charter.php,
2006.

[11] Object Management Group, Inc. Deployment and Config-
uration of Component-based Distributed Applications, June
2003. Draft Adopted Specification (ptc/03-07-02).

[12] OMG. Business Process Definition Metamodel Request
For Proposal (RFP). Technical report, Object Management
Group, 2003. bei/03-01-06.

[13] OMG. Unified modeling language version 2.0 superstruc-
ture, final adopted specification. Technical report, Object
Managment Group, Aug. 2003. document ptc/03-09-15.

[14] F. Seyler and P. Aniorté. A model driven integration process
to manage component interoperability. In Software Engi-
neering Research and Practice, pages 104-110, 2004.

[15] Q. Z. Sheng and B. Benatallah. ContextUML: A UML-
based Modeling Language for Model-Driven Development
of Context-Aware Web services. In The 4th International
Conference on Mobile Business (ICMB’05), IEEE Computer
Society. Sydney, Australia., July 11-13 2005.

[16] S. Thatte. Xlang: Web services for business process design.,
2001.

